
Aberystwyth University

Meta-stable memory in an artificial immune network
Neal, Mark

Publication date:
2003

Citation for published version (APA):
Neal, M. (2003). Meta-stable memory in an artificial immune network. 168-180. http://hdl.handle.net/2160/35

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 13. Aug. 2022

http://hdl.handle.net/2160/35

Meta-Stable Memory in an Artificial Immune
Network

Mark Neal

Department of Computer Science, University of Wales, Aberystwyth. UK
mjn@aber.ac.uk

Abstract. This paper describes an artificial immune system algorithm
which implements a fairly close analogue of the memory mechanism pro-
posed by Jerne(1) (usually known as the Immune Network Theory). The
algorithm demonstrates the ability of these types of network to pro-
duce meta-stable structures representing populated regions of the anti-
gen space. The networks produced retain their structure indefinitely and
capture inherent structure within the sets of antigens used to train them.
Results from running the algorithm on a variety of data sets are presented
and shown to be stable over long time periods and wide ranges of pa-
rameters. The potential of the algorithm as a tool for multivariate data
analysis is also explored.

1 Introduction

This paper presents an exploration of the capabilities of an unsupervised algo-
rithm for generating networks of artificial recognition balls which capture struc-
ture and relationships within data sets. The algorithm represents the culmination
of a series of attempts to produce a self-limiting, self-organizing, meta-stable net-
work generation algorithm. The author believes that all of these goals have been
satisfactorily achieved and has conducted extensive experiments to test this. A
selection of these experiments are presented here using a simple graph-layout
algorithm to present results, and principal component plots (PCA) to highlight
equivalent structure within data sets. The algorithm also has the property of re-
taining its structure in the absence of any stimulation as was shown in (2), this
is not explicitly shown here. The source code, a simple graph-layout program
and a demonstration are available on request from the author.

2 Immune Network Theory

The immune network theory proposes that the B-cells in the body interact with
each other to maintain the immune memory. The mechanism proposed is that
B-cells which are capable of recognising similar (but not necessarily identical)
pathogens are also capable of recognising and stimulating each other(1). Thus
a dynamic feedback mechanism can maintain parts of the immunological mem-
ory which are not frequently stimulated. Clearly however not all B-cells have
sufficient stimulation to survive indefinitely and thus some will die out. In the
human immune system T-cells both perform a surveillance role and interact

with B-cells which complicates the mechanism somewhat. In our artificial im-
mune system the role of T-cells is currently ignored. In the real immune system
there are very large numbers of identical B-cells to deal with each type of infec-
tion. In an artificial system such repetition can be coded without representing
all the identical cells individually. Fortunately the concept of a recognition ball
which represents a region of antigen space that is covered by a particular type
of B-cell can replace the repetition of individuals(3). So our AIS consists of a
network of artificial recognition balls (ARB) which are linked together if they
are close to each other in antigen space (see (2) for an earlier version of the al-
gorithm). Pathogens (data items) can be considered to be points in this antigen
space, and thus proximity can be defined as a simple distance function.

3 The Artificial Immune Network Algorithm

The algorithm used here is a development (in fact a simplification) of an earlier
algorithm presented in (2). The new algorithm uses a very similar stimulation
function and resource allocation mechanism, but the details vary in some im-
portant details. The algorithm now captures directly the ideas of primary and
secondary response and is completely deterministic in its operation. The removal
of the stochastic mutation operator was motivated by the wish to demonstrate
the basic mechanisms and their important properties; namely the stability of the
structures produced and the self-limiting and organizing growth of the networks.

3.1 The network affinity threshold (NAT)

As in previous work the most important and sensitive control parameter for
the algorithm is the NAT. This value dictates when ARBs in the network are
to be connected. The rule is simply that if the distance between two ARBs
is less than the NAT value then they are connected. Thus, simple Euclidean
distance between the patterns represented by ARBs dictates the connectivity of
the immune network. This is directly analagous to the concept of the recognition
ball as presented in (3).

In this algorithm the NAT plays a further rôle, in that it provides a threshold
for the cloning process. If an antigen is presented to the network which is further
from the most stimulated ARB than the NAT dictates, then cloning is performed.

Thus the NAT is a measure of the distance in antigen shape-space beyond
which recognition by an ARB is deemed to be insufficiently precise.

Fortunately, from the point of view of data-analysis, this measure has a direct
meaning in terms of the data under examination. It is the Euclidean distance
between items beyond which it is deemed appropriate to make a distinction.
Although this may not be known in advance, it is often the case that some
sensible estimate can be made in advance based on known cases. Even if it is
not, however, there is a relatively easy route to determining useful values for the
NAT, by running the algorithm several times on the data-set (see section 4).

3.2 The algorithm

The algorithm is designed to run continuously, and does not have (or require) a
stopping criterion. This was a fundamental goal when designing the algorithm

and meant that the algorithm had to deal with the problem of over-fitting in
some more intelligent way than by just halting the training process. The culling
process combined with the selection of a suitable value for the network affinity
threshold perform this rôle.

Network initialization Currently the network is initialized by taking a small
set of arbitrarily chosen samples of the antigen set and creating ARBs which
precisely recognise those antigens. The number of these ARBs in the initial
network is made as small as possible. If too few ARBs are initially present then
the algorithm culls all the ARBs in the network. This occurs when none of the
ARBs are sufficiently connected or stimulated to form a stable memory structure.
The process of determining the minimum number of ARBs that produces a non-
empty network can be automated by simply taking one initial ARB and running
the algorithm to see if the network dies off or not. If the network dies off then the
algorithm is re-run with one more initial ARB and the process is repreated until
the network survives. This process is not time consuming as the algorithm very
quickly culls all the ARBs if there are not sufficient to maintain a population.

Stimulation The stimulation level of an ARB is calculated using components
analogous to those proposed by Jerne. These components are based on: affinity to
the current antigen (positive contribution), and affinity to connected neighbours.

These components can be summarised as follows:

1. Excitation, ps due to affinity to the current antigen:

ps = 1− dis(p)

2. Excitation, ns due to affinity to neighbours:

ns =
n∑

x=0

dis(x)

In both equations the function dis(a) returns the Euclidean distance between
the current ARB and the item a; and n represents the number of neighbours
at the current ARB. These components are summed. The second component is
based on the neighbours of the ARB, and there is no limit to the number of
neighbours an ARB can have. Due to the way in which growth of the network
proceeds, it is no longer necessary (or desirable) to normalise these neighbour
contributions as was done in (2). This is one of several simplifications to the
algorithm which were undertaken, and a return to the function used in (4).

Cloning Cloning is now only undertaken when expansion of the repertoire is
required. This is determined by the fact that the most highly stimulated ARB (as
calculated above) is further from the antigen pattern (as measured by Euclidean
distance) than the distance dictated by the NAT. Thus there is now an explicit
recognition of the difference between primary and secondary immune response:
cloning is only undertaken when a primary response is required to expand the

repertoire to cover an unrecognised antigen. Secondary response simply involves
the stimulation of the relevant pre-existing parts of the network.

The cloning operation is also extremely simple. It consists of introducing
into the network an ARB which precisely recognises the pattern which caused the
primary response. There is currently no mutation operator used in the algorithm.
Initial work included mutation, but subsequent experimentation showed that the
networks produced without it were very similar to those produced with it. Whilst
this is a significant deviation from the natural immune system which seems to
rely on highly stochastic processes for repertoire expansion, it is not seen as
central to the concept of a network memory mechanism for the immune system.

Resource allocation Since early in the development of the series of algorithms
which have culminated in this work, the concept of limited resources has played
a part. Initial work in (5) used a very brutal and simplistic approach which
took little account of time and was reliant on an “epoch-based” learning regime.
This algorithm uses a simple stimulation and decay mechanism for updating
the resource level held by each ARB. Thus the level of resources held by each
ARB is calculated on a rolling basis according to two mechanisms: first a simple
geometric decay; second a boost to the resource level which is dependent on the
stimulation level and resource level of the current ARB. It is worth pointing out
that this means that all resource allocation and stimulation calculations are local
to each ARB and do not require normalization or a central resource pool.

The decay mechanism can be expressed thus:

Rdecayed = Rcurrent × decayrate

where decayrate is a scalar between zero and one. For this work a value of
0.99 was used in all cases; and Rcurrent is the resource level currently present at
this ARB. The algorithm is robust to a wide range of values of the decayrate
scalar. Further discussion can be found in section 3.3.

The resource level after each data presentation can be expressed as follows:

Rnew = Rcurent + (k × (maxres−Rdecayed)× S)

where Rnew is the new resource level for the ARB, k is a scalar between zero
and one (a value of 0.0005 was employed throughout this work. maxres is a
maximum resource level which any ARB can claim. Throughout this work the
value was set at 1000.0. The algorithm is robust to a wide variety of values for
these two scalars. For more detailed discussion of sensitivity of the algorithm to
both of these scalars see 3.3.

Culling ARBs are culled from the network when there resource level (as de-
scribed above) falls below a threshold value. We call this threshold value mortality
and throughout this work it was set at 1.0. The algorithm is robust to a wide
variety of values of mortality (see section3.3).

3.3 Parameters and value selection

From the above, it can be seen that there are several scalars used to parameterise
the algorithm. These are decayrate, maxres, mortality and k. All of these values
are involved in the resource allocation process. Whilst a set of four parameters
may seem daunting and dangerously “tweakable”, they are in fact nowhere near
as fiddly as they at first seem. In order to understand why this is so we must
examine the resource allocation process in more detail, and the behaviour of
typical networks of ARBs generated by the algorithm.

The resource decay mechanism is simple enough (see above). The resource
boost mechanism is however a little more subtle. The level of boost given to an
ARB’s resource level is determined by a variety of factors:

Stimulation level (S): this ensures that ARBs which regularly recognise anti-
gen patterns and/or are in a highly linked section of the network will ac-
cumulate more resources than ARBs which are not, and thus will survive
longer.

Proximity to maximum resource level (maxres−Rdecayed): this ensures that
ARBs which are already rich in resources will not go on claiming more and
more without limit. Their resource level will geometrically approach the value
maxres.

A small scalar (k): a small constant to ensure that ARBs with high stimula-
tion levels do not achieve extremely high resource allocations very rapidly.
This is desirable as it allows large values of decayrate and thus long time
lags between the creation of ARBs and their ultimate survival or demise.

Extensive experimentation with the variables k, maxres, mortality and decayrate
has shown that the ranges of values for these variables shown in table 3.3 produce
very similar networks in all cases.

Variable Min Network sizes Max Network sizes Standard value

k 0.0001 39 0.001 33 0.0005
maxres 500 37 5000 32 1000

mortality 0.0 34 5.0 30 1.0
decayrate 0.90 34 0.999 35 0.99

Table 1. Ranges of variables shown to produce very similar networks. Statistics were
generated using Fisher’s iris data.

This belief can be further reinforced when the mechanisms employed and
the behaviour that they promote are considered. The boosting of resource level
using an amount that reduces dependent on the current resource level is clearly
going to strike a balance at some level when combined with a geometric decay
function. So long as this equilibrium falls somewhere reasonably far away from
both of the limiting values for the majority of the ARBs then the precise values
of these two limits will have little effect on the networks produced. These two
values are provided by maxres as an upper limit, and mortality as a lower limit.

In a similar manner, the values of k and decay are in the first instance simply
going to affect the level at which this balance is to be struck. Once again so long
as these values are arranged to ensure that the resource levels at which most
ARBs stabilise falls well away from the upper and lower limits then little effect
will be observed. This effect can be seen in figure 1, which shows the maximum
and average resource levels in the network produced for the iris data with two
different values for decayrate. Although the values of the parameters and the
average, maximum and minimum resource levels are all significantly different,
the size evolution of the network is almost identical in all cases (see figure 2).

Fig. 1. Maximum and average stimulation
levels present in the network throughout
the evolution of the networks.

Fig. 2. Size evolution of networks with de-
cay rates of 0.9 and 0.99. The meta-stable
state size of both networks is very similar.

4 Forming stable memories of data

In order to demonstrate the algorithm’s behaviour, it has been tested extensively
with a variety of data-sets. Results from three of these data-sets are presented
here. The first of these is Fisher’s iris data1(6) (which provides a trustworthy
benchmark), the second is a larger data-set of much higher dimensionality which
contains statistical information about a number of gene sequences2(7), and the
third is the now well-explored Wisconsin breast cancer data set3(8). The algo-
rithm was used in all cases with all the standard parameter values from table 3.3.
A wide range of values for the NAT were used in order to explore the structures
of all three data-sets. In all cases the algorithm was run until the network ceased
to grow. That is not to say that the network completely stabilized, just that a
meta-stable state of approximately constant size was attained. Graphs showing
final network sizes show the median value for network size after meta-stability
has been achieved.

In the cases of Fisher’s iris data and the Wisconsin breast cancer data the
way in which the data is clustered is presented as confusion statistics. These
statistics are generated by taking each Bcell and using the class of the majority
of the data items claimed by that Bcell as the “correct” class for that Bcell;
and then counting the number of data items which do not fall into the majority
class at that Bcell. Where there is an equal number of data items of the different
classes, all of the data items are labelled as misclassified. The complete statistics
are shown for a variety of networks at different NAT values.

Such data is not presented for the statistical sequence data due to the poor
performance of the algorithm and the large number of classes (see section 4.2).

1 this data-set contains 150 data items in four dimensions
2 this data-set contains 1693 data items in 435 dimensions
3 this data-set contains 699 data items in 9 dimensions

4.1 The iris data

The iris data has provided a useful benchmark data-set in previous closely related
work (2; 5). The data-set has the advantage of being relatively small and con-
tains simple, but interesting and non-trivial structure. See figure 6 for a principal
component plot which captures the majority of the structure of the data-set. The
algorithm produces networks which separate the data into two distinct clusters.
This is as expected and as has been observed in previous versions of the algo-
rithm. One of the networks produced by the algorithm presented here is shown in
figure 5. The network was generated with a NAT value of 0.7 and clearly shows
the separation of the data into well-defined clusters. The confusion statistics are
presented in table 4. The network can be seen to correctly classify 97.3% of the
data items at this NAT value. A better performance figure is acheived at a NAT
value of 1.5, however at this point the network produced is less informative in
structure, and captures much less detail of the structure inherent in the data.
From the perspective of the exploration of data in a data-mining context the
network produced at a NAT value of 0.7 is more appealing. In a similar manner
to the other parameters examined above it is reassuring to note that the precise
value of the NAT does not dramatically affect the performance of the algorithm.

As observed in (9), it is interesting to note that one of the data classes tends
to dominate the structures produced by the algorithm. For the iris data it is the
Setosa class which is always correctly classified, and as the NAT increases the
Virginica class dominates at the expense of the Versicolor class. This effect is
not so damaging for this version of the algorithm however, as the network does
stabilise with all the components of the network present over a large range of
NAT values. This behaviour was not seen in previous versions of the algorithm
in which all but one region of the network eventually died.

Thus for the iris data we can conclude that the algorithm performs very well
in terms of classification, and in terms of generating meaningful networks over
a good range of NAT values.

4.2 The statistical gene sequence data

This data set was chosen as it is quite large, and contains relatively little useful
structure (see figure 9). The data set contains statistical information about the
make-up of genetic sequences and labels which represent the functional class
of the gene. There are 17 different functional classes represented in this data
(although there are subdivisions within these also). The data was examined in

Fig. 3. Classification errors produced at
various NAT values for the iris data.

Fig. 4. Meta-stable network sizes reached
at various NAT values for the iris data.

Fig. 5. Network produced by the algorithm
at a NAT value of 0.7. We believe that qual-
itatively similar patterns can be discerned
in the PCA plot and the network.

Fig. 6. PCA plot of first two principal
components for Fisher’s iris data. Squares
represent setosa examples, circles represent
virginica examples and triangles represent
versicolor examples.

order to test the performance of the algorithm, both for large data sets and for
data sets which do not contain easily separable clusters. The performance of the
algorithm with respect to the functional classes of the genes represented was, as
expected, quite poor. The only functional class (class 29) which was reasonably
separable can be seen as a more diffuse cloud of points above and to the left
of the main clump in figure 9. This was reflected to an acceptable degree in
the networks produced, and an example network generated at a NAT of 1.45 is
shown in figure 8, the diamond-shaped structure attached to the upper-right of
the network represents those data items belonging to class 29. It is worth saying
that this relatively poor performance is not surprising when the PCA plot is
examined: there is very little inherent structure for an unsupervised algorithm
to capitalise on. In addition, when examined with standard single linkage cluster
analysis (results not shown), it was very clear that there were no clear clumps of
data that could be easily separated. When supervised algorithms such as C4.5
were applied to the data, much better classifications were possible. However it
is not really sensible to compare performance with such supervised algorithms.
Suffice it to say that there is sufficient information within the data to separate
the classes reasonably effectively using supervised machine learning algorithms.
This is stated simply to make clear that the data is worthy of examination, and
that the algorithm presented here is restricted in just the same way as other
unsupervised algorithms.

The data set provided a good test for the time complexity of the algorithm
with a large data-set of high-dimensionality. The most useful network (with
NAT of 1.45) was stable after 10000 data presentations (about 6 passes through
the data set) and took 8 minutes to run on a 1.1GHz Celeron lap-top. For a
data set of this size and a relatively modest computer system this is acceptable
performance. The data set is available from (10).

Class NAT Correct Incorrect % Class Correct % Total Correct

Setosa 0.7 50 0 100
Virginica 0.7 49 1 98
Versicolor 0.7 47 3 94 97.3

Setosa 1.0 50 0 100
Virginica 1.0 45 5 90
Versicolor 1.0 46 4 92 94

Setosa 1.5 50 0 100
Virginica 1.5 50 0 100
Versicolor 1.5 48 2 96 98.7

Setosa 3.0 50 0 100
Virginica 3.0 50 0 100
Versicolor 3.0 0 50 0 66.6

Table 2. Classification performance at various NAT values for Fisher’s iris data.

4.3 The Wisconsin breast cancer data

The Wisconsin breast cancer data is now well explored, and is a relatively easy
data-set to classify to a fairly high accuracy. It is intermediate in size between
the previous two data-sets and provides a further test of the suitability of the
algorithm for separating relatively well-defined clusters of data. Unlike previous
versions of the immune network algorithms, this algorithm retains segments
representing both classes of data when it reaches its meta-stable state(9; 11).
The final network represents the data in a way which reflects the structure seen
in the PCA plot. This behaviour is also seen for the iris data (see above).

The network which was chosen as the most useful is that which was generated
with a NAT value of 1.0. This network is shown in figure 12. For this data, this
network is the best at classifying the data (see figure 11. In this case it is also
the most appealing network to examine in the vizualization tool with a simple
spring-embedder graph-layout algorithm (12).

Class NAT Correct Incorrect % Class Correct % Total Correct

Benign 0.05 432 12 97.3
Malignant 0.05 226 13 94.6 96.3

Benign 0.7 428 16 96.4
Malignant 0.7 232 7 97.1 96.6

Benign 1.5 430 14 96.9
Malignant 1.5 230 9 96.2 96.6

Benign 2.0 432 12 97.3
Malignant 2.0 216 23 91.4 94.9

Benign 4.0 442 2 99.5
Malignant 4.0 166 73 69.5 89.0

Table 3. Classification performance at various NAT values for Breast Cancer data.

5 Discussion

From the experiments that have been undertaken with various data sets it seems
that the networks generated using this algorithm and displayed with a spring-
embedder graph-layout algorithm have the following properties:

– There do not seem to be drastic changes in the networks produced for similar
values of any of the parameters to the algorithm (including the NAT). The
algorithm is quite insensitive to these parameters, although gross changes in
the NAT will produce noticeably different networks.

Fig. 7. Steady-state size
of network generated at
various NAT values for
the statistical sequence
data set.

Fig. 8. Network produced
with NAT of 1.45 for the
statistical sequence data.
Qualitatively similar pat-
terns can be seen in fig. 9.

Fig. 9. PCA plot of first
two principal compo-
nents for the statistical
sequence data. Compare
with 8.

– Networks which perform well are often intuitively appealing and display
structure that is inherent to the data as clusters in the network.

– Networks produced by the algorithm seem to pay more than a passing re-
semblance to the principal component plots of the first two most significant
components. Obviously this will not necessarily be a direct mapping in two
dimensions, but clusters which are apparent in the PCA plot will be dis-
tinguishable in the network layout and vice-versa. We make no claim for a
theoretical basis for this observation.

These properties along with the self-organizing nature of the algorithm men-
tioned in the introduction indicate that we have obtained behaviour that reflects
the ability to generate stable memory structures in the artificial immune net-
works generated. Furthermore these networks pick out structures inherent in the
data and can be laid out in two dimensions for interactive examination when
seeking to analyse data. Thus the algorithm forms a useful addition to the tool-
box of the data-miner: the networks are intuitive to manipulate, easy to vizualize,
retain relationships within the data, and perform a drastic dimensionality reduc-
tion. We are now satisfied that this algorithm represents a version with which we
can usefully attempt some real data-mining problems, and the software (whilst
still most definitely a prototype) is sufficiently developed to allow this.

6 Conclusion

A development of an unsupervised algorithm for generating artificial immune
networks was presented. Evidence of its ability to extract useful structure from
complex data-sets was presented. These results are now of a quality and reliablity
that will allow the algorithm to be used in anger on some real data-mining
problems. The software develolped is available on request from the author.

Fig. 10. Steady-state size of network gen-
erated at various NAT values for the Wis-
consin Breast Cancer data set.

Fig. 11. Number of errors made in classify-
ing the two classes for the Wisconsin Breast
Cancer data set with increasing NAT value.

Fig. 12. Network generated with NAT of
1.0 for Wisconsin Breast Cancer data set.
The Malignant examples appear in the
sparse cluster at the top of the image. Com-
pare with fig. 13.

Fig. 13. PCA plot for Wisconscin Breast
Cancer data. × represents benign examples
and + represents malignant examples. Note
denser concentration of benign data points
on the left of plot.

Bibliography

[1] Jerne, N.K.: Towards a Network Theory of the Immune System. Ann.
Immunol. (Inst. Pasteur) C (1979) 373–389

[2] Neal, M.: An Artificial Immune System for Continuous Analysis of Time-
Varying Data. In Timmis, J., Bentley, P., eds.: Proceedings of the First
International Conference on Artificial Immune Systems (ICARIS), Canter-
bury, UK, UKC (2002) 76–85

[3] Perelson, A.S.: Immune Network Theory. Imm. Rev. (1989) 5–36
[4] Timmis, J.: Artificial Immune Systems: a novel data analysis technique

inspired by the immune system (PhD Thesis). University of Wales, Aberys-
twyth (2000)

[5] Timmis, J., Neal, M.: A Resource Limited Artificial Immune System.
Knowledge Based Systems 14 (2001) 121–130

[6] Fisher, R.A.: The use of multiple measurements in taxonomic problems.
Annual Eugenics II (1936) 179–188

[7] Clare, A.: Machine learning and data mining for yeast functional genomics
(PhD Thesis). University of Wales, Aberystwyth (2003)

[8] Mangasarian, O.L., Wolberg, W.H.: Cancer diagnosis via linear program-
ming. SIAM News 23 (1990) 1,18

[9] Knight, T., Timmis, J.: AINE: An immunological approach to data mining.
In: Proc. of the IEEE International Conference on Data Mining. (2001)
297–304

[10] Clare, A.: http://users.aber.ac.uk/compsci/Research/bio/dss/yeastdata/.
University of Wales, Aberystwyth (2003)

[11] Wierzchon, S., Kuzelewska, U.: Stable Clusters Formation in an Artificial
Immune System. In Timmis, J., Bentley, P.J., eds.: Proceedings of the 1st
International Conference on Artificial Immune Systems (ICARIS), Univer-
sity of Kent at Canterbury, University of Kent at Canterbury Printing Unit
(2002) 68–75

[12] Timmis, J.: aivis - artificial immune network visualisation. In: EuroGraphics
UK 2001 Conference Proceedings, Univerisity College London., Eurograph-
ics (2001) 61–69

