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Introduction 

Building upon work by Muller and Keeler (1969), Irvine-Fynn and Edwards (2014) examined the 

ecological role and significance of the “weathering crust” - the shallow (~2 m) layer of porous ice that 

develops seasonally over ablating glacier surfaces. They asserted that, excluding Antarctica, global 

glacial weathering crusts may support some 10
21

 to 10
26

 microbes (Irvine-Fynn & Edwards, 2014), 

representing an important yet poorly understood component of supraglacial ecosystems. Hydrological 

fluxes through the weathering crust may profoundly influence in situ microbial communities 

(Edwards et al. 2011), export of microbial cells from glacier surfaces (Irvine-Fynn et al., 2012) and 

biodiversity in glacier-fed streams (Wilhelm et al., 2013), making the hydrological behaviour of the 

weathering crust an important area of research. Despite previous researchers directing attention to 

supraglacial hydrology (e.g. Derikx, 1971; Munro, 2011), surprisingly little literature exists directly 

examining water movement through near-surface ice (e.g. Theakstone & Knudsen, 1981; Karlstrom et 

al. 2014).  

The weathering crust forms due to subsurface melt from shortwave radiation (I*), the attenuation of 

which typically limits subsurface melting on glaciers to within a “photic zone” (Irvine-Fynn & 

Edwards, 2014) a few tens of centimetres thick (Shumskii, 1964), but can extend to greater depths 

defined by Beer‟s Law, which describes the exponential decay of solar radiation as a function of 

distance through ice (Oke, 1987): 

  
    

              (Eq.1) 

where I*z is the shortwave incident radiation at depth z, I*0 is the radiation flux at the ice surface and k 

is the extinction coefficient. Values of k  vary in supraglacial ecosystems (Hodson et al. 2013), but 

typically lie in the range 2.00 – 20.00 m
-1

 for optically clear (blue) glacier ice and dry snow 

respectively (Hodson et al. 2013). By contrast, the value for pure ice is ~6.00 × 10
-4

 m
-1 

(Geiger, 

1965). The dissipation of radiative energy in the photic zone leads to subsurface melting, enlarging 

interstitial spaces and disaggregating ice crystals. Additionally, heat flow within the interstitial space 

further contributes to the declining cohesion of the near-surface ice crystals (Nye, 1991).  This 

decaying surface has been referred to as “honeycomb ice” (e.g. Zeng et al. 1984; Cutler & Munro, 

1996), and detailed energy balance studies have demonstrated the relative importance of the 

subsurface melt volume (see Munro, 1990; Wheler and Flowers, 2011). Near-surface ice exhibits a 

characteristic non-linear trend of increasing ice density with depth (LaChapelle, 1959; 1961): from a 

highly porous surface (300 kg m
-3

: Shumskii, 1964; Schuster, 2001) to a dense subsurface of ~900 kg 

m
-3

.  

Muller & Keeler (1969) indicated a meteorological control on weathering crust evolution: maximum 

rates of weathering crust formation are associated with clear sky conditions that allow I* to dominate 

the surface energy balance. During such periods the overall porosity of the near-surface ice 

progressively increases, and the weathering crust expands vertically to greater depth. Consequently, 

through increased porosity, the weathering crust becomes a location for storage of meltwater (Larson, 

1978; Liestøl et al. 1980; Irvine-Fynn et al. 2006; Irvine-Fynn, 2008), controlling near-surface 

drainage velocities (Wakahama et al. 1973; Larsen, 1977; Shea et al. 2005; Munro, 2011), and 

providing a substrate vulnerable to supraglacial rill initiation (Schuster, 2001). Recent work by 

Karlstom et al. (2014) connected microscale weathering crust hydraulics to macroscale supraglacial 

meltwater flow features and indicated a research imperative is to improve current understanding of the 

dynamics of sub-surface flow.  

During synoptic periods of cloud cover, high air temperatures and high wind speeds, the surface 

energy balance can become dominated by turbulent heat fluxes. This has a three-fold effect: first, 

selective radiation-driven subsurface melting can decrease or stop; second, refreezing of melt water in 

interstitial pore spaces can occur; and third, low density surface-ice ablates through convective 

melting. These processes cause the weathering crust to decay rapidly (Muller and Keeler, 1969; 

Schuster, 2001). Energy input by rainfall may also contribute to the removal of porous weathering 

crust ice (Muller & Keeler, 1969), although this method of ablation is often assumed negligible 
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(Rothlisberger and Lang, 1987). With decreased porosity, the role of the weathering crust in 

hydrologic transmission and storage soon diminishes. As a depth limited aquifer, the dynamic 

weathering crust‟s dynamic impact on supraglacial hydrographs at short (sub-hourly) to seasonal 

time-scales is, therefore, complex and remains largely unexplored (Irvine-Fynn et al. 2011). 

As highlighted by Muller and Keeler (1969) and Irvine-Fynn & Edwards (2014), the weathering crust 

provides the substrate for the development of cryoconite holes. These are pits with quasi-circular 

planforms that develop on ice surfaces worldwide due to enhanced ablation under patches of 

biologically inoculated sediment. They have been recognised as areas of high biodiversity and 

microbial activity due to the relatively stable, well-illuminated and nutrient-rich environments they 

offer microbes (e.g. McIntyre, 1984; Wharton, 1985; Hodson et al. 2008; Cook et al. 2010; Edwards 

et al. 2013a). Despite cryoconite holes traditionally being viewed as discrete microbial habitats (e.g. 

Wharton et al. 1985), they generally contain a column of melt water which may exhibit stratified 

populations of protozoa (Mieczen et al. 2013), and are likely hydrologically connected to the 

weathering crust aquifer. There is currently a paucity of literature concerning hydrological processes 

operating within cryoconite holes and their role in the wider weathering crust hydraulic regime. 

To date, most research into cryoconite hole hydrology has been limited to Antarctica (e.g. Tranter et 

al. 2004; Fountain et al. 2004; Bagshaw et al. 2007; MacDonnell and Fitzsimons, 2008; Hodson et al. 

2013) where low surface temperatures promote the formation of thick ice lids that decouple 

cryoconite holes from hydrological, microbiological, gaseous and sedimentological exchanges with 

the atmosphere and glacier surface. Critically, in Antarctica, where low air temperatures inhibit 

surface melting, internal subsurface melting by shortwave radiation penetration occurs due to a “solid 

state greenhouse effect” (Brandt and Warren, 1993; Liston et al. 1999). Weathering crust development 

processes here contrast to those described above, and work by Hoffman et al. (2014) suggests that this 

only has an appreciable impact upon glacier runoff when melt water efficiently drains through the 

weathering crust, else it simply refreezes in situ. Consequently, while Antarctic cryoconite holes may 

connect to each other via discrete subsurface conduits (MacDonnell and Fitzsimons, 2008), the 

subsurface drainage mechanism is likely unique to cold Antarctic glaciers (Fountain et al. 2004; 

Hodson et al. 2013). Contrastingly, in Arctic latitudes, cryoconite holes penetrate weathered ice at 

melting point and generally maintain an open interface with the atmosphere during the ablation 

season. This suggests that Arctic cryoconite holes probably differ in their hydrologic regime and play 

a different role in weathering crust hydrology than their austral equivalents. However, MacDonnell 

and Fitzsimons (2012) described intergranular drainage development around Antarctic cryoconite 

holes, suggesting some commonality in the drivers of weathering crust dynamics globally. 

In Arctic settings, the lack of isolation by ice lids has been linked to different biotic communities 

compared with those in the Antarctic, due to frequent mixing and flushing with meltwater (Meuller 

and Pollard, 2004) and greater inputs of allochthonous biota (Paultier et al. 2013). Furthermore, an 

active supraglacial hydrological system may cause disaggregation (Takeuchi  et al. 2000) and 

redistribution (Hodson et al. 2007; Irvine-Fynn et al. 2011) of cryoconite, influencing microbial 

activity (Stibal et al. 2012), cyanobacterial filament lengths and therefore cryoconite grain stability 

(Langford et al. 2014). However, these observations are not independent from the weathering crust, 

where a reduction in interstitial void spaces in increasingly dense ice establishes a gradient of 

decreasing hydrologic transmission of labile microbes with depth (Irvine-Fynn & Edwards, 2014). 

Since the weathering crust is synoptically variable, rates of storage and transmission of water and 

microbes likely also vary at a range of spatio-temporal scales (Irvine-Fynn et al. 2012). Therefore, 

coupling weathering crust and cryoconite hole hydrology to inform supraglacial microbiology is a 

research imperative that remains under-explored. Therefore, the aims of this study were 1) to generate 

a high resolution time series of hydraulic changes within the weathering crust using cryoconite holes 

on Austre Brøggerbreen as natural boreholes; 2) to undertake rapid slug and bail tests to determine 

hydraulic conductivity within the weathering crust; 3) to use these data to make inferences related to 

the storage and transmission of water and microbes through the weathering crust. 
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Field site  

Field work was conducted at Austre Brøggerbreen (hereafter, AB), Svalbard (78°10‟49”N, 15°30‟21”E; 

Fig. 1A) between 9
th
 and 31

st
 August, 2009. Mean annual air temperatures at sea level in the locality are -

6.30 °C, with warmest mean monthly temperature of 4.90 °C in July, and mean annual precipitation of 400 

mm yr
-1

 (eKlima, 2012). Austre Brøggerbreen is a north-facing valley glacier located on Brøggerhalvøya, 

with an area of ~9 km
2
. The glacier‟s catchment extends to ~740 m asl, with ice extending from 60 to 650 

m asl, and steep slopes extend from the glacier‟s margin to the catchment watershed in the uppermost 

elevations. Since 1966, AB has exhibited an almost continuously negative mass balance of -0.60 m w.e. 

per year (Barrand et al. 2010) with evidence for accelerated thinning in the upper 200 m of the glacier‟s 

elevation range since ca. 1990 (James et al. 2012). These recent thinning trends have resulted in AB 

transitioning from a polythermal to cold-based thermal regime (Nowak & Hodson, 2014).  

The cold-based glacier is characterised by an extensive supraglacial drainage system, with a number of 

discrete moulins descending to englacial drainage routes (Vatne, 2001; Stuart et al. 2003; Vatne & Refnes, 

2003). The recent and consistently negative annual mass balances have progressively exposed 

unconsolidated sediments at the ice margins, including in the upper ablation and accumulation areas, 

which may be mobilised on to the glacier surface by snow melt and thaw (Porter et al. 2010). Such sources 

may supplement aeolian mineral dust deposition and provision cryoconite on AB. Contrasting cryoconite 

microbial communities have been identified between AB and the adjacent glaciers (Edwards et al. 2011; 

2013b), and, therefore, the regional representativeness of AB is unclear. Local estimates of cryoconite 

loading on the adjacent glacier, Midtre Lovénbreen, by Hodson et al. (2007) suggest cryoconite 

concentrations of up to 10600 kg km
-2

 with discrete holes being common in the upper ablation zone. 

According to research at Waldermarbreen (78°40'0"N, 12°0'0"E), typical depths of the weathering crust 

for glaciers in this region are limited to ~1 m, with deeper ice remaining below pressure melting point 

even during summer months (Sobota, 2009). For further details relating to the site‟s glaciology, 

hydrometeorology and ecology, see Hagen & Saetrang (1991), Hodson et al. (1998, 2002); Barrand et al. 

(2010) and Edwards et al., (2011). 

 

Methods 

The primary data collection at the AB field site focused upon cryoconite hole hydrology, with 

ancillary data used to describe the hydrometeorology of the ice surface. 

Meteorology: 

At the study site, boundary layer air temperature (Ta) over the observation period was measured using 

10 kΩ thermistors sheltered by a Stevenson screen, positioned 1 m above the ice surface. Thermistors 

were calibrated prior to installation and the Steinhart-Hart equation used to convert resistance to 

temperature (r
2
 = 0.9998). In addition a Delta-T ES-2 silicon photodiode was used to measure I* 

(across the visible range 400-1050 nm). Data were logged at 5 minute intervals, recording averages of 

sample measurements made every 30 s.  

Time series of cryoconite hole hydrology: 

To ascertain variations in water stored within cryoconite holes associated with melt inputs or 

weathering crust drainage processes, records of water levels in cryoconite holes were acquired. A 

Delta-T DL2-e data logger was placed centrally and capacitance water level sensors installed in each 

of eight cryoconite holes (Fig. 1B). All monitored holes were located in ablating ice that was 

relatively crystallographically homogeneous, in a broadly low gradient area and far from 

topographical features which might have imposed specific shadowing or large-scale hydrological 

regimes; however, holes 7 and 8 were proximate to a small meandering supraglacial stream. Average 

diameter and depth for all holes over the measurement period was 103 mm and 227 mm, respectively, 

and the average hole water volume (Vw) was 1987 cm
3
.  
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To monitor variations in Vw, a „goalpost‟ structure (Fig. 1B) was used to instrument each cryoconite 

hole. Two vertical „rig poles‟ were inserted into pre-drilled holes ca. 20 cm either side of each hole, 

and a horizontal „crossbar‟ used to suspend the capacitance sensors. Submergence of the sensor 

resulted in reduced voltage output, which is sensitive to variations in water level with respect to the 

probe itself. Calibration revealed a sensor error of + 1 to -2 mm. Sensors which were dry prior to 

submergence output a slightly higher voltage (10 - 20 mV higher) than those which had been „pre-

wetted‟, indicating worst-case errors of 5 mm, independent of temperature, conductivity or ionic 

strength of the solution.  

Water level was logged at 5-minute intervals, averaging measurements made every 30 s. At each hole 

at least daily manual measurements of apparent surface ablation and cryoconite hole depth were 

gathered and used to monitor the descent of the cryoconite hole system away from the crossbar. This 

data was used to correct the water level data for surface ablation. Water level sensors were also 

repositioned daily to ensure constant submergence despite surface lowering. The magnitude of the 

repositioning was recorded and the data corrected accordingly. Water levels were converted into rate 

of volumetric change in the cryoconite hole water between times t1 and t2 using Equation 2: 

    
   

                    

      
        (Eq.2) 

where ΔVw = change in cryoconite hole water volume, rc  is cryoconite hole radius, and h = changes in 

heights of cryoconite hole water meniscus, floor, and glacier ice surface (respectively, subscripts wl, 

hole and surf) (Fig 1 B).  

Hydraulic conductivity in the weathering crust: 

We used so-called „slug-and-bail‟ tests to establish the hydraulic conductivity (K) of the weathering 

crust: a common technique employed in the study of saturated porous media such as soils (e.g. Bear, 

1972; Amoozegar and Warrick, 1986). These were employed at a sample set of cryoconite holes in 

the study area. Three slug tests and three bail tests were undertaken in separate cryoconite holes. Each 

test was undertaken during the morning at 10am (± 1 hour). Further slug and bail tests were also 

undertaken in the afternoon, however the data is omitted here due to recharge being too rapid to 

accurately measure. For bail tests a 100 mL syringe was used to extract water in volumes of 400 mL, 

1000 mL and 1500 mL, all of which represented a complete drainage of the hole water. For slug tests 

water was added using a 100 mL syringe in volumes of 200 mL, 300 mL and 800 mL. Water was 

sourced and discarded > 10 m from the test hole to avoid influencing local hydraulic gradients. 

Records of ΔVw were monitored using the capacitance sensors, as described above. Slug and bail data 

were used to calculate saturated hydraulic conductivity (K) at five-minute intervals using Equations 2 

and 3, adapted from Bouwer and Rice (1976):  

  
  
     

  

  
 

  
  

 

 
    

  

  
           (Eq.2) 

for which: 

    
  

  
   

   

    
 

  
 
 

        
     

  
  

 
 

  
 

 

  

            (Eq.3) 

where rc = hole radius; Re = radial distance over which the change in head position is dissipated in the 

aquifer; rw = horizontal distance from centre of well to undisturbed aquifer; d = open well depth 

(equal to hole depth); h0 = water level at t0; ht1 = water level at time t1; b = hole depth; D = aquifer 

depth. Terms A and B are dimensionless numbers that vary according to the length of the open section 

of well and rw (Bouwer and Rice, 1976). This method was appropriate because it is applicable to both 

slug and bail tests for boreholes of any depth and diameter.  
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For cryoconite holes, d = b since no screen was used. Bouwer and Rice (1976) showed that when D 

>> d, as in cryoconite holes, D has negligible impact on Re, reporting an effective upper limit for log 

((D - b)/ rw) of 6. Therefore, the term log ((D - b)/rw) was replaced by the value 6 in Equation 2. It is 

also assumed that rw is small, given the small ΔVw recorded in cryoconite holes, observed rapid 

dissipation of slug water, and lack of ΔVw in holes close (< 5 to 20 cm) to those used for slug and bail 

tests. Although unknown, a value of 5 cm for rw is conservatively estimated in this study. 

Melt Modelling: 

Surface ablation (mm w.e.) at the study area was modelled using Brock and Arnold‟s (2000) point 

surface energy balance model. The melt model was driven by meteorological data acquired at the field 

site between 9
th
 and 31

st
 August 2010. Vapour pressure was calculated from Ta records (see Tetens, 

1930). Values for local surface ice albedo of 0.4 (after Bruland and Hagen, 2002; Hodson et al. 2008) 

and roughness of 0.00066m (after Arnold and Rees, 2003) were used. Optimization of this model is 

generally accomplished by varying albedo; however, since this is a key parameter in the development 

of the seasonal weathering crust we ran the model a priori. Due to the absence of wind speed data 

from AB during the observation period, records from the adjacent, and similarly oriented Midtre 

Lovénbreen were used.  

 Results 

Meteorology: 

Over the observation period, mean Ta and I* were 0.51 ± 2.14 °C and 198.72 ± 219.90 Wm
-2

 

respectively (Fig 2A). These low values reflect the reduced solar angle and declining incident 

radiation as the Arctic summer approaches termination, coupled with the common occurrence of low 

clouds (Hanssen-Bauer et al. 1990). Of note, during clear sky conditions (between 17
th
 and 19

th
 

August), I* rose to 1132.20 Wm
-2

 whilst Ta never rose above 8.50°C. Prior to 20
th
 August and after 

24
th
 August, night-time Ta dropped below zero; however, from 20

th
 to 24

th
 August Ta remained 

continually positive. This period is hereafter referred to as the „Warm Air Phase‟. The Warm Air 

Phase coincided with a period of low I*, likely resulting from insulation by sustained synoptic cloud 

cover causing turbulent fluxes to dominate melt processes. 

Time series of cryoconite hole hydrology: 

In all eight cryoconite holes,  Vw showed clear diurnal fluctuations out of phase with I* and Ta (Fig. 2B). 

Measurements from Holes 7 and 8 ended early due to invasion by a migrating supraglacial rill. 

Importantly, significant linear decreases in Vw over the entire measurement period were recorded in all 

eight holes, with an average rate of change of -0.0060 mm
3
 s

-1
 (equivalent to 0.50 mL d

-1
) and individual 

coefficients of determination for linear regression models between Vw and time were between 0.73 and 

0.93 (Table 1) for all except Hole 1. Since the data were corrected daily for both cryoconite hole depth and 

surface ablation, the linear decrease in Vw over the entire observation period is not a melt or measurement 

artefact.  

In Hole 1 diurnal  Vw fluctuations were amplified during the Warm Air Phase that followed 20
th
 August; 

however, this was not observed in any of the other holes. The late season amplification in  Vw in Hole 1 

influenced the overall trend in Vw. In Hole 1 following the warm air phase, Vw changed by up to 44.45 

cm
3
 in 16 hours (between 477 and 493 hours into measurement period; see Fig 2B), almost four times 

greater than the largest fluctuation in any other hole at any time during the observation period (12.3cm
3
 

increase in Vw between 414 and 427 hours in Hole 3). 

Following detrending of the ΔVw records using linear regression, cross correlation was used to quantify 

the dominant lag times between Vw and both I* and Ta in Holes 1-6. The lag times associated with 

maximum positive Pearson correlation coefficients (“dominant lag”) and their associated R values are 

shown in Table 2A. For ΔVw and I*, the mean dominant lag was 15.18 ± 3.13 hr, while the mean 

dominant lag between ΔVw at Ta was 16.04 ± 4.27 hr. Data from Holes 7 and 8 were omitted due to their 
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invasion by a migrating supraglacial rill. Negative correlations were evident at shorter lags (Table 2B). 

The strongest negative correlations were invariably greater than the maximum positive correlation for the 

same hole. For ΔVw and I*, the mean lag associated with maximum negative correlation was 3.59 ± 2.69 

hr and between ΔVw and Ta it was 5.28 ± 2.87 hr. Hole 1 was considered anomalous and omitted from 

mean lag calculations. 

For each hole  Vw was separated into daily increase ( Vw
+
) and daily decrease ( Vw

-
) identified as the 

rising and falling limbs of the daily hydrographs. Discounting the late-season amplified fluctuations in 

Hole 1, the maximum  Vw
+
 in any hole during the measurement period was 40 cm

3 
compared to an 

average of 116 cm
3
 of  Vw

+
 required to fill the holes to capacity and cause the meniscus of the hole water 

to reach the ice surface. Table 3 shows daily filling and emptying rates (i.e. rate of change of  Vw
+
 and 

 Vw
-
respectively) for each hole averaged over the measurement period. The amplified filling and draining 

of Hole 1 late in the measurement period caused the averages for that hole to be much higher than the 

others, reflected in the high standard deviation. The correlation between fill and drainage rate varied 

between the monitored holes across a full range from weak to strong: for Holes 1 and 8, fill and drainage 

rates were strongly correlated while for Holes 2-6 Pearson-correlation coefficients varied between 0.01 

and 0.63 (Table 3).  

In all holes, the fill and drainage rates accelerated as the season progressed (except for Hole 5, in which 

only  Vw
+
 accelerated, and Hole 7 where rill invasion obscured late-season phenomena), although the 

analysis in Table 4 illustrates that there was considerable variability, with the acceleration best described 

by linear models with coefficients of determination (between 0.0014 and 0.6891) and p-values varying 

widely between < 0.001 and 0.86. In Hole 1 only, an exponential model better explained the acceleration 

in filling rates (Vw =0.1802e
0.1363

t, r
2
=0.82). Interestingly, despite Hole 1 being anomalous in terms of its 

amplified ΔVw after the warm air phase, it shows the highest coefficient of determination for linear models 

and by far the lowest p-values.  

Superimposed upon ΔVw for each hole were rapid, stochastic fluctuations and occasional high magnitude 

outflow events henceforth referred to as sudden drainage events (SDEs: see solid triangles in Fig.2B). 

These SDEs tended to occur in the morning, particularly between 6 and 9 am coinciding with sharp 

increases in I* and accelerated melt (Fig.2B). A total of 20 SDEs were observed, of which 14 closely 

followed a sharp increase in I* to > 100 Wm
-2

. The most prominent morning SDE accounted for 61% of 

that day‟s total  Vw 
-
 in just 6% of the total drainage time (this occurred late in the measurement period in 

Hole 1). The remaining 6 SDEs occurred late in the afternoon, also closely following large increases in I* 

that resulted from shifting cloud cover. 

Hydraulic conductivity in the weathering crust: 

Following application of slug (Fig.3A) and bail (Fig.3B) tests,  Vw was measured in Holes 1-3 (slug tests) 

and Holes 4-6 (bail tests). Slug and bail tests were undertaken between 9 and 11 am, therefore during 

periods of falling Vw, during the first half of the measurement period. Additional slug tests and bail tests 

were also carried out during the afternoon, however the rates of recharge were too great to accurately 

measure (due to refilling outpacing bailing and drainage outpacing addition of water) and they are omitted 

from analysis here. In bail tests using the 3 different extraction volumes, Vw invariably showed return 

periods of less than 50-minutes. For slug tests in Holes 4 and 6, Vw showed return periods of less than 

sixty minutes; however Hole 5 never regained its original Vw. In all holes the hydrological equilibration to 

both slug and bail tests were invariably non-linear and explained well by logarithmic functions. 

Slug and bail data were used to calculate K (Eq. 2) for each hole at five minute resolution (Table 5). In all 

six holes K values responded to slug and bail tests in a non-linear fashion best described using a 

logarithmic curve. Average K values (Kav) were broadly similar between all six holes and between slug 

and bail tests (Table 5). 
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Melt Modelling: 

Simulated surface melt rates for the study area, at 1 hr intervals, showed clear diurnal fluctuations in 

antiphase with  Vw (Fig 2B). The average surface melt rate was 0.29 ± 0.63 mm w.e. h
-1

, and no overall 

trend was observed in this data. Radiative fluxes generally dominated the surface energy balance 

(contributing on average 87.4% of total melt energy) although the relative contribution of radiative and 

turbulent fluxes varied throughout the measurement period (Fig.2C and D). Later in the season, when 

synoptic cloud conditions were more variable there were several periods of turbulent flux-dominated 

energy balance, in particular during the Warm Air Phase (20
th
 to 24

th
 August), when cloud cover caused Ta 

consistently above freezing whilst I* was reduced. Comparison of the relative contribution of radiative 

and turbulent fluxes to surface energy balance (Fig.2D) with  Vw (Fig.2B) shows that higher water levels 

coincided with periods when turbulent fluxes had greater influence on the surface energy balance and 

radiative-flux dominated energy balance coincided with lower water levels. The discussion below 

therefore considers whether the  Vw antiphase with shortwave radiation flux indicated that subsurface 

melting by shortwave radiation controlled cryoconite hole water levels. 

Discussion: 

Weathering crust hydrology: 

Daily increases in I* drive both surface and subsurface melt, creating gradients of increasing ice density 

with depth and the development of the porous near-surface weathering crust ice (Muller and Keeler, 1969; 

Fountain and Walder, 1998; Larson, 1978). Our modelling showed that the surface energy balance was 

dominated by shortwave radiation fluxes during our observation period, showing that conditions widely 

recognised to be conducive to subsurface melt and weathering crust development were prevalent.  Water 

level changes should therefore provide insights into the interaction between weathering crust development 

and surface hydrology. Our monitoring in eight holes revealed synchronous diurnal fluctuations in  Vw 

within the weathering crust that were, surprisingly, out of phase with both I* and the melt rate. Therefore, 

during the night, lower I* enabled refreezing and contraction of interstitial pore spaces, greater flow-

impedance and greater Vw. Twelve of the fifteen hour lag between I* and  Vw were therefore likely to be 

explained by diurnal cycles of irradiance, whilst the remainder most likely represented the time taken for 

I* to remove the cold content of the near surface ice and cause internal melting in the weathering crust. 

This was well-supported by stronger negative correlations at shorter lags (Table 3) which indicated 

outflow induced by periods of subsurface melting during periods of greater shortwave radiation receipt. A 

major perturbation to the conditions described above occurred during the warm air phase, when turbulent 

heat fluxes dominated the surface energy balance and a general increase in  Vw in all cryoconite holes 

was observed (Fig 2B). This change was entirely consistent with weathering crust decay which has 

commonly been associated with turbulent-heat dominated energy balance, in contrast to periods of 

weathering crust growth which are associated with periods of radiative-flux dominated energy balance 

(Muller and Keeler, 1969; Schuster, 2001). 

Coupling between cryoconite hole and weathering crust hydrology was characterised by non-linear 

„overburdened‟ responses to slug and bail tests that suggested transmission through a saturated porous 

medium. The re-equilibration rate declined as  Vw approached its pre-perturbation value, indicative of a 

diminishing local hydraulic gradient. Furthermore, Hole 5 never regained pre-perturbation  Vw following 

slug testing, which may have resulted from a rise in the weathering crust water table coinciding with the 

slug test. Fluctuations in  Vw therefore likely reflected changes in the hydrologic regime of the glacier‟s 

weathering crust. Our observations of  Vw therefore suggested daily cycles of storage and transmission 

within the weathering crust, with enhanced storage at night and enhanced transmission during the day, 

consistent with diurnal cycles of weathering crust growth and decay. Daily  Vw
+
 generally outpaced  Vw

-
, 

suggesting storage of water at hourly-daily timescales. Slug tests showed return times of 15-60 mins, 

while bail tests re-equilibrated faster (15-40 mins), supporting short term hydrological storage in the 

weathering crust.  
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K values were also broadly similar between all cryoconite holes, indicating relatively uniform weathering 

crust permeability beyond the plot scale. In this study, data from slug and bail tests undertaken late in the 

day were omitted due to return times being too rapid to accurately measure, which further indicated the 

diurnal changes in weathering crust development through pore space change. The K values presented here 

were comparable to results from other glaciers, although published values vary between 14.4 cm hr
-1

 in 

deeply weathered, fast-flowing glacier ice (Fountain and Walder, 1998) and 1.4 × 10
-6

 cm hr
-1

 in slow-

moving ice, controlled by deformation at the scale of individual crystals (Lliboutry, 1971). Therefore, 

local ice physics and crystallography appear to be important controls upon weathering crust hydrology. 

A seasonal linear tend of decreasing Vw was common to all eight monitored holes (Table 1). This was not 

thought to be a melt artefact since surface ablation and hole-floor melt were corrected for. The linearity of 

the seasonal reduction in Vw suggested glacier-wide shifts in hydraulic gradient, because if local processes 

dominated, hydraulic overburden would likely cause non-linear re-equilibration (as demonstrated by slug 

and bail tests). Sobota (2009) also showed that, as might be expected, the zero degree isotherm was at its 

deepest during late summer conditions on Waldemarbreen (Svalbard). Therefore, if propagation of the 

zero-degree isotherm is driven by a dominance of I* over sensible heat supply (as was the case in the 

present study), then energy balance conditions can sustain a seasonal increase in weathering crust 

thickness. The water storage potential and permeability of near-surface ice can therefore increase 

accordingly, although Irvine-Fynn (2008) and Shea et al. (2005) note that this might be partially countered 

by refreezing at depth during periods of reduced I*. Progressive deepening of the weathering crust over 

the observation period almost certainly explained the linear decrease in Vw in its cryoconite holes. 

Sudden Drainage Events 

Punctuating daily  Vw
-
 data were SDEs. These sudden discharge events accounted for an average of 

39.6% (range 10 - 94%) of the net daily outflow in an average of 8.3% (range 0.5 - 54%) of the total 

drainage time. A possible explanation was thermal cracking (Sanderson, 1978) or creep and fracture 

(Schulson and Duval, 2009) of the hole floor. Thermal stresses can become appreciable in the top 3 m of 

glacier ice and so cracking was linked to variations in the water tables of ice-lidded cryoconite holes upon 

the East Antarctic Ice Sheet (Hodson et al. 2013). However, we suggest that the more modest temperature 

fluctuations in Svalbard made cracking less likely and instead promote rapid adjustments in the 

distribution of void spaces within the near-surface ice matrix. Since SDEs synchronised closely with 

sudden, large increases in I*, light-driven forcing of pore aperture adjustment seems plausible in 

combination with any thermal cracking events that do occur. Several SDEs occurred simultaneously in 

different holes (or in very close succession), but were not coincident with maximum  Vw in the holes. 

Therefore forcing by energy balance conditions seemed more plausible than a hydro-fracturing process.  

Our data therefore demonstrated how cryoconite holes act as natural piezometers and thus serve as 

indicators of weathering crust hydrology and near-surface ice processes. Our measurements of  Vw in 

cryoconite holes indicated diurnal and seasonal cycles of hydrological storage and drainage efficiency 

coupled to weathering crust growth and decay. During colder periods when interstitial pores refreeze and 

contract the weathering crust may provide longer term hydrological storage, especially when insulated 

beneath ice lids or seasonal snow.  

Residence of cryoconite in the weathering crust 

Cryoconite holes also represent discrete units of supraglacial sediment storage within the weathering crust. 

Movement of individual cryoconite granules through weathered ice was previously studied by Irvine-Fynn 

et al. (2011) who found little evidence of significant cryoconite mass transfer resulting from weathering 

crust hydrology on a Svalbard glacier surface, providing a context for the discussion of residence times for 

granules in cryoconite holes.   

Since cryoconite grain diameters are probably far in excess of interstitial pore apertures, transport of 

cryoconite granules through hole walls was considered unlikely. The Hjulstrom-Sundborg curve 

(Hjulstrom, 1935; Sundborg, 1956) was used to calculate a critical flow velocity of 114 cm hr
-1

 required to 

entrain the average granule measured in this study (mean diameter = 0.23 mm (n=15), density = 2.61 g 
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cm
-3

; source data not shown here). Given that K values showed a mean permeability of ice surrounding 

cryoconite holes of 0.26 cm hr
-1

 for normal flow, and a maximum of 0.65 cm hr
-1

 during the most intense 

SDE, threshold competence for entrainment of cryoconite was very unlikely, especially since our 

estimated critical entrainment velocity does not account for packing density nor the cohesive properties of 

biotic and biogenic material surrounding cryoconite grains. Therefore movement of granules within the 

hole was unlikely to occur unless the melting rate of the floor became heterogeneous and created a slope. 

Furthermore, no cryoconite holes in this study overfilled at any time during the measurement period, 

despite changes in I* and ablation. Throughout the season, for all holes except Hole 1 (which 

demonstrated anomalous, amplified variations) ΔVw was less than 40 cm
3
, compared to an average ΔVw of 

116 cm
3
 required to fill cryoconite holes to capacity. This implied that even if grains were entrained into 

suspension, redistribution onto the ice surface was very unlikely. Even at maximum ΔVw in Hole 1, a 

further 75.3 cm
3
 of water was required to fill the hole. This illustrates that cryoconite holes represent 

persistent stores of sediment within the weathering crust, making the importance of biological processes 

within the granule (e.g. Cook et al. 2010) less surprising. Furthermore, in the event of overtopping and 

redistribution of granules out of holes onto the ice surface, Irvine-Fynn et al. (2011) suggested that 

continued transport down-glacier would also be slow. 

Melt water inundation has been implicated in the literature as a mechanism of sediment evacuation from 

cryoconite holes (e.g. Swan, 1992); however evidence here suggested overtopping of cryoconite holes, 

and by extension removal of sediment by melt water, to be very infrequent (Takeuchi et al. 2010) 

especially since these data represented mid-late summer melt. This supports previous assertions of multi-

year residence times for sediment in cryoconite holes (e.g. Hodson et al. 2007; Anesio et al. 2009; 2010; 

Takeuchi et al. 2010). Exceptions may include invasion of cryoconite holes by supraglacial streams which 

erased Holes 7 and 8 in this study.  

Microbial mobility through the weathering crust 

Irvine-Fynn and Edwards (2012) showed microbial cells, organic and inorganic nutrients are transported 

through the weathering crust by melt water. Here, we have shown that hydrological processes have the 

capacity to induce size-selectivity in the transport of particulate material and associated microorganisms. 

We have also shown that the hydraulic conditions influence the rate of meltwater and therefore aqueous 

nutrient propagation through the weathering crust. Transport of microbes through the weathering crust 

probably therefore exposes them to varying light and nutrient conditions, influencing ecosystem structure 

and function (Edwards et al. 2011; 2013a; 2014). Data presented here, therefore, suggests daily and 

seasonal evolution of weathering crust permeability controls storage and transmission of microbes and 

nutrients. Microbial community structure and function may be depth-dependent, with greater I* near the 

ice surface associated with photo-protective pigmentation and high rates of photosynthesis, and low I* at 

depth more likely associated with low-light adaptation and a tendency towards net heterotrophy (e.g. 

Hodson et al. 2013). Studies of ciliates in cryoconite hole water found distinct stratification of species with 

depth in the water column, suggesting that microscale heterogeneity in biotic and abiotic conditions with 

depth influence microbial communities, and further indicating potential for hydrologic transmission of 

living cells (Irvine-Fynn and Edwards, 2014). Since redistribution of microbes between micro-

environments is hydrologically controlled, weathering crust hydraulics likely influence supraglacial 

microbial community structure and function. Consequently, spatiotemporal heterogeneity in hydraulic 

transmission in the weathering crust should be explored in the context of nutrient and biomass delivery to 

downstream ecosystems. 

Being semi-persistent sediment stores, cryoconite holes are crucial habitats for life in the weathering crust. 

Cryoconite holes could provide multiyear storage under favourable conditions for photosynthesis (Cook et 

al. 2010), abundant nutrient supply from both autochthonous and allochthonous sources, and respite from 

redistribution through the weathering crust, especially when cells become incorporated into cryoconite 

aggregates. Cryoconite holes therefore represent sites of enhanced microbial activity, storage and nutrient 

transformation within the weathering crust. Prolonged residence times are associated with stability and 

extended periods of net carbon fixation on Arctic ice surfaces (Hodson et al. 2007; Anesio et al. 2009; 
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Cook et al. 2012) resulting in larger, more robust cryoconite aggregates (Langford et al. 2014). This 

suggests cell fluxes into cryoconite holes may be important for determining surface albedo and 

supraglacial carbon cycling. 

Fluxes of cells out of cryoconite holes may also be important for supraglacial microbial dynamics. Export 

of cells and dissolved nutrients is much more likely than cryoconite sediment due to the critical 

competence for entrainment being far lower and the possibility for passage through interstitial pores. 

Residence times for cells in cryoconite holes likely depends upon their incorporation into cryoconite 

aggregates, degree of sheltering by layers of packed grains and the occurrence of SDEs. Enhanced flow 

competence during SDEs might play an important role in mobilizing cells from storage in cryoconite 

holes. Studies of fluvial ecology in other environments (e.g. Resh et al. 1988; Reice et al. 1990, Reice, 

1994; Lake, 2000) suggest that disturbance, even below critical competence, can be a primary control 

upon benthic ecosystem structure and function. This implies that the storage and release of cells from 

cryoconite sediment is also tightly coupled with weathering crust hydraulic regime. This is supported by 

growth rings in cryoconite cross-sections identified by Takeuchi et al. (2010) that suggest multi-year 

(average 3.5 year) persistence of cryoconite organic matter prior to melt-water disturbance. Similarly, 

Stibal et al. (2012) showed cryoconite granule size on the Greenland ice sheet to be coupled with surface 

slope (a proxy for runoff velocity), implying periodic biomass removal by melt water disruption. In 

general, cryoconite holes in flat, stable ice in the interior zones of large glaciers and ice sheets probably 

provide more robust stores of biota than dynamic, rapidly melting ice in small glaciers and ice-sheet 

margins. Langford et al. (2014) further found cryoconite aggregates in the interior of Longyearbreen 

(Svalbard) to be smaller than at the sides due to enhanced hydraulic erosion by concentrated flow in a 

central tract. Our data therefore adds to a growing literature supporting the importance of weathering crust 

dynamics for supraglacial ecology, both as a medium for hydrologic transfer of cells and as a substrate for 

cryoconite hole formation. 

Conclusions: 

Data from Austre Brøggerbreen described the mobility of water through the weathering crust and 

confirmed that its behaviour is analogous to a shallow perched aquifer. Cryoconite holes were used as 

natural piezometers to obtain time series of hydraulic changes within the aquifer, revealing a positive 

correlation between radiative forcing of melt and drainage efficiency, and therefore a negative correlation 

between radiation and hydrological storage and sometimes resulting in sudden drainage events (SDEs). 

This was suggested to result from the contraction and dilation of interstitial pores due to radiative forcing 

of night time refreezing and day time melting. A linear decrease in water levels in cryoconite holes was 

also observed and attributed to the deepening of the weathering crust over the 3-week measurement 

period. Cryoconite holes were shown to represent sites of prolonged cryoconite storage, which explains 

why they are loci of enhanced microbial activity and biogeochemical cycling. Complex relationships 

therefore likely exist between weathering crust growth and decay, environmental stresses, microbial 

activity and hydraulic redistribution of nutrients and biomass. This study highlights the dynamic 

weathering crust as a crucial component of the hydrology, microbial ecology and biogeochemistry of the 

glacier ecosystem and glacierised regions. 
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Hole Equation r
2 
value 

1 Vw = -0.0004t + 0.4498 0.21 

2 Vw = -0.0003t - 1.6185 0.73 

3 Vw = -0.0005t - 1.4809 0.78 

4 Vw = -0.0003t – 2.3209 0.74 

5 Vw = -0.0004t – 0.7453 0.79 

6 Vw = -0.0005t - 0.5904 0.85 

7 Vw = -0.0009t - 0.4547 0.93 

8 Vw = -0.0006t – 1.3092 0.75 

 

Table 1: linear regression coefficients for seasonal scale decrease in V. 

 

  



 

 
 

This article is protected by copyright. All rights reserved. 

 

A Ta IR 

Hole Lag R Lag R 

1 8.67 0.49 11 0.49 

2 18.67 0.42 17.25 0.37 

3 19.17 0.14 17.5 0.18 

4 13.67 0.39 12 0.48 

5 19.83 0.21 18.58 0.24 

6 16.25 0.22 14.75 0.34 

Mean 16.04 0.31 15.18 0.35 

σ 4.27 0.14 3.13 0.12 

 

B Ta IR 

Hole Lag R Lag R 

1 -3.08 -0.44 0.17 -0.56 

2 6.67 -0.33 5.25 -0.53 

3 8.50 -0.33 7.17 -0.25 

4 1.67 -0.42 1.00 -0.55 

5 6.67 -0.19 6.08 -0.27 

6 2.92 -0.45 1.92 -0.49 

Mean 5.28 -0.36 3.59 -0.44 

σ 2.87 -0.099 2.69 -0.14 

 

Table 2: A) Lag times (hours) at which the maximum positive correlation coefficient was observed, and 

the Pearson correlation coefficient (R) at that lag time, for each of Holes 1 – 6. Two-tailed t-tests 

invariably revealed significance at p<0.0001.B) Lag times (hours) at which the maximum negative 

correlation coefficient was observed, and the Pearson correlation coefficient (R) at that lag time, for each 

of Holes 1-6. Two-tailed t-tests invariably revealed significance at p<0.0001 
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Hole Fill rate 

(mm
3
 s

-1
) 

σ Drainage rate 

(mm
3
 s

-1
) 

σ R 

1 22.03 21.66 -29.34 24.76 0.88 

2 7.50 5.57 -8.11 4.37 0.44 

3 4.02 2.95 -5.48 4.79 0.19 

4 5.14 4.62 -6.21 4.41 0.01 

5 3.69 4.51 -3.99 1.62 0.19 

6 2.14 1.98 -2.62 1.84 0.63 

7 2.48 2.15 -2.48 0.64 0.56 

8 1.06 3.25 -1.26 3.92 0.81 

 

Table 3: Measurement-period average of daily fill rates and drainage rates for each hole and correlation 

coefficient between fill rate and drainage rate for each hole (uncertainty = 1σ; R = Pearson correlation 

coefficient) 
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 A B 

Hole Equation r
2
 Equation r

2
 

1 0.00003t-9.8044 0.69 -0.00004t +6.5177 0.67 

2 0.00004t+3.5051 0.21 -0.00004t-4.4608 0.22 

3 0.0000003t-3.69 0.0039 -0.000002t-3.0366 0.083 

4 0.000004t-1.1225 0.24 -0.000001t-4.6633 0.039 

5 0.0000003t+4.4844 0.0013 -0.0000004t-3.6435 0.014 

6 0.000002t+0.4009 0.244 -0.000001t-1.3274 0.155 

7 0.000002t+1.5792 0.054 -0.000001t-3.0762 0.268 

8 0.000003t-0.295 0.3284 -0.000004t+0.1086 0.353 

 

Table 4: Equations and linear regression coefficients for the changes in fill rate (A) and drainage rate (B) 

in each hole over the observation period. 
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Time (mins) Hole number 

 1 2 3 4 5 6 

5 -0.157 -1.479 3.78 -4.205 -2.38 -0.379 

10 -0.0787 -0.843 2.48 -1.743 -0.924 -0.0283 

15 -0.0754 -0.599 0.927 -1.063 -0.640 0.0198 

20 0.0628 -0.477 0.498 -0.737 -0.488 0.0177 

25 -0.0589 -0.394 0.259 -0.551 -0.366 0.0281 

30 -0.0559  0.155 -0.440 -0.285 0.0235 

35 -0.0517  0.0961 -0.369 -0.251 0.0233 

40 -0.0463  0.0584 -0.320 -0.217 0.0439 

45 -0.0382  0.0249 -0.280 -0.188 0.0484 

50 -0.0353  0.0181 -0.248 -0.165 0.0483 

55 -0.0320  0.00391 -0.222 -0.154 0.0460 

60 -0.0294  0.00522 -0.198 -0.135 0.0432 

65 -0.0279  0.00180  -0.127 0.0407 

70 -0.0271  -0.00139  -0.118 0.0389 

K av -0.0555 ± 

0.034 

-0.758 ± 

0.437 

0.554 ± 

1.105 

-0.865 ± 

1.143 

-0.294 ± 

0.48 

0.0055 ± 

0.104 

 

Table 5:  K (cm hr
-1

) at 5 minute resolution for slug and bail tests. Uncertainty = 1σ 
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Figure 1 A: map showing the location of Austre Brøggerbreen (AB) and the adjacent Vestre 

Brøggerbreen (VB), with the nearby town Ny Alesund (NA) also marked. The inset shows the position 

of these glaciers on the Svalbard archipelago. B: Schematic of the goalpost structure and the 

associated measurements, where 1 = vertical rig pole, 2 = horizontal crossbar, 3 = water level sensor 

circuitry, 4 = water level sensor probe, 5 = cryoconite hole water, a = top of rig pole to crossbar, b = 

top of rig pole to ice surface, c = crossbar to hole water, d = crossbar to hole floor, e = hole width. C: 

map of field site 
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Figure 2: A: I* and Ta over the observation period; B: melt rate, ΔVw and SDEs for all holes over the 

observation period Raised triangles indicate simultaneous SDEs in two holes. C: The percentage of 

the total surface energy balance (SEB) attributed to shortwave radiation (SWR), longwave radiation 

(LWR), sensible heat flux (SHF) and latent heat flux (LHF) throughout the observation period. 

Radiative fluxes are represented by filled areas whereas turbulent fluxes are represented by lines for 

clarity; D: Melt attributed to radiative fluxes and turbulent fluxes through the measurement period. 

The x-axis is shared by all four graphs. 
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Figure 3 A: Return times for Vw in holes 4 – 6 following slug tests; B: return times for Vw in holes 1-3 

following bail tests. 


