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Abstract

Research in the area of fuzzy-rough set theory, and its application to feature

or attribute selection in particular, has enjoyed much attention in recent years.

Indeed, with the growth of larger and larger data dimensionality, the number

of data objects required in order to generate accurate models increases expo-

nentially. Thus, for model learning, feature selection has become increasingly

necessary. The use of fuzzy-rough sets as dataset pre-processors offer much in

the way of flexibility, however the underlying complexity of the subset evaluation

metric often presents a problem and can result in a great deal of potentially un-

necessary computational effort. This paper proposes two different novel ways to

address this problem using a neighbourhood approximation step and attribute

grouping in order to alleviate the processing overhead and reduce complexity. A

series of experiments are conducted on benchmark datasets which demonstrate

that much computational effort can be avoided, and as a result the efficiency of

the feature selection process for fuzzy-rough sets can be improved considerably.

Keywords: Fuzzy-Rough Sets, Feature Selection, Nearest Neighbours, Feature

Grouping.

1. Introduction

The unrelenting surge in the growth of data dimensionality in recent times

has had the effect of highlighting the weaknesses of many of the traditional
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feature selection (FS) methods in terms of their scalability. Although there

have been some efforts to address the problem of larger data dimensionality

[9], [25], the overall response from computational intelligence researchers has

been to adapt existing techniques for distributed processing environments using

Hadoop and MapReduce [2], [3], [24], [26] rather than attempting to tackle the

problem more directly.

The use of fuzzy-rough set theory (FRS) for the task of feature selection

has proven remarkably popular in recent years. Indeed the theory has been

the subject of numerous modifications and extensions [5], [13], [22]. However,

despite these extensions, even the most basic interpretations of FRS suffer in

terms of their ability to scale to large data. One of the drawbacks is related

to the way in which the FRS lower approximation is defined and computed.

The problem is related to the fact that all of the objects in the data must

be considered when calculating the membership to the lower approximation.

Indeed, the subset evaluation metric relies upon these calculations and is thus

directly affected by this situation. Clearly, these issues become an obstacle to

dealing with data, particularly when the data is large. However, consider the

case where both the number of data objects is large and the dimensionality is

also large. In this particular case, the problem is compounded even further

meaning that approaches based on FRS suffer from a computational overhead

that clearly becomes prohibitive.

Fuzzy-rough set theory extends the rough set approximation operators by

fuzzifying the indiscernibility relation as well as the concept itself. This gener-

alisation provides much greater flexibility, however, the most commonly utilised

definitions of fuzzy-rough approximations ignore some important aspects. In

traditional fuzzy-rough sets, all data objects in the dataset must be considered

when generating the approximations used in the fuzzy-rough dependency cal-

culation. This means that considerable computational effort is expended each

time the lower approximation memberships are calculated. For feature selec-

tion, this occurs with the consideration of each candidate subset, meaning that

a large number of membership calculations are made. In addition, even small
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changes in the data distribution can often mean that the generated approxima-

tions can vary greatly. This can also have a negative impact on the stability of

any technique based upon such definitions.

In an attempt to alleviate the aforementioned problems, two alternative ap-

proaches to improving fuzzy-rough FS are presented here. The first approach

works by reformulating the way in which membership degrees to the approxi-

mations are computed by including only those data objects which are k-nearest

neighbours and are also not of the same decision class as the data object under

consideration. This reduces the impact of the number of objects in data on FRS-

based methods. The second approach offers a form of grouping and ranking of

the features which are then framed in the context of a modified search, with fea-

tures drawn from groups rather than from the full set of features. This reduces

the impact of the number of features, and is applicable to other feature selection

methods. These techniques offer a starting point for further development in

terms of improving the scalability of fuzzy-rough approaches for FS.

The remainder of the paper is structured as follows: the preliminaries for

fuzzy-rough set theory and feature selection are covered in Section 2 along with

an in-depth examination of the factors which affect the complexity of fuzzy-

rough feature selection in the presence of large data. Section 3 presents the first

of two different approaches to tackling these problems: nearest neighbour-based

fuzzy-rough sets. Section 4 presents the fuzzy-rough feature grouping approach.

An experimental evaluation is carried out in Section 5 where both approaches

are applied to a number of different datasets. Finally, Section 6 concludes the

paper, with some discussion and identification of a number of potential areas

for future development.

2. Theoretical Background

One of the main problems associated with large dimensionality, means that

any attempt to use machine learning tools to extract knowledge, results in very

poor performance. Feature selection (FS) is a process which attempts to select
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features which are information-rich and also retain the original meaning of the

features following reduction. The search for feature subsets is performed in a

combinatorially large space and thus presents a major challenge for data mining

approaches.

Let I = (U,A) be an information system, where U is a non-empty set of finite

objects (the universe of discourse) and A is a non-empty finite set of attributes

such that a : U → Va, ∀a ∈ A . Va is the set of values that attribute a may

take. For a decision system, A = {C ∪ D} where C is the set of input features

and D is the set of class or decision indices.

For any P ⊆ C, there exists an associated equivalence relation IND(P ):

IND(P ) = {(x, y) ∈ U2|∀a ∈ P, a(x) = a(y)} (1)

The partition generated by IND(P ) is denoted U/P and is calculated as

follows:

U/P = ⊗{U/IND({a}) : a ∈ P} (2)

where,

S ⊗ T = {X ∩ Y : ∀X ∈ S, ∀Y ∈ T,X ∩ Y 6= ∅} (3)

If (x, y) ∈ IND(P ), then x and y are indiscernible by attributes from P .

The equivalence classes of the P-indiscernibility relation are denoted [x]P . Let

X ⊆ U. X can be approximated using only the information contained in P by

constructing the P-lower and P-upper approximations of X:

PX = {x : [x]P ⊆ X} (4)

PX = {x : [x]P ∩X 6= ∅} (5)

In the original work of [21], the lower approximation of a set X is constructed

using a subset of the conditional attributes P ⊆ C w.r.t. a crisp equivalence

relation. The positive region can then be generated, which contains those data

objects in the universe U for which the values of P allow to predict the decision
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classes in D unequivocally: POSP (D) =
⋃
X∈U/D PX. Based on the positive

region, the rough set degree of dependency of the decision attribute(s) D on a

set of attributes P can be calculated: γP (D) = |POSP (D)|
|U| . This measure can

then be used to gauge subset quality for (crisp) rough set-based FS.

2.1. Fuzzy-Rough Sets

A fuzzy-rough set [8] is defined by two fuzzy sets, fuzzy lower and upper ap-

proximations, obtained by extending the corresponding crisp rough set notions

defined previously in (4) and (5).

In the crisp case, elements that belong to the lower approximation (i.e. have

a membership of 1.0) are said to belong to the approximated set with absolute

certainty. In the fuzzy-rough case, elements may have a membership in the range

[0,1], thus allowing greater flexibility in modelling uncertainty. Definitions for

the fuzzy lower and upper approximations can be found in [23]. For the work

described here, only the fuzzy lower approximation is utilised, where a fuzzy

indiscernibility relation is used to approximate a fuzzy concept X:

µRPX(x) = inf
y∈U
I(µRP

(x, y), µX(y)) (6)

where I is a fuzzy implicator. A fuzzy implicator is any [0, 1]2 → [0, 1] mapping

that is decreasing in its first and increasing in its second argument, which sat-

isfies I(0, 0) = I(0, 1) = I(1, 1) = 1 and I(1, 0) = 0. RP is the fuzzy similarity

relation induced by the subset of features P :

µRP
(x, y) = Ta∈P {µRa(x, y)} (7)

where µRa
(x, y) is the degree to which objects x and y are similar for feature

a, and may be defined in many ways [23], and T is a t-norm, an increasing,

commutative, associative [0, 1]2 → [0, 1] mapping satisfying T (x, 1) = x for x

in [0, 1]. In a similar way to the original crisp rough set approach, the fuzzy

positive region [17] can be defined as:

µPOSP (D)(x) = sup
X∈U/D

µRPX(x) (8)
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An important issue in data analysis is the discovery of dependencies between

features. The fuzzy-rough degree of dependency of D on the attribute subset P

can be defined in the following way:

γ′P (D) =

∑
x∈U

µPOSP (D)(x)

|U|
(9)

A fuzzy-rough reduct Red is a minimal subset of features (i.e. there is no

redundancy) that preserves the dependency degree of the entire dataset, i.e.

γ′Red(D) = γ′C(D). Based on this, subset search techniques can be used that

employ equation (9) in order to gauge subset quality.

2.2. Fuzzy Discernibility

Crisp discernibility matrices, often used in rough set feature selection, may

also be extended for use in fuzzy-rough feature selection [17]. The entries (known

as clauses) in a fuzzy discernibility matrix (FDM) are a fuzzy set, to which every

feature belongs to a certain degree. The extent to which a feature a belongs to

the fuzzy clause Cij is determined by the following:

µCij (a) = N(µRa(i, j)) (10)

where N denotes fuzzy negation and µRa(i, j) is the fuzzy similarity of objects

i and j, and hence µCij (a) is a measure of the fuzzy discernibility. For the crisp

case, if µCij
(a) = 1 then the two objects are distinct for this feature; if µCij

(a)

= 0, the two objects are identical. For fuzzy cases where µCij
(a) ∈ (0, 1), the

objects are partly discernible. Each entry (or clause) in the fuzzy indiscernibility

matrix is a set of attributes and their memberships:

Cij = {ax|a ∈ C, x = N(µRa(i, j))} i, j = 1, ..., |U| (11)

For example, an entry Cij in the fuzzy discernibility matrix may be:

{a0.4, b0.8, c0.2, d0.0}. This denotes that µCij
(a) = 0.4, µCij

(b) = 0.8, etc. In

crisp discernibility matrices, these values are either 0 or 1 as the underlying

relation is an equivalence relation. The example clause can be viewed as an

indicator of the significance value for each feature - the extent to which the

feature discriminates between objects i and j.
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2.3. Fuzzy Discernibility Function

As with the crisp approach, entries in the matrix can be used to construct

a fuzzy discernibility function:

fD(a∗1, ..., a
∗
m) = ∧{∨ C∗ij |1 ≤ j < i ≤ |U|} (12)

where C∗ij = {a∗x|ax ∈ Cij}. The function returns values in [0, 1], which can be

viewed as a measure of the extent to which the function is satisfied for a given

assignment of truth values to variables. To discover reducts from the fuzzy

discernibility function, the task is to find the minimal assignment of the value

true to the variables such that the formula is maximally satisfied. By setting

all variables to true, the maximal value for the function can be obtained as this

provides the greatest discernibility between objects.

2.4. Decision-relative Fuzzy Discernibility Matrix

For a decision system, the decision feature must be taken into account in

order to achieve valid reductions; only those clauses of a decision value which

is different to that of the object under consideration are included in the ma-

trix when generating any subsequent reduction. For the fuzzy version, this is

encoded as:

fD(a∗1, ..., a
∗
m) = {∧{{∨ C∗ij} ← qN(µRq (i,j))

}|1 ≤ j < i ≤ |U|} (13)

where C∗ij = {a∗x|ax ∈ Cij}, for decision feature q, where ← denotes fuzzy

implication. If µCij
(q) = 1 then this clause provides maximum discernibility

(i.e., the two objects are maximally different according to the fuzzy similarity

measure). When the decision is crisp and crisp equivalence is used, µCij
(q)

becomes either 0 or 1. The degree of satisfaction for a clause Cij for a given

subset of features P is defined as:

SATP (Cij) = Sa∈P {µCij
(a)} (14)

for a t-conorm S. In traditional (crisp) propositional satisfiability, a clause is

fully satisfied if at least one variable in the clause has been set to true. For
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the fuzzy case, clauses may be satisfied to a certain degree depending on which

variables have been assigned the value true. By setting P = C, the maximum

degree of satisfiability for a clause can be obtained:

maxSATij = SATC(Cij) = Sa∈C{µCij
(a)} (15)

In this setting, a fuzzy-rough reduct corresponds to a (minimal) truth assign-

ment to variables such that each clause has been satisfied to its maximal extent.

2.5. Complexity Aspects of Fuzzy-Rough Feature Selection

Feature selection approaches based upon fuzzy-rough sets have proven very

popular. However, there are two particular aspects which present scalability

problems for large data. The first relates to the number of data objects contained

in the data, as the pairwise comparison of each data object with every other

object in generating the fuzzy similarity relations means that this is a O(n2)

operation (where n is the number of data objects). Also, the calculation of the

dependency measure itself requires O(n2) comparisons. It is clear therefore,

that an increase in the number of objects will have a negative effect upon the

runtime of such approaches.

It has been shown in [13] and [22] that the standard approach to fuzzy-

rough sets uses only the membership of the nearest data object that is of a

different class to that of the objects under consideration. Therefore, there is

much wasted computational effort. Recall the earlier definition of the fuzzy

lower approximation:

µRPX(x) = inf
y∈U
I(µRP

(x, y), µX(y))

Due to a natural property of fuzzy implicators and their use for calculating

membership degrees; when the second component (µX(y)) is 1.0 (i.e. true)

then the implication result will evaluate to 1.0. This component corresponds

to the degree to which an object belongs to a given decision class; a value of

1.0 indicates that the object is of the same decision class. Therefore, the only
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data objects to have an impact upon the result of the implication operation are

those of classes other than that of the object under consideration. Of these,

the nearest object of a different class will produce the smallest value for the

implication operation, and therefore, it is this value only that is used, due to

the fact that above definition results in the minimum of all implications. The

process which considers all neighbours is naturally very time-consuming and is

exacerbated further when the data contains a large number of data objects. For

feature selection (FS), it will therefore require the calculation of the nearest

neighbours for each feature subset candidate that is considered by the selection

algorithm. Hence, there is very little saving in time when employing such a

nearest neighbour approach. The first approach presented in this paper, seeks

to approximate the nearest neighbour calculations by computing the nearest

neighbour(s) for each data object prior to computing the lower approximation.

Although the final subsets produced may not be true reducts (in the fuzzy-rough

sense), their computation will be much less intensive and thus methods based

on this framework are applicable to larger data [19].

The second aspect is that of dimensionality. When dimensionality is large,

then typical approaches to search which have been used traditionally (e.g. hill-

climbing) can suffer from poor performance due to the combinatorially large

space in which the search must be performed. The approach presented here

focuses upon alleviating this overhead. It does this by a process of grouping

the features prior to applying a modified hill-climbing search to the problem. It

uses a correlation measure to determine the redundancy (or similarity) of the

features prior to grouping them [20]. Correlation of each feature with respect to

the class label is then used as an internal ranking within each group. It is of note

that this approach is not limited to the use of fuzzy-rough evaluation metrics

and any subset evaluation metric may be employed for selecting features.

The work presented in this paper therefore attempts to address these two

problems by focusing upon each one individually. The result is two different

approaches; one which uses a neighbourhood approximation for constructing

approximations and one which groups the features prior to selection.
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3. Nearest Neighbour-based Fuzzy-Rough Sets

As discussed previously, it has been shown in [13] and [22] that the standard

approach to fuzzy-rough sets uses only the nearest data object of a different class

when considering the membership of a data object to the lower approximation.

Therefore, the only data objects to have an impact on the result of the implica-

tions are those of classes other than that of the object under consideration. Of

these, the nearest object of a different class will produce the smallest value for

the implication operation, and therefore, it is this value only that is used, due

to the fact that equation (6) results in the minimum of all implications. This

process (as mentioned previously), is quite time-consuming, as it requires the

calculation of the nearest neighbours for each feature subset candidate that is

considered. The approach presented here calculates the neighbours beforehand

and uses only these neighbours in the evaluations of subsets.

3.1. nnFRFS

Using the approach described above, the original FRFS method can be al-

tered to only consider the nearest neighbours, termed nnFRFS hereafter. The

lower approximation is thus defined, for fuzzy concept X, feature subset P and

fuzzy implicator I:

µRk
PX

(x) = inf
y∈NNk

x

I(µRP
(x, y), 0) (16)

Each neighbour in NNk
x has been determined beforehand using RC to measure

similarity and only considering those k nearest objects that belong to a different

class than x. Those features present in the subset P are used for determining

the similarity RP . For standard nnFRFS, only the closest neighbour is required,

so |NN1
x | = 1 for all x, reducing the number of calculations drastically. This

framework can be used for other extensions (such as VQRS and OWA-based

fuzzy-rough feature selectors); for these, all neighbours will have some impact

on the final calculation and so parameter k needs to be set appropriately.

In order to demonstrate that the parameter k has no impact on nnFRFS: as-

sume that an object x has k neighbours. The fuzzy lower approximation using
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these is inf
y∈NNk

x

I(µRP
(x, y), 0), and hence the smallest implication evaluation

will be the resultant membership of x to the lower approximation. This will

always be the result of using the largest value for µRP
(x, y) due to the prop-

erty of implicators, which is generated by considering the closest neighbour to

x. In other words, as the closest neighbour of x always determines the lower

approximation membership, the parameter k therefore has no impact.

Using the nearest neighbour-based fuzzy lower approximation, the fuzzy pos-

itive region can be redefined as:

µPOSk
P (D)(x) = sup

X∈U/D
µRk

PX
(x) (17)

The fuzzy-rough degree of dependency of D on the attribute subset P can

then be redefined:

γkP (D) =

∑
x∈U

µPOSk
P (D)(x)

|U|
(18)

or, the normalised version (as the data may be inconsistent):

γkP (D) =
1

U
∑
x∈U

µPOSk
P (D)(x)

µPOSk
C (D)

(x)
(19)

This measure of dependency can be used in the same way as the original

definition as a basis for guiding search toward optimal subsets. In this paper,

a greedy hill-climbing search method is used and implemented as shown in Fig.

1.

3.2. nnFDM

The fuzzy discernibility matrix-based approach described earlier can also

be altered to form a more computationally-efficient process. Recall that the

discernibility matrix is constructed by the pairwise comparison of all objects in

a dataset, and for the decision-relative discernibility matrix, clauses are only

generated when pairs of objects belong to different decision classes. Conditional

features that differ in value between object pairs are recorded in the clauses; a

subset of features then is required such that all clauses are satisfied, meaning

that all objects can be discerned. For the fuzzy-rough approach, the importance
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nnFRFS(C,D,k).
C, the set of all conditional attributes;
D, the set of decision attributes;
k, the number of nearest neighbours to consider.

(1) R← {}; γkbest = 0;
(2) foreach x ∈ U, calculate NNk

x

(3) do
(4) T ← R
(5) foreach x ∈ (C−R)
(6) if γkR∪{x}(D) > γkT (D)

(7) T ← R ∪ {x}
(8) γkbest = γkT (D)
(9) R← T
(10) until γkbest == γkC(D)
(11) return R

Figure 1: The nnFRFS algorithm

of features for a pair of objects is determined by the negation of the fuzzy

similarity. Pairs of objects which are very similar but belong to different decision

classes are therefore problematic, and the features that differ the most in value

between them are very important.

The most important clauses for an object are those that are generated by

the nearest neighbours of a different class. As more dissimilar objects are con-

sidered, the more features will appear in the clauses (or will belong to a higher

degree), meaning that the clause is more easily satisfiable. Hence, the most

useful information is contained in the nearest few neighbours for each object, as

these are the most difficult to discern. The modified FDM approach presented

here attempts to approximate the full set of clauses by only considering the

most important clauses, generated by nearest neighbours of objects of different

classes. The parameter k determines how many of the nearest objects are used

to generate such clauses. Setting k to |U| − 1 will produce all possible clauses,

and the algorithm will collapse to the original FDM approach.

Each entry in the fuzzy discernibility matrix is generated by comparing pairs

of objects. Here, only the k nearest objects of a different class are considered.
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Clauses are generated in the same way as for the fuzzy discernibility matrix

approach described previously. Based on this, the full set of clauses can be

generated as follows:

Clausesk = {Cij | j ∈ NNk
i ∨ i ∈ NNk

j } (20)

where NNk
i is the set of k nearest neighbours for object i, generated in the same

way as for nnFRFS previously. Therefore, a clause is generated from object pair

i, j if at least one of the objects appears in the other’s nearest neighbour list.

The degree of satisfaction of a clause C for a subset of features P is defined

as:

SATP (C) = Sa∈P {µC(a)} (21)

for t-conorm S. By setting P = C, the maximum satisfiability degree of a clause

C can be obtained:

maxSATC = SATC(C) = Sa∈C{µC(a)} (22)

Finally, the following subset evaluation measure can be used to gauge the

worth of a subset of features P :

τk(P ) =
1

|Clausesk|
∑

C∈Clausesk

SATP (C)

maxSATC
(23)

This measure checks the extent to which each clause is satisfied by P compared

to the total satisfiability for all generated clauses. When this reaches 1, all

clauses have been satisfied maximally, and the underlying search can stop; the

set of features in P discern all considered object pairs.

Using this framework, a search amongst feature subsets can be conducted

that aims to maximise the satisfiability of all generated clauses. In this work, a

hill-climbing approach is adopted (see Figure 2). Initially, the k nearest neigh-

bours are computed for each object x and stored in the list NNk
x . The clauses

are generated from these lists via generateClauses(NNk
x ,k). The process then

follows the typical hill-climbing algorithm, where the addition of individual fea-

tures to the current subset candidate is evaluated using the measure τk.
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nnFDM (C,D,k).
C, the set of all conditional attributes;
D, the set of decision attributes;
k, the number of nearest neighbours to consider.

(1) R← {}; τkbest = 0;
(2) foreach x ∈ U, calculate NNk

x

(3) generateClauses(NNk
x ,k);

(4) do
(5) T ← R
(6) foreach x ∈ (C−R)
(7) if τk(R ∪ {x}) > τk(T )
(8) T ← R ∪ {x}
(9) τkbest = τk(T )
(10) R← T
(11) until τkbest == 1
(12) return R

Figure 2: The nnFDM algorithm

The nnFRFS and nnFDM algorithms are just two of the possible ways in

which nearest neighbour approaches to fuzzy-rough set feature selection can be

implemented, employing the two main concepts of dependency degree and the

discernibility matrices of rough set theory. However, there are many other po-

tential extensions and applications for the proposed work and these are outlined

briefly in the conclusion.

4. Feature Grouping-based Selection

One of the main drawbacks associated with conventional greedy hill-climbing

approaches to discovering fuzzy-rough reducts in large datasets is that much

time is wasted considering features that have strong correlation with each other.

The consideration of such features is somewhat superfluous as they contain very

similar information. Ultimately, evaluating all such features at each stage of the

search offers no advantage. Take for example, an extreme situation where a

particular dataset contains several hundred replicated features. A hill-climbing

type of search will consider the addition of each of these features to the cur-

rent subset candidate iteratively at each stage of the search. Obviously, such
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computation is completely unnecessary. Furthermore, the later addition of any

features to the subset candidate will often produce only very small improve-

ments in the overall fuzzy-rough dependency metric [6]. The result of which is

a super-reduct, i.e. the resulting subset contains superfluous features that are

redundant and can be otherwise removed with no loss in dependency.

The approach proposed here (abbreviated FRFG hereafter), aims to group

together similar features such that at each stage of hill-climbing, only the most

promising group representative is considered for selection. This will reduce

wasted computational effort, and also help to improve the final selected subset

quality.

4.1. Forming Groups

An important component of the proposed approach is the identification of

related features and the formation of appropriate groups. There are many mea-

sures that are useful for this task. Here, the sample correlation coefficient is

used:

corr(a, b) =

∑|U|
i=1(ai − a)(bi − b)√∑|U|

i=1(ai − a)2
∑|U|
i=1(bi − b)2

(24)

where a, b ∈ A, and a refers to the sample mean of a. This measure can be used

to evaluate the degree of correlation between conditional features in order to

determine groups. The sample correlation coefficient ranges from -1 to +1. In

this work, the absolute value is used as a feature that is negatively correlated

with another feature can also be considered to be redundant:

correlation(a, b) = |corr(a, b)| (25)

The same correlation measure can be used to evaluate the correlation of

conditional features with the class attribute in order to rank features within

these groups. The most relevant features according to the correlation with the

decision feature are therefore ranked highest in the groups. It is from these

groups that the adapted hill-climbing method will select features. Redundancy
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is therefore partly handled by employing groups of similar features, and rele-

vance is considered by ranking features within groups based on their relatedness

to the decision feature.

Having calculated the correlations values, groups can then formed. Here, a

threshold is used to determine group membership of features. This threshold

could be either a user-supplied (τ), that must be exceeded for a pair of features

to be considered redundant, or could be estimated automatically:

τ = 0.8(max
a,b∈C

{correlation(a, b)}) (26)

Groups are formed in the following way. For each feature fi, the correlation

with every other feature fj is determined and the threshold (τ) applied such

that if the correlation is greater than the threshold, then the feature fj is added

to the group for fi, i.e. Fi ← Fi ∪ {fj}. Having considered all features, the

result is a set of groups F = {F1, F2, ..., F|C|}. Features can be ordered within

groups on the basis of their correlation with the decision feature D, meaning

that features that have greater correlation with D are preferable. It is important

to note that as a result of this process, features can belong to more than one

group.

4.2. Subset Search

Having formed the groups, the next phase of the FRFG approach is to employ

the groups and their respective internal rankings in order to guide the search

procedure in discovering good subsets according to a given metric. In this paper,

the fuzzy-rough dependency measure is used to gauge subset quality, however

any measure can be used for this purpose (including wrapper approaches). As

mentioned previously, an adapted hill-climbing algorithm is used here to find

the best subsets. Although there are some issues with greedy approaches (e.g.

see [18]), it is still a useful search mechanism and often discovers reducts or su-

perreducts that are usually only slightly larger than optimal. The way in which

the hill-climbing search is formulated means that it is reasonably straightfor-
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ward to reconfigure it for a group-based strategy. The full algorithm can be

seen in Figure 3, including the required initialisation steps.

The purpose of the function preprocess(F ) is to perform some initial pre-

processing in order to investigate if there is any perfect correlation between

features, and to remove the less relevant feature each time. This could be

softened to use another threshold to remove more features (i.e. for threshold

values less than 1), however this may remove useful features and prevent the

algorithm from finding an optimal reduct.

For each group of features, the representative top-ranked feature is chosen

and assessed by temporarily adding it to the current reduct candidate and eval-

uating this new subset via the metric M . In this paper, the focus is fuzzy-rough

feature selection, and hence the measure used for M is the fuzzy-rough depen-

dency degree [17]. Once a feature has been evaluated, its group members are

then added to the Avoids set to ensure that these features are not evaluated

in this iteration. The feature that produces the greatest increase in the metric

is then added to the current subset and the process iterates until the stopping

criterion is fulfilled. This may involve stopping when the maximum value for

the measure has been reached, or to degree α, or indeed if there is no change

in the measure following two successive iterations. In the fuzzy-rough case, the

maximum value for a dataset can be determined prior to selection and then used

as a stopping criterion.

Line (14) provides an optional further reduction in computational effort (set

by the Boolean flag ‘moreAvoids’) by removing all other features which appear

in the group of that newly selected feature from consideration. The rationale for

this step is that once a feature has been selected, the addition of any of its group

members at this stage will not benefit the overall subset. There may be some

utility in allowing the possibility of correlated group members to be added [11],

but it is unlikely to have great impact on the evaluation metric. However, for

flexibility, the addition of other group members of previously selected features

can be permitted if this flag is set to false. In this work, the default setting is

true.
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In the extreme case, by setting the threshold τ=0, the algorithm then acts

as a ranking approach that adds features to the reduct candidate linearly on the

basis of their relevance, until the subset evaluation measure has been maximised.

However, if moreAvoids is set to true, this behaviour will not be exhibited; in-

stead, only the first, most relevant, feature will be chosen and then the algorithm

will terminate (all other features appear in its group and are therefore removed

from consideration).

The function order(F ) orders the considered feature groups on the basis of

their top-ranked features (i.e. most relevant), so the most promising groups are

considered first. Without this, the algorithm may favour earlier features in an

arbitrary fashion.

Once a feature has been added to the current subset, its group members

are removed from consideration at this level. However, this does not prevent

consideration of this group in future iterations. The search will stop when

the stopping criterion is met. For many filter measures, a known maximum is

attainable and therefore this is used to judge when to terminate the algorithm.

For other measures, search can be halted when there is little or no perceived

improvement in the subset quality. Also, it may be useful to stop the search

somewhat prematurely by using a threshold, α, that indicates when a subset is

good enough.

4.3. Worked Example

To illustrate the FRFG approach, an artificial example is described here.

Consider a dataset with six features, some of which are highly correlated. After

the initialisation steps of the algorithm, the groups formed are:
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F1 = {f4, f3, f1}

F2 = {f2}

F3 = {f3, f1}

F4 = {f4, f1, f5}

F5 = {f4, f5}

F6 = {f6}

Here, features within the groups have been ordered according to their relevance,

so the left-most features are more relevant to the decision and thus are preferable

to those on the right. Groups F2 and F6 have only one member, which indicates

that features f2 and f6 are not strongly correlated with other features.

The hill-climbing algorithm first orders the group, say

F = {F4, F3, F1, F5, F2, F6} and begins the search at the first level. The first

group to be considered is F4; feature f4 is preferable over others and is therefore

added to the current (initially empty) subset R . This is then evaluated: M(R∪

{f4}) and if it results in a better score than the current best evaluation, then

feature f4 is stored and the current best evaluation is set to M(R ∪ {f4}). The

set of features which appears in group F4 is then added to the set Avoids so that

other group members are not evaluated in this iteration. In other words, once

the main group representative has been selected, other highly correlated group

members do not need to be considered. Therefore, Avoids = {f1, f4, f5} and the

next feature group is considered that does not appear in Avoids, F3. The highest

ranked feature, f3, is then added to the current subset and evaluated, M(R ∪

{f3}). If this value is greater than M(R∪{f4}), then feature f3 replaces f4. The

set Avoids is then updated with the members of F3, Avoids = {f1, f3, f4, f5}.

The next feature groups F1 and F5 both appear in Avoids and so are not

considered. This means that the next considered group is F2 (which consists of a

single feature) is evaluated. Finally, the single remaining group F6 is considered

and evaluated. Having completed this, the best representative feature in this
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iteration is then added to the reduct candidate R and the process iterates once

more (unless the stopping criterion is not met). The Avoids list is reset at this

level.

From this small example, it can be seen that considerable computational

effort has been avoided since features f1 and f5 did not need to be evaluated.

Note that the level of computational effort saved is governed by the group sizes,

which in turn is decided by the thresholding which is used in order to form the

groups. Hence, a balance must be maintained between lower thresholds (which

produce larger groups, greater time saving, but potentially group fewer corre-

lated features together) and higher thresholds (which produce smaller groups,

less time saving, but features within groups are more highly correlated). In the

extreme case where the threshold is set to 1, the algorithm becomes a standard

hill-climber where each feature appears in exactly one group, and no time saving

is made during execution. The worst-case complexity of this is O(|C|2). In the

other extreme, where the threshold is set to 0, all features are grouped together

in ranked order and the selection process simply selects features based upon

their ranking (derived form the correlation metric) until the stopping criterion

is met. The worst-case complexity in this situation is linear in the number of

features, O(|C|). Depending on the threshold value employed therefore, the ac-

tual worst-case complexity will lie somewhere between quadratic and linear for

a given dataset.

5. Experimental Evaluation

This section details the experimental evaluation conducted and the results

obtained for both the nnFRFS and FRFG approaches. In a series of different

experiments, the proposed methods were applied to 13 datasets of different

sizes, and compared with three other search methods for discovering fuzzy-

rough reducts. The results presented here relate to performance in terms of

quality of subsets obtained: classification accuracy and subset size, as well as

execution times, and the effect of a range of threshold values for the nearest
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neighbours k on the results for the nnFRFS approach.

5.1. Experimental Setup

For both approaches a total of 13 different datasets, described in Table 1, are

employed. Eleven of these datasets are drawn from [12], whilst the remaining

two (MIAS and DDSM) are real-world mammographic risk-assessment tasks

which are related to data derived from [16].

For comparison, three other fuzzy-rough approaches for feature selection [17] are

included along with three different reduct search methods: greedy hill-climbing

(GHC), genetic algorithm-based search (GA), and particle swarm optimisation-

based search (PSO). For the fuzzy-rough subset evaluation metric, the  Lukasiewicz

t-norm (max(x+y−1, 0)) and the  Lukasiewicz fuzzy implicator (min(1−x+y, 1))

are adopted to implement the fuzzy connectives. For the similarity relation for

the FRFG approach the algebraic T-norm was used (T (x, y) = xy). The simi-

larity measure of eqn. (26) in [17] is also used here. It should be noted that all

results that are statistically significant with respect to the greedy hill climbing

fuzzy-rough feature selection approach are noted in bold typeface in the tables.

For the nnFDM approaches, values of 1, 3, and 5 are used for k respectively.

Note that nnFRFS is not affected by the choice of value for k, as it always relies

upon the closest neighbour. In the case of the FRFG approach, five different

experiments are carried out by imposing different values for the threshold τ :

0.0, 0.2, 0.4, 0.6, 0.8 and 0.9. Note that for the experimentation with τ=0,

moreAvoids is set to false; in this case, the algorithm will add features in

order of rank to the reduct candidate until the fuzzy-rough dependency has

reached its maximal value. For both nnFRFS and nnFDM, the product t-norm

is used for composing similarity relations.

For the generation of classification results, two different classifier learners

have been employed: JRip, a rule-based classifier [4]; and IBk [1], a nearest-

neighbour classifier (with k = 3). Five stratified randomisations of 10-fold cross-

validation were employed in generating the classification results except in the

case of lymphoma, leukemia, and colon where the number of data objects is
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small. For these three particular datasets five stratified randomisations of 3-fold

cross-validation were employed. It is important to note that feature selection is

performed as part of the cross-validation and each fold results in a new selection

of features. A paired t-test is also used to examine the statistical significance of

the generated results.

The GA search has an initial population size of 200, a maximum number of

generations/iterations of 40, crossover probability of 0.6 and mutation proba-

bility of 0.033. The number of generations/iterations for PSO search was set to

40, whilst the number of particles was set to 200, with acceleration constants

c1 = 1 and c2 = 2. These parameters may not be ideal for all of the datasets

employed here and an optimisation phase may well result in an improvement in

performance. However, such an optimisation step would need to be performed

on a dataset-by-dataset basis which would involve a significant investment of

effort and time and would form part of a more comprehensive future investiga-

tion. Note that GA and PSO have not been applied to the larger dimensionality

datasets (lymphoma, leukemia, colon) as the time consumed in generating re-

sults was prohibitive, running into the many tens of hours for just a single

randomisation of a single dataset.

5.2. Results: nnFRFS

Tables 2 and 3 detail the classification results for the JRip and IBk classifier

learners respectively. Examining the classification results, it is clear that nn-

FRFS and nnFDM return very similar results to GHC. Indeed, when a paired

t-test is employed to examine the statistical significance of the results gener-

ated for the proposed approaches, even though the absolute figures are slightly

lower in some cases, statistically there are no inferior results. It is worth noting

from Table 4, however, that the average subset sizes for nnFRFS and nnFDM

are greater than GHC and the GA and PSO methods. One notable exception

to this are the results for the web dataset, where the novel methods all return

average subset sizes which are much smaller than those of all of the standard

approaches.
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It is in terms of execution times that both nnFRFS and nnFDM have the

most to offer in terms of improvement in performance. The speed-up in per-

formance is considerable and demonstrates that the nearest neighbour methods

show potential for application to very large data. Again, the web dataset seems

to be the exception for nnFDM at least for k=3 and k=5. (It should be noted

however that the corresponding subsets discovered by GA and PSO are at least

14 times the size of those discovered by nnFDM.) This behaviour may arise as

a result of the characteristics of the data itself, however, which has a large num-

ber of features and a very small number of data objects. Such datasets always

present a challenge to learning algorithms regardless of the approach applied.

Dataset Features objects

MIAS 281 322

DDSM 281 832

web 2557 149

lymphoma 4027 96

leukemia 7130 72

colon 2001 82

cleveland 13 297

glass 9 214

heart 13 270

olitos 25 120

water2 39 390

water3 39 390

wine 13 178

Table 1: Benchmark data

One of the primary motivations behind the development of the nearest neigh-

bour fuzzy-rough approaches detailed here was that of a reduction in compu-

tational overhead. Many of the fuzzy-rough metrics suffer in this regard when

applied to larger datasets. It is clear from Table 5, that the proposed methods

offer much potential in addressing this problem.
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Dataset Unred. GHC nnFRFS nnFDM (k =) GA PSO

1 3 5

MIAS 63.74 60.94 58.02 58.02 61.96 60.66 64.41 53.34

DDSM 52.78 49.22 50.71 50.71 52.30 52.40 51.79 50.69

web 54.74 49.68 46.71 46.71 45.35 46.46 61.45 50.70

lymphoma 59.37 48.92 47.49 47.49 50.60 51.60 - -

leukemia 90.67 80.05 83.29 83.29 90.18 87.89 - -

colon 67.74 69.97 74.43 74.43 76.62 70.90 - -

cleveland 54.23 54.48 54.55 54.55 54.28 54.34 54.02 54.09

glass 67.17 67.17 66.06 66.06 67.17 67.17 65.25 65.25

heart 72.96 74.15 74.22 74.44 74.67 75.41 72.30 73.85

olitos 68.50 62.83 63.33 64.00 65.67 66.83 59.33 61.17

water2 82.15 83.28 82.87 82.87 82.97 82.36 82.00 81.90

water3 82.72 81.23 81.23 81.23 81.28 82.15 78.82 78.00

wine 93.54 91.46 89.56 89.69 91.35 91.69 86.60 90.41

Table 2: nnFRFS: Classification results (%) using the JRip classifier learner

5.3. Results: FRFG

The results of the experimental evaluation are shown in Tables 6 - 10. Tables

6 – 8 detail the classification results for the J48, JRip and IBk classifier learners

respectively. GHC (greedy hill-climbing), GA (genetic algorithm) and PSO

(particle swarm optimisation) refer to the search technique employed in each

case. Examining these results, it is clear that regardless of the value of τ , FRFG

returns very similar results to GHC. Indeed, when a paired t-test is employed

to examine the statistical significance of the results generated for FRFG, only

those results for the wine dataset where τ=0.2 and 0.4 are statistically inferior

to those for GHC. It is worth noting from Table 9 however, that the average

subset size for these values of τ , is much smaller than for GHC indicating a

trade-off between compactness of representation and model accuracy.

When FRFG is compared with the GA-based search, a similar pattern

emerges. However, in this case, FRFG does not return any results which are
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Dataset Unred. GHC nnFRFS nnFDM (k =) GA PSO

1 3 5

MIAS 69.57 63.29 64.10 64.10 62.54 63.83 65.40 53.48

DDSM 51.55 45.85 51.07 51.07 51.56 50.69 52.13 46.71

web 37.98 44.11 42.66 42.66 37.10 36.98 46.72 36.65

lymphoma 68.75 55.25 4 47.96 47.96 53.76 55.29 - -

leukemia 87.5 86.97 84.64 84.64 90.18 86.71 - -

colon 77.41 75.35 75.33 75.33 76.62 72.67 - -

cleveland 56.98 52.96 68.77 68.77 55.97 56.10 53.89 53.83

glass 69.24 69.24 68.77 68.77 69.24 69.24 68.51 68.51

heart 80.96 78.15 80.89 80.96 80.96 80.96 78.15 76.96

olitos 81.00 65.67 71.00 70.67 72.17 71.83 66.50 72.33

water2 85.33 84.56 83.28 83.28 82.26 82.26 78.26 80.10

water3 82.97 81.23 82.00 82.00 81.08 82.05 77.44 77.23

wine 95.97 96.42 95.92 95.97 95.61 95.41 91.82 94.71

Table 3: nnFRFS: Classification results (%) using the IBk classifier learner (k=3)

statistically inferior. It is the same also for PSO, but the FRFG approach actu-

ally offers results which are statistically better than PSO for five of the datasets,

most notably wine and MIAS. When considering the unreduced data, the clas-

sification results are statistically equivalent, indicating that good features are

selected using the FRFG approach.

Considering the average subset size as shown in Table 9, the FRFG approach

returns a range of results which seem to be similar to, or better than those of

GHC. varying the value of τ generally tends to result in larger or smaller average

subset size, depending on the dataset. For this comparison, the results for τ=0

are ignored as it is essentially a ranking of features, followed by the linear

addition to the reduct candidate as they appear in the ranked list. For the

olitos, heart, water2 and water3 datasets in particular, the average subset size

does not seem to change significantly when τ ≥ 0.6. In terms of GA and PSO,

the FRFG approach demonstrates a significant improvement in performance
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Dataset GHC nnFRFS nnFDM (k =) GA PSO

1 3 5

MIAS 6.08 13.70 13.70 17.18 19.86 9.0 7.70

DDSM 7.12 33.48 33.48 41.40 44.60 10.96 9.56

web 19.02 4.08 4.08 8.22 10.52 186.00 141.20

lymphoma 5.40 2.00 2.00 3.22 4.32 - -

leukemia 3.80 2.88 2.88 3.10 3.74 - -

colon 4.34 4.34 4.34 5.54 6.06 - -

cleveland 7.64 11.08 11.10 11.80 11.82 9.0 7.70

glass 9.00 9.00 8.78 8.78 9.00 8.36 8.36

heart 7.06 10.44 10.48 10.32 10.60 7.00 7.38

olitos 5.00 7.52 7.64 8.78 9.34 5.24 5.00

water2 6.00 12.82 12.82 15.04 16.54 6.96 6.44

water3 6.08 11.42 11.42 13.40 14.70 7.00 6.50

wine 5.00 7.26 7.26 8.40 9.40 4.70 4.92

Table 4: nnFRFS: Average subset sizes

for the larger datasets: MIAS, DDSM and web. For the smaller datasets, the

pattern seems to be that of equivalent or better performance (disregarding any

particular value of τ).

Ostensibly, it would appear that GA-based search performs well for the web

dataset, however if the corresponding results in Table 4 are considered, it can

be seen that the average subset size is over 6.5 times that of the worst case for

FRFG. The ability of FRFG to return more compact or similar sized subsets for

large data whilst doing so in a much reduced execution time are encouraging.

It seems that whilst FRFG offers some advantage for the smaller datasets, this

varies with respect to the value of τ . This is most likely related to the process

of formation of the groups. For datasets of smaller dimensionality, it may not

be realistic to form reasonable groups based on higher values of τ as there may

be lower levels of overall redundancy.

The approaches and ideas described in this paper offer some new directions
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Dataset GHC nnFRFS nnFDM (k =) GA PSO

1 3 5

MIAS 12.04 1.05 1.07 1.67 2.99 3.11 22.60

DDSM 110.44 7.12 6.97 15.58 26.13 23.94 173.93

web 98.42 1.63 2.33 3.70 5.72 3.51 24.07

lymphoma 584.3 3.90 4.63 3.22 4.32 - -

leukemia 497.30 3.92 6.82 10.32 14.10 - -

colon 9.28 0.87 1.10 1.87 2.91 - -

cleveland 0.39 0.037 0.05 0.06 0.07 16.20 3.83

glass 0.14 0.02 0.03 0.04 0.05 1.55 1.08

heart 0.30 0.03 0.04 0.05 0.06 14.48 3.46

olitos 0.11 0.02 0.03 0.04 0.05 2.36 1.26

water2 2.16 0.13 0.14 0.2 0.27 20.14 19.71

water3 2.17 0.14 0.15 0.21 0.28 19.57 17.25

wine 0.11 0.02 0.03 0.04 0.06 7.55 1.29

Table 5: nnFRFS: Average execution times per fold (sec.)

for further development. In particular, (and as mentioned previously) the FRFG

algorithm is a general approach, and it is not limited to the use of the fuzzy-

rough set subset evaluator and indeed any metric can be used for this purpose.

As such, it would be interesting to investigate the advantages for other metrics,

particularly those which perform well but may not scale-up for larger datasets.

One of the other aspects that may provide some additional potential for the

approach is an in-depth investigation of the effects of the choice of value for the

parameter τ . This may provide some insight into how the value can be selected

automatically or indeed derived from the data.

Another important factor is how groups are formed; in the present approach,

the sample correlation is used as the basis for group membership. Although this

means that the number of groups is initially the same as the number of features,

the impact of this is reduced by the use of moreAvoids and the appropriate

choice of parameter value for τ . This may still pose a problem for very large
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Dataset Unred. GHC FRFG GA PSO

τ =

0.0 0.2 0.4 0.6 0.8 0.9

MIAS 66.72 60.11 57.22 61.98 62.99 61.42 61.63 59.26 61.88 52.67

DDSM 50.16 46.40 44.24 50.69 46.86 47.20 45.48 46.43 48.71 47.39

web 56.32 50.32 55.70 51.43 51.30 51.40 51.69 50.74 56.49 50.17

lymphoma 70.45 68.80 58.78 62.53 60.02 54.60 64.64 67.36 - -

leukemia 84.72 89.98 91.86 91.04 90.18 83.89 89.04 89.36 - -

colon 83.87 81.62 83.24 79.43 72.14 71.71 70.19 69.14 - -

cleveland 54.03 51.61 54.96 54.03 52.35 51.54 51.54 51.54 52.68 53.31

glass 67.54 67.54 67.54 62.25 66.87 66.31 66.02 67.54 67.44 67.44

heart 75.56 74.74 76.74 77.11 77.11 74.15 74.15 74.15 75.48 76.37

olitos 66.67 60.67 60.50 63.00 62.00 61.83 60.67 60.67 57.67 65.67

water2 82.56 83.49 83.44 81.95 81.74 82.10 82.41 83.69 81.18 81.44

water3 82.67 80.92 81.28 81.13 79.59 81.08 79.79 80.62 76.82 77.95

wine 93.82 95.39 93.82 79.54 87.29 91.39 95.05 95.27 88.73 90.86

Table 6: FRFG: Classification results (%) using the J48 classifier learner

datasets, however, so an alternative feature clustering scheme could be adopted

in order to ensure quick clustering and small group sizes. One such clustering

mechanism is presented in [14], which employs a rough set discernibility-based

attribute similarity measure for identifying interchangeable groups of attributes.

This could be extended to fuzzy-rough discernibility and utilised in the present

work, resulting in a true fuzzy-rough approach to group-based feature selection.

6. Conclusion

Two approaches which help in alleviating computational effort for feature

selection based upon fuzzy-rough sets have been presented in this paper. They

are based upon two different ideas related to tackling the problems associated

with larger data. The first calculates nearest data object neighbours prior to
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Dataset Unred. GHC FRFG GA PSO

τ =

0.0 0.2 0.4 0.6 0.8 0.9

MIAS 63.74 60.94 57.09 63.10 60.84 61.74 61.19 60.26 64.41 53.34

DDSM 52.78 49.22 48.88 51.14 50.21 49.65 47.77 48.73 51.79 50.69

web 54.74 49.68 55.94 51.40 51.57 50.22 52.66 51.96 61.45 50.70

lymphoma 59.37 48.92 51.13 53.93 56.24 54.38 64.71 64.91 - -

leukemia 90.67 80.05 91.54 91.89 90.25 82.89 86.64 88.29 - -

colon 67.74 69.97 81.86 78.76 76.14 72.38 69.14 67.38 - -

cleveland 54.23 54.48 55.22 53.22 54.41 54.48 54.48 54.48 54.02 54.09

glass 67.17 67.17 67.17 60.56 66.68 65.05 64.95 67.17 65.25 65.25

heart 72.96 74.15 74.15 74.44 74.96 73.93 73.93 73.93 72.30 73.85

olitos 68.50 62.83 60.00 61.67 59.00 59.50 59.67 59.67 59.33 61.17

water2 82.15 83.28 82.87 82.15 82.05 82.21 82.97 83.69 82.00 81.90

water3 82.72 81.23 82.56 81.18 80.36 81.28 80.87 81.74 78.82 78.00

wine 93.54 91.46 92.69 76.61 86.72 90.33 93.25 93.38 86.60 90.41

Table 7: FRFG: Classification results (%) using the JRip classifier learner

the search and then uses only these neighbours for the subsequent fuzzy-rough

dependency calculations. The time complexity therefore is essentially an order

of magnitude smaller for the number of data objects. The second approach is

an attempt to tackle the problem of larger data from the perspective of large

dimensionality, and groups and ranks features in a preprocessing step prior to

selection.

For nnFRFS, the results detailed in the previous section show that the av-

erage subset sizes are slightly larger than those of existing approaches, but for

FRFG the subset sizes are comparable to those of GHC. What is clear from

the experimental evaluation is the level of reduction in execution times for both

approaches. This suggests that approaches such as those detailed in this paper

offer a number of possible avenues of exploration which would offer improve-

ments in the performance in terms of subset size, whilst retaining the saving in
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Dataset Unred. GHC FRFG GA PSO

τ =

0.0 0.2 0.4 0.6 0.8 0.9

MIAS 69.57 63.29 58.72 63.38 62.64 63.16 61.38 58.61 65.40 53.48

DDSM 51.55 45.85 45.34 46.97 47.63 45.39 45.85 46.00 52.13 46.71

web 37.98 44.11 39.20 48.83 45.08 45.32 42.77 41.07 46.72 36.65

lymphoma 68.75 55.25 56.78 63.20 61.47 55.04 71.31 70.93 - -

leukemia 87.50 86.97 91.54 87.43 90.54 85.21 87.04 89.36 - -

colon 77.41 75.35 81.76 80.33 73.14 71.52 70.76 74.33 - -

cleveland 56.98 52.96 56.91 50.79 54.77 52.96 52.96 52.96 53.89 53.83

glass 69.24 69.24 69.24 59.87 63.28 68.23 68.52 69.24 68.51 68.51

heart 80.96 78.15 81.11 75.85 79.85 77.56 77.56 77.56 78.15 76.96

olitos 81.00 65.67 65.67 66.33 67.67 65.67 66.83 66.83 66.50 72.33

water2 85.33 84.56 87.08 84.97 82.21 83.49 84.77 85.33 78.26 80.10

water3 82.97 81.23 86.36 80.92 81.54 82.51 80.36 80.92 77.44 77.23

wine 95.97 96.42 96.96 73.75 90.21 92.59 95.15 95.05 91.82 94.71

Table 8: FRFG: Classification results (%) using the IBk classifier learner (k=3)

computational effort. For example, the use of propositional satisfiability tech-

niques [18] to find the smallest reducts in the clauses generated using nnFDM,

or applying the approaches to unsupervised FS, and improving the efficiency

of recent fuzzy-rough object/object selection methods, etc. In addition, an ex-

tension of the proposed approaches to a distributed environment such as that

described in [2] may also be an interesting proposal. The combination of either

of the approaches (nnFRFS/FRFG) with other techniques in order to form hy-

brid preprocessors may offer ways of further reducing computational overhead.

The experimental evaluation in this paper features at least three large datasets,

however it would be interesting to apply nnFRFS and FRFG to data in the or-

der of thousands of features and objects; this would also form the basis for a

more comprehensive investigation.
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Dataset GHC FRFG GA PSO

τ =

0.0 0.2 0.4 0.6 0.8 0.9

MIAS 6.08 19.02 4.50 6.40 6.28 6.24 6.22 9.0 7.70

DDSM 7.12 34.26 4.94 7.44 7.32 7.10 7.16 10.96 9.56

web 19.02 496.40 28.42 22.00 19.64 19.40 19.06 186.00 141.20

lymphoma 5.40 1.98 5.10 4.86 4.48 4.04 4.02 - -

leukemia 3.80 1.98 3.62 3.56 3.34 3.30 3.22 - -

colon 4.34 2.00 5.24 4.38 4.04 4.00 4.00 - -

cleveland 7.64 12.08 5.52 6.40 6.28 7.64 6.22 9.0 7.70

glass 9.00 9.00 3.16 5.02 8.00 8.12 9.00 8.36 8.36

heart 7.06 11.00 5.24 8.06 7.06 7.06 7.06 7.00 7.38

olitos 5.00 6.38 5.52 5.04 5.00 5.00 5.00 5.24 5.00

water2 6.00 6.98 6.86 6.10 6.04 6.00 6.00 6.96 6.44

water3 6.08 7.80 6.76 6.16 6.04 6.00 6.00 7.00 6.50

wine 5.00 5.40 1.80 4.88 4.94 4.98 5.00 4.70 4.92

Table 9: FRFG: Average subset sizes
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FRFG(C, D, M ,τ , moreAvoids).

C, the set of conditional features;

D, the set of decision features;

M , subset evaluation measure;

τ , the group-forming threshold;

moreAvoids, Boolean variable

(1) R← ∅; F ← formGroups(C, τ)

(2) F ← rankWithinGroups(D,F)

(3) preprocess(F ); F ← order(F ); AlwaysAv ← ∅

(4) while (stopping criterion not met)

(5) Avoids← AlwaysAv

(6) bestF ← ∅; bestEval = 0

(7) foreach a ∈ (C−R−Avoids)

(8) a← highestRankedFeature(Fa)

(9) T ← R ∪ {a}

(10) if (M(T ) >bestEval)

(11) bestF = a; bestEval = M(T )

(12) Avoids← Avoids ∪ Fa
(13) R← R ∪ bestF

(14) if (moreAvoids)

(15) AlwaysAv ← AlwaysAv ∪ FbestF
(16) output R

Figure 3: The feature grouping algorithm
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