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MAXIMAL Lp-REGULARITY FOR THE LAPLACIAN ON LIPSCHITZ

DOMAINS

IAN WOOD

Abstract. We consider the Laplacian with Dirichlet or Neumann boundary conditions on
bounded Lipschitz domains Ω, both with the following two domains of definition: D1(∆) =

{u ∈ W 1,p(Ω) : ∆u ∈ Lp(Ω), Bu = 0}, or D2(∆) = {u ∈ W 2,p(Ω) : Bu = 0}, where B

is the boundary operator. We prove that, under certain restrictions on the range of p, these
operators generate positve analytic contraction semigroups on Lp(Ω) which implies maximal
regularity for the corresponding Cauchy problems. In particular, if Ω is bounded and convex

and 1 < p ≤ 2, the Laplacian with domain D2(∆) has the maximal regularity property, as in
the case of smooth domains. In the last part, we construct an example that proves that, in
general, the Dirichlet-Laplacian with domain D1(∆) is not even a closed operator.

1. Introduction

In this paper we will investigate solutions to the equations





u′ − ∆u = f in Ω,
u = 0 on ∂Ω,

u(0) = 0 in Ω,
(1.1) and





u′ − ∆u = f in Ω,
∂u
∂N = 0 on ∂Ω,

u(0) = 0 in Ω,

where Ω ⊆ R
n is a bounded Lipschitz domain, i.e. there exists a constant M > 0 so that every

point on the boundary of Ω has a neighbourhood U such that, after an affine change of coordinates,
∂Ω∩U is described by the equation xn = ϕ(x1, ..., xn−1) where ϕ is a Lipschitz continuous function
with Lipschitz constant bounded by M and Ω ∩ U = {x ∈ U : xn > ϕ(x1, ..., xn−1)}.

Our aim is to prove maximal regularity for the above mentioned problems in the Lebesgue spaces
Lp(Ω). To be more precise, what we want to show is that for 1 < p, q < ∞ and for every
f ∈ Lq(R+, Lp(Ω)) there exists a unique solution to (1.1) such that u′ ∈ Lq(R+, Lp(Ω)).

For bounded smooth domains Ω, it is well-known that the Laplacian with domain D(∆) =

W 2,p(Ω)∩W 1,p
0 (Ω) generates an analytic C0-semigroup on Lp(Ω), 1 < p < ∞ and that it has the

maximal regularity property; similarly, in the bounded smooth case, the natural domain for the
Neumann-Laplacian lies in W 2,p(Ω) (see e.g. [DHP03]).

However, in Lipschitz domains this is no longer the case. In [Dah79], Dahlberg constructs a
bounded Lipschitz domain Ω ⊆ R

2 and a function f ∈ L∞(Ω) where the solution to
{

∆u = f in Ω,
u = 0 on ∂Ω

(1.2)

The main results of this paper are taken from the author’s Ph.D.-thesis, written at the TU Darmstadt under
the supervision of Prof. M. Hieber. The author wishes to thank Prof. Hieber for his guidance, encouragement
and support in the last few years. Many thanks also go to Prof. C. E. Kenig for his hospitality and many fruitful

discussions on the subject during a one-year stay at the University of Chicago.
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is not in W 2,p(Ω) for any 1 < p < ∞. Therefore, in Lipschitz domains, we can no longer expect
the maximal regularity results known for smooth domains to hold.

The study of elliptic problems in non-smooth domains was initiated in the 1960’s with works by
Agmon and Nirenberg [AN63]. The main idea was developed by Kondratiev [Kon67] and has
since been extended, in particular by Grubb [Gru86], Maz’ja, Nazarov and Plamenevskij [MP84],
[NP94] and Schulze (e.g. [Sch91], [SS99], [KS03]). In this approach, the first step is to consider
a model problem in a cone which can be solved by reducing the dimension of the problem using
partial Fourier transforms. More general domains can then be treated using localisation methods.
Problems in cones and wedges can be treated similarly as done in the books by Kondratiev and
Kozlov [KMR01] and Nazarov and Plamenevskij [NP94] and in the parabolic case there are recent
results by Solonnikov [Sol01], Nazarov [Naz01] and Prüss and Simonett [PS05] leading to results
in weighted Lp-spaces.

A different approach to the elliptic problem is to use potential theory and harmonic analysis
methods to estimate the Green function or harmonic measure. This approach was used by
Dahlberg [Dah77], [Dah79], and Jerison and Kenig [JK82], [JK95] for the Dirichlet-Laplacian
in bounded Lipschitz domains. It allows to prove uniqueness of the solution to problem (1.2)
in certain Sobolev spaces when the data f is in a negative Sobolev space. Adolfsson [Ado92],
[Ado93] and Fromm [Fro93] show that in bounded convex domains Ω, or, more generally, bounded
Lipschitz domains satisfying a uniform outer ball condition, the solution still gains two degrees
of regularity when the data is in Lp(Ω). For the Neumann-Laplacian the corresponding results
were proved by Fabes, Mendez and Mitrea [FMM98] and, in the convex case, by Adolfsson and
Jerison [AJ94]. In [She95], Shen investigated elliptic systems with constant coefficients in bounded
Lipschitz domains. He was able to prove resolvent and gradient estimates in Lp(Ω) for p in an
interval around 2. These guarantee that the operator generates a bounded analytic semigroup
and that the domain of the operator is contained in W 1,p(Ω).

Following Dahlberg’s approach to the elliptic problem, Fabes and Salsa [FS83] use caloric measure
to solve





ut − ∆u = 0 in (0, T ) × Ω,
u(0) = 0 in Ω,

u = f on (0, T ) × ∂Ω
(1.3)

in Lipschitz domains Ω for data f in some Lp-space on the boundary, p ≥ 2. In [Bro89] and
[Bro90], Brown uses potential theoretical arguments to show existence and uniqueness of solutions
of (1.3) in certain function spaces and to gain estimates on the non-tangential maximal function
of the gradient of the solution. However, none of these methods seem to allow to prove maximal
regularity for the operators or to characterise the domain in the Lp-setting for general Lipschitz
domains.

For the parabolic problem

{
ut − Au = f in (0, T ) × Ω,

Bju = 0 on (0, T ) × ∂Ω, j = 1, ...,m

in smooth domains Ω with an elliptic operator A of order 2m and boundary operators Bj there
have been many developments in recent years. They rely in large part on developments in
operator theory: the analysis of Banach-space valued functions, the functional calculus of sectorial
operators and the property of maximal regularity for the linear problem. In [DHP03], maximal
Lp-regularity of solutions to boundary value problems of Agmon-Douglis-Nirenberg type was
proved for C2m-domains.
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The aim of this paper is to investigate whether these maximal regularity results extend to the heat
equation in Lipschitz domains. To do this, we combine the known results for elliptic equations
with results from operator theory to solve the parabolic problem and obtain maximal regularity
for the solution. Section 2 introduces the elliptic results we will require later on. The third section
then looks at the Dirichlet problem and proves that under certain conditions on the domain and
the exponent p, the Dirichlet-Laplacian generates a C0-semigroup in Lp(Ω). Important properties
of the semigroup are collected in Section 4. Section 5 repeats the procedure and shows similar
results for Neumann boundary conditions, while Section 6 contains the main maximal regularity
results which are now an easy consequence of known results from operator theory. Finally, in
Section 7 we construct an example proving that restrictions given in Section 6 on the range of
exponents p are necessary for our maximal regularity results.

2. Known results

We first state the main result due to Jerison and Kenig on solutions to the Dirichlet problem in
bounded Lipschitz domains. The spaces Lp

α(Ω) denote the Bessel potential spaces of order α and
exponent p over the domain Ω (cf. [JK95] for the definition and some properties). We remark
that for Lipschitz domains Ω and k ∈ N, we have Lp

k(Ω) = W k,p(Ω).

Theorem 2.1. (Jerison, Kenig [JK95, Theorem 1.1]). Let Ω be a bounded Lipschitz domain in
R

n, n ≥ 3. There exists ε ∈ (0, 1], depending only on the Lipschitz character1 of Ω such that for
every f ∈ Lp

α−2(R
n) there is a unique solution u ∈ Lp

α(Ω) to the inhomogeneous Dirichlet problem
{

∆u = f in Ω,
u = 0 on ∂Ω,

(2.1)

provided one of the following holds:

1. 1 < p ≤ p0 and
3

p
− 1 − ε < α < 1 +

1

p
,

2. p0 < p < p′0 and
1

p
< α < 1 +

1

p
,

3. p′0 ≤ p < ∞ and
1

p
< α <

3

p
+ ε,

�

1p1
1 2"

where 1/p0 = 1/2 + ε/2 and 1/p′0 = 1/2 − ε/2. Moreover, we have the estimate

‖u‖Lp
α(Ω) ≤ C ‖f‖Lp

α−2
(Rn)

for all f ∈ Lp
α−2(R

n). The constant C depends on the domain Ω only via the Lipschitz character

of Ω. When the domain is C1, the exponent p0 may be taken to be 1.

Remark 2.2. In two dimensions there is a similar result (cf. [JK95, Theorem 1.3]).

For convex bounded domains Ω ⊆ R
n and 1 < p ≤ 2, it is possible to control all second deriv-

atives in Lp(Ω) by the Laplacian. Note that any bounded convex domain is a Lipschitz domain
(cf. [Gri85, Corollary 1.2.2.3]). The following result is due to Fromm.

Theorem 2.3 (Fromm [Fro93]). If Ω ⊂ R
n, n ≥ 2, is a bounded and convex domain with

diameter d and if f ∈ Lp
α(Ω) then there is a unique u ∈ W 1,p

0 (Ω)∩Lp
α+2(Ω) satisfying ∆u = f in

1That is the number of coordinate charts used to cover the boundary ∂Ω by cylinders such that, inside each
cylinder, the domain is the domain above the graph of a Lipschitz function, the radii of these cylinders and the

supremum of the norms of the graph functions.
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Ω, and this solution satisfies the estimate

‖u‖α+2,p ≤ C(d) ‖f‖α,p(2.2)

for −1 ≤ α ≤ 0 and 1 < p < 2
α+1 (defining 2

0 = ∞) and for α = 0, p = 2.

The theorem actually holds in a larger class of domains which are Lipschitz domains that are
convex in the neighbourhood of any boundary singularities.

Definition 2.4. Let Ω be a domain in R
n. We say that Ω satisfies the outer ball condition if

for each x ∈ ∂Ω, there exists an open ball B ⊆ Ωc with x ∈ ∂B. Ω satisfies a uniform outer ball
condition if there exists an R > 0 such that for all x ∈ ∂Ω, the ball can be chosen to have radius
R.

Remark 2.5. Theorem 2.3 holds in all bounded Lipschitz domains satisfying a uniform outer
ball condition (cf. [Fro93, Remarks]). In this case, the constant C in (2.2) depends on more
geometric properties of Ω than just the diameter.

The results corresponding to these theorems for Neumann boundary conditions are due to Fabes,
Mendez and Mitrea [FMM98] and, in the convex case, Adolfsson and Jerison [AJ94]. They read
as follows.

Theorem 2.6 (Fabes, Mendez, Mitrea [FMM98]). Suppose Ω is a bounded Lipschitz domain
in R

n, n ≥ 3. Then there exists ε ∈ (0, 1], such that for every f ∈ Lp
α−2, 0(Ω) satisfying the

compatibility condition 〈f, χΩ〉 = 0 there is a solution u ∈ Lp
α(Ω) to the inhomogeneous Neumann

problem
{

∆u = f in Ω,
∂u
∂N = 0 on ∂Ω,

(2.3)

provided the pair (α, p) satisfies the same conditions as stated in Theorem 2.1 for the Dirichlet
problem. Moreover, the solution is unique up to a constant and we have the estimate

inf
c∈C

‖u − c‖Lp
α(Ω) ≤ C ‖f‖Lp

α−2
(Rn) .

Remark 2.7. In fact, in [FMM98] inhomogeneous boundary conditions are considered and the
corresponding problems are solved for boundary data in suitable Besov spaces both for the Dirich-
let and for the Neumann problem.

As in the case of Dirichlet boundary conditions, for bounded convex domains we can also control
the second derivatives.

Theorem 2.8 (Adolfsson, Jerison [AJ94]). Let Ω ⊆ R
n be a bounded convex domain and n ≥ 3.

Suppose f ∈ Lp(Ω) with
∫
Ω

f = 0 and 1 < p ≤ 2. Then there exists a solution u to the Neumann

problem (2.3) in W 2,p(Ω) and
∫

Ω

|∇2u|p ≤ C

∫

Ω

|f |p,

where ∇2 denotes the matrix of the second order derivatives and C only depends on the Lipschitz
character of the domain.

Remark 2.9. Note that by Theorem 2.6, the solution is unique up to a constant.
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3. Generation of a C0-semigroup by the Dirichlet-Laplacian

The aim of this section is to show that if we define the Dirichlet-Laplacian suitably on the Lebesgue
spaces Lp(Ω), for certain domains Ω and a range of exponents p, the Dirichlet-Laplacian is the
generator of a C0-semigroup. We then determine various properties of the generated semigroup.
To begin, we introduce the Dirichlet-Laplacian with two different domains of definition. The first
of the operators to be introduced is the weak Dirichlet-Laplacian.

Definition 3.1. We define the weak Dirichlet-Laplacian ∆D
p,w on Lp(Ω) by

D(∆D
p,w) = {u ∈ W 1,p

0 (Ω) : ∆u ∈ Lp(Ω)},

∆D
p,wu = ∆u.

Here, ∆u ∈ Lp(Ω) is to be understood in the sense of distributions.

In order to obtain results on higher regularity of the solution to the Cauchy problem, we introduce
the strong Dirichlet-Laplacian.

Definition 3.2. The strong Dirichlet-Laplacian ∆D
p,s on Lp(Ω) is defined by

D(∆D
p,s) = W 2,p(Ω) ∩ W 1,p

0 (Ω),

∆D
p,su = ∆u.

Our aim is to use the Lumer-Phillips Theorem (see e.g. [ABHN01, Theorem 3.4.5]) to prove that
the Dirichlet-Laplacian generates a C0-semigroup of contractions. To apply the theorem, we need
to show dissipativity of the operator.

Lemma 3.3. Let Ω ⊆ R
n be a bounded Lipschitz domain and 2 ≤ p < ∞. Then ∆D

p,w is
dissipative.

Proof. Let u ∈ D(∆D
p,w) and set u∗(x) = |u(x)|p−2u(x)χ{u6=0}. Then u∗ ∈ Lp′

(Ω) and ũ∗ :=
u∗

‖u∗‖p′

is in the subdifferential of u. We also have

∇u∗ =

(
|u|p−2∇u +

p − 2

2
u|u|p−4 (u∇u + u∇u)

)
χ{u6=0}.

Using Hölder’s inequality, it is easy to check that ∇u∗ ∈ Lp′

(Ω). Moreover tr u∗ = 0. Therefore,

u∗ ∈ W 1,p′

0 (Ω). We can now integrate by parts to obtain

Re 〈∆u, u∗〉 = −Re

∫

Ω

∇u · ∇u∗.(3.1)

A calculation then yields

Re 〈∆u, u∗〉 = −Re

∫

Ω

∇u · ∇u∗

= −Re

∫

Ω

|u|p−2|∇u|2χ{u6=0}

−Re

∫

Ω

p − 2

2
u|u|p−4

(
u(∇u)2 + u|∇u|2

)
χ{u6=0}

= −

∫

Ω

(
|u|p−2|∇u|2 + (p − 2)|u|p−4(Re u∇u)2

)
χ{u6=0}

= −

∫

Ω

|u|p−4
(
u∇u · u∇u + (p − 2)(Re u∇u)2

)
χ{u6=0}
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= −

∫

Ω

|u|p−4
[
(p − 1)(Re u∇u)2 + (Im u∇u)2

]
χ{u6=0} ≤ 0.

�

Corollary 3.4. Let Ω ⊆ R
n be a bounded Lipschitz domain and 2 ≤ p < ∞. Then ∆D

p,s is
dissipative.

Note that for p < 2, the function u∗ is not in W 1,p′

0 (Ω), so the straightforward integration by
parts is not possible. However, for the strong Dirichlet-Laplacian an approximation procedure
yields the desired result:

Lemma 3.5. Let Ω be a Lipschitz domain, 1 < p < ∞ and u∗ = |u|p−2u. Then for u ∈ W 2,p(Ω)
we have ∫

Ω

∆u u∗ = −(p − 1)

∫

Ω

|u|p−4|Re(u∇u)|2χ{u6=0}(3.2)

−

∫

Ω

|u|p−4|Im(u∇u)|2χ{u6=0}

−i(p − 2)

∫

Ω

|u|p−4Re(u∇u)Im(u∇u)χ{u6=0}

+

∫

∂Ω

u|u|p−2 ∂u

∂N
.

Proof. This is a special case of Theorem 3.1 from [MS04] with φ = 1 and A = ∆. Note that the
assumptions on the boundary in [MS04] only require that C∞(Ω) is dense in W 2,p(Ω) and that
traces are well defined. In particular the results hold for Lipschitz domains. �

Corollary 3.6. Let Ω ⊆ R
n be a Lipschitz domain and 1 < p < ∞. Then ∆D

p,s is dissipative.

We are now in the position to prove one of the main theorems of this section for the strong
Dirichlet-Laplacian.

Theorem 3.7. Let Ω ⊆ R
n, n ≥ 2, be a bounded Lipschitz domain satisfying a uniform outer

ball condition and 1 < p ≤ 2. Then ∆D
p,s generates a C0-semigroup of contractions on Lp(Ω).

Proof. It remains to verify the range condition of the Lumer-Phillips-Theorem, i.e. that

(λ − ∆)D(∆D
p,s) = Lp(Ω) for some λ > 0

is satisfied. However, from Theorem 2.3, we know that under our assumptions, 0 ∈ ρ(∆D
p,s) and

as the resolvent set is open, we have λ ∈ ρ(∆D
p,s) for some small λ > 0 which proves the theorem.

�

For the weak Dirichlet-Laplacian we obtain the following result:

Theorem 3.8. Let Ω ⊆ R
n, n ≥ 3, be a bounded Lipschitz domain. Then there exists δ > 0

depending only on the Lipschitz character of Ω such that the operator ∆D
p,w generates a C0-

semigroup of contractions on Lp(Ω) for (3 + δ)′ < p < 3 + δ, where (3 + δ)′ denotes the conjugate
exponent to 3 + δ.

If n = 2, the same statement holds for all (4 + δ)′ < p < 4 + δ.

If Ω is a bounded Lipschitz domain in R
n, n ≥ 2, satisfying a uniform outer ball condition, the

statement is true for all 1 < p < ∞.
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Proof. We start with the case n ≥ 3. Once again, we verify that the range condition of the
Lumer-Phillips-Theorem is satisfied. For u ∈ D(∆D

p,w), we have ∆u ∈ Lp(Ω), so ∆u ∈ Lp
α−2(Ω)

for any α ≤ 2. By Theorem 2.1, there exists δ > 0 such that whenever 1 < p < 3 + δ, we can find
α ∈ [1, 2] and a unique v ∈ Lp

α(Ω) such that
{

∆v = ∆u in Ω,
v = 0 on ∂Ω,

and ‖v‖α,p ≤ C ‖∆u‖α−2,p. Then u − v is harmonic and by the Maximum Principle we have
u = v. Thus

‖u‖1,p ≤ ‖u‖α,p ≤ C ‖∆u‖α−2,p ≤ C ‖∆u‖p .

Therefore, ∆D
p,w : D(∆D

p,w) → Lp(Ω) is an injective mapping for our range of exponents p. A

similar argument shows that it is also surjective. Thus under our assumptions we have 0 ∈ ρ(∆D
p,w)

for any 1 < p < 3 + δ. Moreover, by Lemma 3.3, ∆D
p,w is dissipative for p ≥ 2. This proves the

theorem for 2 ≤ p < 3 + δ.

For the case when (3 + δ)′ < p < 2 we consider the dual operator. Since ∆D
p′,w is m-dissipative,

its dual operator ∆D
p′,w

′ is m-dissipative in Lp(Ω) (cf. [CH+87, Proposition 3.10]).

We now claim that ∆D
p,w ⊆ ∆D

p′,w
′, i.e. D(∆D

p,w) ⊆ D(∆D
p′,w

′) and both operators coincide on

D(∆D
p,w). To see this, let v ∈ D(∆D

p,w), u ∈ D(∆D
p′,w), (vn) ⊆ C∞

c (Ω) and (un) ⊆ C∞
c (Ω) such

that vn → v in W 1,p(Ω) and un → u in W 1,p′

(Ω). Then

〈∆u, v〉 = lim
n→∞

〈∆u, vn〉 = − lim
n→∞

〈∇u,∇vn〉

= −〈∇u,∇v〉 = − lim
n→∞

〈∇un,∇v〉

= lim
n→∞

〈un,∆v〉 = 〈u,∆v〉,

so v ∈ D(∆D
p′,w

′) and ∆D
p′,w

′v = ∆v as claimed. Therefore ∆D
p,w is contained in a dissipative

operator and hence is itself dissipative for (3 + δ)′ < p ≤ 2. Moreover, as we have seen above,
for these p the range condition is satified. Using the Lumer-Phillips Theorem, this completes the
proof for n ≥ 3.

For n = 2, we merely replace Theorem 2.1 by [JK95, Theorem 1.3], while in the case of domains
satisfying a uniform outer ball condition we use Theorem 2.3 and argue in the same way obtaining
the larger range of exponents p. �

Remark 3.9. δ is given by 3ε/(1 − ε) where ε is the constant given in Theorem 2.1. Therefore,
(3 + δ)′ = 3/(2 + ε).

Corollary 3.10. If Ω ⊆ R
n, n ≥ 2, is a bounded Lipschitz domain satisfying a uniform outer

ball condition and 1 < p ≤ 2, then we have ∆D
p,w = ∆D

p,s.

Proof. Obviously, ∆D
p,s ⊆ ∆D

p,w. Furthermore, 0 ∈ ρ(∆D
p,s) ∩ ρ(∆D

p,w), so ∆D
p,s = ∆D

p,w. �

Remark 3.11. 1. By similar arguments, it can be shown that the Dirichlet Laplacian with
domain

D(∆D
α,p) = {f ∈ Lp

α(Ω) : tr f = 0, ∆f ∈ Lp(Ω)}

generates a C0-semigroup on Lp
α(Ω), α ∈ [1, 2) whenever the pair (α, p) satisfies one of the

following conditions:

• 3/(2 + ε) < p < 3/(α − ε) if 1 ≤ α < (3 − ε)/2
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• 3/(2 + ε) < p < 2/(1 − ε) if (3 − ε)/2 < α < 3/2
• 3/(2 + ε) < p < 1/(α − 1) if 3/2 ≤ α < 2

where ε is the constant given in Theorem 2.1 and Ω is a bounded Lipschitz domain in R
n, n ≥ 3.

3. To make the statements more concise, in the following we will often only refer to the semigroup
generated by the weak Dirichlet-Laplacian, recalling that whenever the strong Dirichlet-Laplacian
is a generator, it coincides with the weak Dirichlet-Laplacian.

4. Properties of the generated semigroup

We first show that the semigroups generated on Lp(Ω) are consistent.

Proposition 4.1. Let Ω be a bounded Lipschitz domain in R
n, where either

• n ≥ 3 and (3 + δ)′ < p, q < 3 + δ, where δ > 0 depends only on the Lipschitz character of
Ω,

• n = 2 and (4 + δ)′ < p, q < 4 + δ, where δ > 0 depends only on the Lipschitz character of
Ω or

• n ≥ 2 and suppose additionally that Ω satisfies a uniform outer ball condition and 1 <
p, q < ∞.

Then the semigroups Tp generated by ∆D
p,w and Tq generated by ∆D

q,w are consistent, i.e. if f ∈
Lp(Ω) ∩ Lq(Ω) then

Tp(t)f = Tq(t)f for all t ≥ 0.

Proof. W.l.o.g. assume p < q. Then, as Ω is bounded, D(∆D
q,w) ⊆ D(∆D

p,w). Let f ∈ D(∆D
q,w).

Then Tq(t)f is the unique classical solution to

u′ − ∆u = 0, u(0) = f(4.1)

with Tq(t)f ∈ D(∆D
q,w) for t ≥ 0. But then Tq(t)f ∈ D(∆D

p,w), so it must agree with Tp(t)f ,

the unique classical solution to (4.1) for f ∈ D(∆D
p,w). Since D(∆D

q,w) is dense in Lq(Ω), we get
Tp(t)f = Tq(t)f for all f ∈ Lq(Ω). �

This now gives us some further interesting results.

Corollary 4.2. Let Ω, n and p be as in Proposition 4.1. Then the semigroup generated by ∆D
p,w

satisfies a Gaussian estimate, i.e. there exist constants a ≥ 0, M, b > 0 such that

|T (t)f | ≤ MeatG(bt)|f | for t ≥ 0,

where G(t)f = kt ∗ f is the Gaussian semigroup and kt is the Gaussian kernel. Moreover, the
semigroup generated by ∆D

p,w is analytic.

Proof. On L2(Ω), ∆D
2,w is identical to the Dirichlet-Laplacian defined via the form in [AB99,

Section 1]. Since the semigroups generated on Lp(Ω) are consistent, both for the construction of
the generator in [AB99] and for the semigroups generated by ∆D

p,w, the semigroups must coincide
for all cases. Then by [AB99, Section 1] the semigroup satisfies a Gaussian estimate. By the
Stein Interpolation Theorem, it follows that the semigroup on Lp(Ω) is analytic. �

Corollary 4.3. Under the assumptions on Ω, n and p in Proposition 4.1, the spectrum of ∆D
p,w

is independent of p, i.e. for all p such that ∆D
p,w generates a C0-semigroup in Lp(Ω), we have

σ(∆D
p,w) = σ(∆D

2,w).
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Proof. This follows from the Gaussian estimate by a result due to Kunstmann [Kun99]. �

Our next aim is to show that the generated C0-semigroup is positive.

Lemma 4.4. Let Ω, n and p be as in Proposition 4.1. Then the semigroup generated by ∆D
p,w is

positive in Lp(Ω).

Proof. We can prove the lemma when dealing only with real-valued functions using [CH+87,
Corollary 7.15] as, in this case, Lp(Ω) is a Banach lattice. It is sufficient to show that ∆D

p,w is
dispersive. In the case p ≥ 2, integration by parts as in the proof of Lemma 3.3 proves this.

When dealing with complex-valued functions, the positivity of the semigroup on Lp(Ω), p ≥
2, obviously follows from the real-valued case and the fact that the operator has real-valued
coefficients.

Now let p < 2. Recall that a semigroup is positive iff the resolvent is positive for sufficiently large
λ > 0 (see e.g. [CH+87, Proposition 7.1]). Let f ∈ Lp(Ω), f ≥ 0. Then there exist fn ∈ L2(Ω),
fn ≥ 0 such that fn → f in Lp(Ω). If ∆D

p,w generates a C0-semigroup on Lp(Ω), then from the

resolvent estimate we obtain that R(λ,∆D
p,w)fn → R(λ,∆D

p,w)f in Lp(Ω). However, positivity of

the semigroup on L2(Ω) and consistency of the semigroups imply R(λ,∆D
p,w)fn ≥ 0 and therefore

R(λ,∆D
p,w)f ≥ 0 almost everywhere. This proves positivity also for the case p < 2. �

We finish this section with a result on the growth bound of the generated semigroup.

Corollary 4.5. Let Ω, n and p satisfy the same assumptions as in Proposition 4.1. Then the
semigroup generated by ∆D

p,w is of negative type in Lp(Ω), i.e. the growth bound ω(T ) of the
semigroup satisfies ω(T ) < 0, moreover, it is independent of p.

Proof. A result due to Weis (cf. [Wei95], [Wei98] or [ABHN01, Theorem 5.3.6] for different
versions of the proof), implies that for generators A of positive semigroups T on Lp(Ω), we have
s(A) = ω(T ). By Corollary 4.3, we already know that σ(∆D

p,w) = σ(∆D
2,w), in particular equality

holds for the spectral bound. It therefore remains to examine the case p = 2.

Using Poincaré’s inequality, for u ∈ D(∆D
2,w), u 6= 0, we have

〈∆u, u〉 = −‖∇u‖
2
2 ≤ −C ‖u‖

2
2 < 0.

Then by [Paz83, Theorem 1.3.9], we get that the numerical range and therefore the spectrum of
∆D

2,w lie in the half-plane {z ∈ C : Re z ≤ −C}, in particular s(∆D
2,w) ≤ −C. �

5. Generation of a C0-semigroup by the Neumann-Laplacian

For Neumann boundary conditions, we also introduce the weak and the strong Neumann-Laplacian.

Definition 5.1. We define the weak Neumann-Laplacian ∆N
p,w on Lp(Ω) by

D(∆N
p,w) =

{
u ∈ W 1,p(Ω) : ∃v ∈ Lp(Ω) ∀ϕ ∈ W 1,p′

(Ω). −

∫

Ω

∇u∇ϕ =

∫

Ω

vϕ

}
,

∆N
p,wu = v.

We say that ∂u
∂N = 0 iff

∫

Ω

∆uϕ = −

∫

Ω

∇u∇ϕ

for any ϕ ∈ W 1,p′

(Ω).
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Definition 5.2. The strong Neumann-Laplacian ∆N
p,s is defined on Lp(Ω) by

D(∆N
p,s) =

{
u ∈ W 2,p(Ω) :

∂u

∂N
= 0 on ∂Ω

}
,

∆N
p,su = ∆u.

We will now proceed in a very similar way as for Dirichlet boundary conditions to prove generator
results for the Neumann-Laplacian. As solutions to the Neumann problem in bounded domains
are only unique up to a constant, we introduce the Banach space

Lp
0(Ω) :=

{
f ∈ Lp(Ω) :

∫

Ω

f = 0

}

of Lp-functions with mean zero.

Once again, our aim is to use the Lumer-Phillips Theorem to prove generation of a C0-semigroup.
Therefore, we need to show dissipativity of the operator.

Lemma 5.3. Let Ω ⊆ R
n be a Lipschitz domain. Then the weak Neumann-Laplacian ∆N

p,w is

dissipative in Lp(Ω) for 2 ≤ p < ∞ and the strong Neumann-Laplacian ∆N
p,s is for 1 < p < ∞.

Proof. First consider the case 2 ≤ p < ∞. Define u∗ as in the proof of Lemma 3.3. Since
u∗ ∈ W 1,p′

(Ω), by definition of the boundary condition, we have

Re 〈∆u, u∗〉 = −Re

∫

Ω

∇u · ∇u∗.

Then the same calculation as in the proof of Lemma 3.3 yields the result.

In the case of the strong Laplacian and 1 < p < 2, we take the real part in formula (3.2). �

We can now prove generation of a C0-semigroup for the strong Neumann-Laplacian.

Theorem 5.4. Let Ω ⊆ R
n, n ≥ 3, be a bounded convex domain and 1 < p ≤ 2. Then ∆N

p,s

generates a C0-semigroup of contractions on Lp(Ω).

Proof. It remains to verify the range condition of the Lumer-Phillips-Theorem. From Theorem
2.8, we know that if we restrict the operator ∆N

p,s to the space Lp
0(Ω) (again denoting the restriction

by ∆N
p,s), we have 0 ∈ ρ(∆N

p,s) and as the resolvent set is open, we have λ ∈ ρ(∆N
p,s) for some

small λ > 0, i.e. for each f ∈ Lp
0(Ω), we can find u ∈ W 2,p(Ω) ∩ Lp

0(Ω) satisfying the Neumann
boundary conditions such that (λ−∆)u = f . Given any f ∈ Lp(Ω), we can write f = (f − f̄)+ f̄
where f̄ := |Ω|−1

∫
Ω

f . We can then find u0 ∈ W 2,p(Ω)∩Lp
0(Ω) satisfying the Neumann boundary

conditions such that (λ − ∆)u0 = f − f̄ . Then u := u0 + λ−1f̄ ∈ D(∆N
p,s) and (λ − ∆)u = f .

�

Remark 5.5. Note that the solution u given in the proof above is in fact the only solution to
(λ − ∆)u = f , i.e. the operator is also injective and so λ ∈ ρ(∆N

p,s).

In the weak case, we obtain the following result:

Theorem 5.6. Let Ω ⊆ R
n, n ≥ 3, be a bounded Lipschitz domain. Then there exists δ > 0

depending only on the Lipschitz character of Ω such that the operator ∆N
p,w generates a C0-

semigroup of contractions on Lp(Ω) for (3 + δ)′ < p < 3 + δ, where (3 + δ)′ denotes the conjugate
exponent to 3 + δ.
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Proof. Once again, we verify that the range condition of the Lumer-Phillips-Theorem is satisfied.
Proceeding as in the proof of Theorem 3.8 and using Theorem 2.6 we know that under our
assumptions, for any 1 < p < 3 + δ, the restriction of the operator ∆N

p,w is invertible in Lp
0(Ω).

As in the proof of the previous theorem we can then verify the range condition. Moreover, by
Lemma 5.3, ∆N

p,w is dissipative for p ≥ 2. This proves the theorem for 2 ≤ p < 3 + δ.

For the case when (3 + δ)′ < p < 2 we use that the dual operator ∆N
p′,w

′ is m-dissipative in

Lp(Ω) and that ∆N
p,w ⊆ ∆N

p′,w
′. The latter follows directly from the definition of the boundary

conditions. Therefore ∆N
p,w is itself dissipative for (3 + δ)′ < p ≤ 2. This completes the proof.

�

Corollary 5.7. If Ω ⊆ R
n, n ≥ 3, is a bounded convex domain and 1 < p ≤ 2, we have

∆N
p,w = ∆N

p,s.

We now collect properties of the generated semigroup. The proofs can be copied from the corre-
sponding results for Dirichlet boundary conditions.

The semigroups generated on Lp(Ω) are consistent:

Proposition 5.8. Let Ω be a bounded Lipschitz domain in R
n, n ≥ 3, where either

• (3 + δ)′ < p, q < 3 + δ or
• Ω is convex and 1 < p, q < 3 + δ,

for some δ > 0. Then the semigroups Tp generated by ∆N
p,w and Tq generated by ∆N

q,w are
consistent, i.e. if f ∈ Lp(Ω) ∩ Lq(Ω) then

Tp(t)f = Tq(t)f for all t ≥ 0.

Corollary 5.9. Let Ω and p be as in Proposition 5.8. Then the semigroup generated by ∆D
p,w

satisfies a Gaussian estimate and is analytic.

Corollary 5.10. Let Ω and p be as in Proposition 5.8. Then the spectrum of ∆N
p,w is independent

of p, i.e. for all p such that ∆N
p,w generates a C0-semigroup in Lp(Ω), we have σ(∆N

p,w) = σ(∆N
2,w).

Finally, we have positivity of the generated C0-semigroup.

Lemma 5.11. Let Ω and p be as in Proposition 5.8. Then the semigroup generated by ∆N
p,w is

positive in Lp(Ω).

6. Maximal regularity for the Laplacian in bounded Lipschitz domains

In the previous sections we have proven generator results for the Dirichlet- and Neumann-
Laplacian and gathered various properties of the semigroups and their generators. We can now
exploit these results to show the desired maximal regularity property for the Laplacian. We start
with the case of Dirichlet boundary conditions.

6.1. Maximal regularity for the Dirichlet-Laplacian.

Theorem 6.1. Let Ω be a bounded Lipschitz domain in R
n, where either

• n ≥ 3 and (3+ δ)′ < p < 3+ δ, where δ > 0 depends only on the Lipschitz character of Ω,
• n = 2 and (4 + δ)′ < p < 4 + δ, where δ > 0 depends only on the Lipschitz character of

Ω, or
• n ≥ 2 and suppose additionally that Ω satisfies a uniform outer ball condition and 1 <

p < ∞.
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Then the weak Dirichlet-Laplacian as defined in Definition 3.1 has the maximal regularity prop-
erty, i.e. for 1 < q < ∞ and for every f ∈ Lq(R+, Lp(Ω)) there exists a unique solution to





u′(t) − ∆u(t) = f(t) for t ∈ R+,
u(t, x) = 0 on R+ × ∂Ω,

u(0) = 0.
(6.1)

The solution u lies in Lq(R+,D(∆D
p,w)) ∩ W 1,q(R+, Lp(Ω)) and satisfies the estimate

‖u‖Lq(R+,Lp(Ω)) + ‖u′‖Lq(R+,Lp(Ω)) + ‖∆u‖Lq(R+,Lp(Ω)) ≤ C ‖f‖Lq(R+,Lp(Ω)) .

Proof. We have shown that the semigroup generated by ∆D
p,w is contractive (Theorems 3.7

and 3.8), analytic (Corollary 4.2) and positive (Lemma 4.4) on Lp(Ω). Maximal regularity now
follows from a result by Weis ([Wei01, Corollary 4d]). Moreover, as the generated semigroup is
of negative type (Corollary 4.5), we get u ∈ Lq(R+, Lp(Ω)) (cf. [Dor93]). �

Of course, whenever the weak and the strong Laplacian coincide, this also yields maximal regu-
larity for the strong Laplacian. Because of the importance of the result, in particular the better
estimate (6.2), we state it here separately.

Theorem 6.2. For 1 < p ≤ 2, and for all bounded Lipschitz domains Ω ⊆ R
n, with n ≥ 2,

and Ω satisfying a uniform outer ball condition, the strong Dirichlet-Laplacian as defined in
Definition 3.2 has the maximal regularity property in Lp(Ω) , i.e. for 1 < q < ∞ and for every
f ∈ Lq(R+, Lp(Ω)) there exists a unique solution to (6.1). The solution u lies in Lq(R+,W 2,p(Ω)∩

W 1,p
0 (Ω)) ∩ W 1,q(R+, Lp(Ω)) and satisfies the estimate

(6.2) ‖u‖Lq(R+,W 2,p(Ω)) + ‖u′‖Lq(R+,Lp(Ω)) ≤ C ‖f‖Lq(R+,Lp(Ω)) .

Remark 6.3. The same results can be proven for exterior Lipschitz domains and exterior Lip-
schitz domains satisfying a uniform outer ball condition. To do this, construct solutions to the
resolvent problem in the exterior domain by combining the solutons in bounded domains and the
whole space R

n as is done in [GHHW05, Theorem 2.5] for Ornstein-Uhlenbeck operators. To-
gether with dissipativity of the operator this proves generation of a contractive C0-semigroup via
the Lumer-Phillips Theorem. Moreover, we see from the construction that the resolvent operators
are consistent on the Lp-spaces, hence the generated semigroups are consistent and they coincide
with the positive analytic semigroups gained by the form method in [AB99]. Invoking Weis’
Theorem once more, we obtain maximal Lq-regularity over Lp(Ω) for the Dirichlet-Laplacian
in exterior Lipschitz domains with the same restrictions on the dimension, the domain and the
exponent p as in the case of bounded Lipschitz domains.

6.2. Maximal regularity for the Neumann-Laplacian. Similar results can now also be ob-
tained for the Neumann-Laplacian. The main difference being that 0 is in the spectrum of the
operator and so the solution itself will not lie in the space Lq(R+,D(∆N

p )) (cf. [Dor93, Theorem
2.1]).

Theorem 6.4. Let Ω be a bounded Lipschitz domain in R
n, n ≥ 3, where either

• (3 + δ)′ < p < 3 + δ or
• Ω is convex and 1 < p < 3 + δ,

for some δ > 0. Then the weak Neumann-Laplacian as defined in Definition 5.1 has the maximal
regularity property, i.e. for 1 < q < ∞ and for every f ∈ Lq(R+, Lp(Ω)) there exists a unique
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solution to 



u′(t) − ∆u(t) = f(t) for t ∈ R+,
∂u
∂N (t, x) = 0 on R+ × ∂Ω,

u(0) = 0.
(6.3)

The solution u satisfies the estimate

‖u′‖Lq(R+,Lp(Ω)) + ‖∆u‖Lq(R+,Lp(Ω)) ≤ C ‖f‖Lq(R+,Lp(Ω)) .

Proof. Maximal regularity follows from contractivity (Theorems 5.4 and 5.6), analyticity (Corol-
lary 5.9) and positivity (Lemma 5.11) of the semigroup generated by ∆N

p,w and the result by Weis
([Wei01, Corollary 4d]). �

In convex domains we can also control the second derivatives.

Theorem 6.5. For 1 < p ≤ 2, and for all bounded convex domains Ω ⊂ R
n with n ≥ 3, the

strong Neumann-Laplacian as defined in Definition 5.2 has the maximal regularity property in
Lp(Ω), i.e. for 1 < q < ∞ and for every f ∈ Lq(R+, Lp(Ω)) there exists a unique solution to
(6.3). The solution u satisfies the estimate

‖u′‖Lq(R+,Lp(Ω)) +
∥∥∇2u

∥∥
Lq(R+,Lp(Ω))

≤ C ‖f‖Lq(R+,Lp(Ω)) .

7. Negative results

In this final section, we will construct an example that proves that for the weak Dirichlet-Laplacian
the upper bound on the exponent p given in Theorem 6.1 is optimal in bounded Lipschitz domains.
This is meant in the sense that for any p > 3, we can find a bounded Lipschitz domain Ω such
that the operator ∆D

p,w is not even closed in Lp(Ω) and therefore it is not the generator of a
C0-semigroup. Note that it follows easily from Theorem 2.1 that, given a Lipschitz domain Ω,
there exists ε > 0 such that ∆D

p,w is a closed operator in Lp(Ω) for 1 < p < 3 + ε.

In order to construct the example, we first make some observations on harmonic functions in the
complement of a slender cone. Of particular interest will be the behaviour near the tip of the
cone. The results that we will need can be found in [KMR01, Sections 2.2 and 2.5.1] and are
stated in the next theorem.

Theorem 7.1. Let Γε = {x ∈ R
3 : (x2

1 + x2
2)

1
2 ≤ −εx3}, ε > 0, be a cone in R

3.

Consider the Dirichlet problem
{

∆u = 0 in Γc
ε,

u = 0 on ∂Γε.
(7.1)

Then there is a solution to (7.1) of the form

u(r, ω) = rλφ(ω),

where r > 0, λ > 0, ω ∈ S
2 and φ 6= 0 is a smooth function on

the sphere. Furthermore, λ → 0 as ε → 0 and u is positive in Γc
ε.

x3  

�"
x1x2

Now consider the function v defined by v(r, ω) := u(r, ω)Θ(r) for r > 0 and ω ∈ S
2 where Θ

is a smooth cut-off function supported in [0, R). Let Ω = Γc
ε ∩ BR. Then v ∈ Lp(Ω) for all

1 < p < ∞ and has zero boundary values. Moreover, f := ∆v = 2∇u∇Θ + u∆Θ is in Lp(Ω) for
all 1 < p < ∞ as the gradient of Θ vanishes near the tip of the cone Γε.

By homogeneity we have that for any α ∈ R+, v ∈ Lp
α(Ω) iff rλ−α ∈ Lp(Ω), i.e. (λ − α)p > −3.

As λ can be made arbitrarily small by making the cone narrower, this implies that if p > 3/α,



14 IAN WOOD

we can find a bounded Lipschitz domain Ω ⊆ R
3 such that v /∈ Lp

α(Ω). For any 1 < p < ∞, we
can find α ∈ (0, 2) such that by Theorem 2.1, v is the unique solution in Lp

α(Ω) to the problem
{

∆u = f in Ω,
u = 0 on ∂Ω.

(7.2)

In particular, no solution to (7.2) in W 2,p(Ω) exists whenever p > 3/2.

Remark 7.2. Note that this does not already show that the Laplacian is not closed. It merely
proves that the strong Dirichlet-Laplacian is not surjective onto Lp(Ω) for p > 3/2 and that the
weak Dirichlet-Laplacian is not surjective onto Lp(Ω) for p > 3.

We now use Theorem 7.1 to construct our counterexample. Let u(r, ω) = rλφ(ω) be the harmonic
function in the complement of the cone Γε and zero on the boundary given in Theorem 7.1. Fix
δ > 0 and construct Ωδ by rounding off the tip of the cone at a height between δ/2 and δ, taking
the intersection Γc

ε ∩B1 and finally rounding off the corners where the cone intersects the ball as
indicated in the figure below. In this way we get a smooth bounded domain Ωδ containing the
set Γc

ε ∩ B1 and such that the Lipschitz constant of Ωδ is uniformly bounded in δ.2

We solve the following Dirichlet problem.



∆uδ = 0 in Ωδ,
uδ = 0 on ∂Ωδ ∩ Γε,
uδ = u on ∂Ωδ ∩ Γc

ε.
(7.3)

The solution uδ has the following properties.

• uδ ∈ C2(Ωδ) ∩ C(Ωδ): As u is smooth except for at 0,
the boundary data is continuous and since the domain
is smooth, we have that uδ is in C2(Ωδ) and continuous
on the closure of the domain (see e.g. [RR93, Theorem
4.13]). In fact, uδ ∈ C∞(Ωδ) as it is harmonic.

• On Γc
ε ∩ B1, by the Maximum Principle, uδ ≥ u and

in all of Ωδ, we have uδ > 0.

x3

x0

  

�"
�Æ=2�Æ

Æ

uÆ = 0

uÆ = u

Our aim now is to construct a domain and a family of functions {wδ}δ>0 such that wδ and ∆wδ

are uniformly bounded in Lp(Ω), but ∇wδ is not. As a first step, we show a pointwise lower
bound for the gradient of uδ.

Proposition 7.3. For x in a small neighbourhood Ω̃ of the origin, we have

|∇uδ(x)| ≥ C
uδ(x)

dist(x, ∂Ωδ)
,

where the constant C depends only on the Lipschitz character of Ωδ, in particular it is independent
of δ.

Proof. The proof relies on ideas and results taken from [Dah77] and [Caf87]. Using the results
of [Caf87], together with [JK82, Lemma 5.4] and the Harnack principle, we can find a small open
set U and constants C1, C2 independent of δ, such that

0 < C1 ≤
Dx3

uδ(x
′, x3)

uδ(x′, x3)
≤ C2 for x = (x′, x3) ∈ U.

Then a scaling argument yields the desired gradient estimate. �

2In fact, for all δ > 0, the Lipschitz constant of Ωδ can be bounded by the Lipschitz constant of Γε.
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We now need to use a cut-off function to obtain functions which satisfy the zero boundary
condition.

Proposition 7.4. Let Θ ≡ 1 on B1/2 be a smooth radially symmetric cut-off function supported
in B1. Let wδ = Θuδ. Then,

a) for 1 < p < ∞, wδ ∈ Lp(Ωδ) with uniform bound in δ,
b) for 1 < p < ∞, ∆wδ ∈ Lp(Ωδ) with uniform bound in δ,

c) for p > 3,
(∫

Ωδ
|∇wδ|

p
) 1

p

≥ Cδ−ζ for some ζ > 0.

Proof. a) follows from the Maximum Principle.

b) For the Laplacian of wδ in polar coordinates we have ∆wδ = uδ∆Θ + 2∂rΘ∂ruδ. The term
with uδ is uniformly bounded in Lp(Ωδ) by the first part of the proof. It remains to show that
the term ∂rΘ∂ruδ is uniformly bounded. To do this we adapt a standard procedure for interior
gradient estimates of harmonic functions to our situation. The aim is to construct a subharmonic
function involving ∂ruδ and to apply the Maximum Principle.

We assume w.l.o.g. that the support of ∇Θ is contained within
an annulus A0 such that the intersection of A0 with the bound-
ary of Ωδ is contained in the boundary of the cone Γε. Let
A = A0 ∩ Ωδ (cf. figure). By doing this, we have that, along
∂A ∩ ∂Γε, ∂ruδ is the tangential derivative of uδ. Due to the
Dirichlet boundary conditions, it then vanishes on this part of
∂A.
Now set v(x) = r∂ruδ(x). v is harmonic and v2 is subharmonic.
We could apply the Maximum Principle to v or v2, however we
have no knowledge of the behaviour of v on the boundary of
A. Instead, we introduce another cut-off function ζ ∈ C∞

c (R3)
such that ζ ≡ 1 on supp(∇Θ) and ζ ≡ 0 on Ac.

x3

x0

  

�"

ÆA

Then, using the first binomial formula,

∆(ζ2v2) =
(
2ζ∆ζ + 2|∇ζ|2

)
v2 + 8ζv

n∑

i=1

∂iζ∂iv + 2ζ2|∇v|2

≥
(
2ζ∆ζ + 2|∇ζ|2

)
v2 − 8|∇ζ|2v2 ≥ −Cv2

for some C ≥ 0 which depends on ζ but is independent of δ. We can estimate v2 ≤ C ′|∇uδ|
2.

Thus, for some sufficiently large constant α, the function w = ζ2v2 + αu2
δ is subharmonic, as

∆w = ∆(ζ2v2) + ∆(αu2
δ) ≥ −Cv2 + 2α|∇uδ|

2 ≥ (−C + 2α/C ′)v2 ≥ 0.

By the Maximum Principle, we have maxA w ≤ max∂A w. However, by construction the part
ζ2v2 vanishes on ∂A as ζ is zero on the two arcs and v is zero on the radial part of the boundary.
Therefore, by part a), we get

max
supp(∇Θ)

v2 ≤ max
A

w ≤ max
∂A

αu2
δ ≤ αM2,

i.e. ∂ruδ is bounded independently of δ on supp(∇Θ) which gives a uniform bound on the term
∂rΘ∂ruδ in Lp(Ωδ).
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For c), we consider wδ in a shell above the tip of the cone

Sδ = {(r, ϕ, θ) : r ∈ (δ/2, δ), ϕ ∈ [0, 2π) , θ ∈ [0, α)}

for some small α, shown in the figure. Assume δ is suffi-
ciently small so that Θ ≡ 1 in Sδ and such that the con-
clusion of Proposition 7.3 holds for all x ∈ Sδ. Then for
x ∈ Sδ we have

|∇wδ(x)| = |∇uδ(x)| ≥ C
uδ(x)

δ
≥

C

δ
u(x) =

C

δ
rλφ(ω).

Note that, by the maximum principle, u > 0 in Sδ, so φ > 0
and by compactness, φ > c > 0 in Sδ. Therefore,

(∫

Ωδ

|∇wδ|
p

) 1
p

≥
C

δ
δλ(µ(Sδ))

1/p = Cδλ−1+3/p.

So for any p > 3, we can make λ sufficiently small to get a
negative power of δ. �

x0
SÆ�
Æ
x3

We now use this construction to prove the following negative results.

Theorem 7.5. Let p > 3 and let ∆D
p,w be the weak Dirichlet-Laplacian defined in Definition 3.1.

Then there exist

a) an unbounded smooth domain Ω ⊂ R
3 and

b) a bounded Lipschitz domain Ω ⊂ R
3,

such that ∆D
p,w is not closed in Lp(Ω).

Proof. We start with the unbounded case. Let {δj}j∈N ⊆ R+ such that δj → 0. Construct the
domains Ωδj

and functions wδj
as before. Now, put infinitely many cones in a row with tips at

xj = (x′
j , 0) and with sufficient distance between them such that the the sets Ωδj

+xj are disjoint.
Let Ω be a smooth domain above the graph of a function ϕ containing the sets Ωδj

+ xj , where,
in a neighbourhood of x′

j , ϕ describes the lower boundary of Ωδj
+ xj (see Figure 1). For x ∈ Ω

x0

  

x01 x02 x03
Æ1



Figure 1. The unbounded domain Ω.

consider the function

w(x) =
∞∑

j=0

2−jwδj
(x − xj),
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where we extend wδj
to Ω by zero outside Ωδj

. By Proposition 7.4, w and ∆w are in Lp(Ω). We
can approximate w in Lp(Ω) by

wN (x) =

N∑

j=0

2−jwδj
(x − xj).

Then wN ∈ D(∆D
p,w) and ∆wN (x) →

∑∞
j=0 2−j∆wδj

(x−xj) in Lp(Ω). However, for p > 3, using
that the functions wδj

have disjoint support, we get

(∫

Ω

|∇w|p
) 1

p

=
∞∑

j=0

2−j

(∫

Ωδj

|∇wδj
|p

) 1
p

≥ C
∞∑

j=0

2−jδ−ζ
j .

Let δj → 0 sufficiently fast such that the sum diverges. Then w /∈ D(∆D
p,w), so the operator is

not closed.

Next, we consider the case of a bounded domain by using a scaling argument. Let ϕ be a Lipschitz
function describing a cone with the tip at (0, 0, 1). Let ϕδ be a smooth function gained from ϕ by
rounding off the tip of the cone between a height of 1− δ and 1− δ/2 and such that ‖ϕδ‖∞ ≤ 1.

Construct wδ as before, allowing for the shift of the tip of the cone away from the origin. For
a sequence (rj) ⊆ R+, define wδ,j(x) = wδ(r

−1
j x) for x ∈ Ωδ,j = {(x1, x2, x3) ∈ R

3 : x3 >

rjϕδ(r
−1
j x1, r

−1
j x2)}. The scaled domains all have the same Lipschitz constant.

wδ,j has the following properties.
∫

Ωδ,j

|wδ,j(x)|p = r3
j

∫

Ωδ

|wδ|
p ≤ Cr3

j ,

∫

Ωδ,j

|∆wδ,j(x)|p = r3−2p
j

∫

Ωδ

|∆wδ|
p ≤ Cr3−2p

j ,

∫

Ωδ,j

|∇wδ,j(x)|p = r3−p
j

∫

Ωδ

|∇wδ|
p ≥ Cr3−p

j δ−ζp.

Let xj = (2−j , 0, 0), rj = 8−j and

w(x) =
∞∑

j=0

8−3j(1−1/p)wδj ,j(x − xj).
x0

  

Then w and ∆w are in Lp(Ω) where Ω is a bounded domain containing the sets Ωδj ,j + xj with

its lower boundary given by
∑∞

j=0 rjϕδ(r
−1
j (x−xj))

3 as in the figure. Now let δj → 0 sufficiently

fast, so that ∇w /∈ Lp(Ω) for p > 3. By approximating w by the partial sums, we see that ∆D
p,w

is not closed on Lp(Ω). �

In higher dimensions, we get the same result.

Corollary 7.6. Let p > 3 and n ≥ 3. Then there exist

a) an unbounded smooth domain Ω ⊆ R
n and

b) a bounded Lipschitz domain Ω ⊆ R
n,

such that ∆D
p,w is not closed in Lp(Ω).

3This is necessary, as it is not possible to smoothly continue the functions wδ,j by zero across this part of

the boundary of Ωδ,j . Also note that Ω is Lipschitz but not C1 as the derivatives of the function describing the

boundary do not converge at zero.
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Proof. We can use the same construction as in R
3 by setting R

n = R
3 × R

n−3. Then let
ũ(r, ω, x) = u(r, ω) for r ∈ R+, ω ∈ S

2∩Γc
ε and x ∈ R

n−3 with Γε and u as in Theorem 7.1. Then
we can construct smooth bounded domains Ωδ ⊆ R

n and functions uδ and wδ as in the case of
three dimensions. �
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