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1 Introduction

The paper is devoted to an asymptotic analysis of the

Hele-Shaw moving boundary value problem with a small
obstacle in the flow. Classical Hele-Shaw problem ([22])
deals with the description of the free boundary encir-
cling the domain occupied by incompressible fluid in

so called Hele-Shaw cell (see, e.g. [20]), i.e. in a narrow
space between two closely related plates. Different driv-
ing mechanisms can be considered for the fluid flow, e.g.

presence of a source/sink in the fluid domain.
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Various physical assumptions lead to different bound-
ary value problems either on the free boundary or on
permeable walls and obstacles. A comprehensive discus-

sion on these conditions and other features of the flow
in the Hele-Shaw cell is presented in the recent book by
Gustafsson and Vasil’ev [20].

There exist two basis mathematical models for the
flow in the Hele-Shaw cell. The complex-analytic model

is formulated as a nonlinear mixed boundary value prob-
lem with respect to a family of conformal mappings
of the canonical domain onto domain occupied by the

fluid. This approach goes back to the work by Polu-
barinova-Kochina [39] and Galin [15]. The proof of the
existence (locally in time) and uniqueness of analytic

solution to this model was done by Kufarev & Vino-
gradov [26] (rediscovered later by Richardson [47]) on
the base of the method of successive approximations.

Simplified proof of existence and uniqueness of an an-
alytic solution was given by Reissig & von Wolfersdorf
[41]. In this work the model was interpreted as a special

case of an abstract Cauchy-Kovalevsky problem, which
was solved by a variant of the Cauchy-Kovalevsky the-
orem ([37], [34], [35]).

In the real-variable model proposed by Gustafsson

[17] the flow is described by a family of parametrizations
of the boundary of fluid domain. This model was gen-
eralized to multi-dimensional case by Begehr & Gilbert

[4]. Among variants of the proof of existence and unique-
ness for this model we have to point out the article by
Reissig [42], Escher & Simonett [13]. In the most general

form, the proof of the existence and uniqueness of the
classical solution was given by Antontsev, Gonçalves
and Meirmanov [1].

Variational formulation of the Hele-Shaw model was
proposed by Gustafsson [18], who proved the weak solv-

ability of the problem (see also [3], [20]).
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The classical (real-variable) Hele-Shaw model can

be reinterpreted as a mixed boundary value problem for
Laplace equation with respect to unknown parametriza-
tion of the boundary and corresponding Green’s func-

tion of this problem in the reference domain. The aim
of our work is to perform an asymptotic analysis for
such variant of the model and discover on the base of

this analysis new features of the flow in the Hele-Shaw
cell with a small obstacle.

Application of asymptotic methods for approxima-

tion of Green’s function goes back to the classical pa-
per by J. Hadamard [21], where the method of regular
perturbation was performed. Recently, V. Maz’ya and

A. Movchan obtain a number of asymptotic formulas
for Green’s function related to different boundary value
problems for a number of differential operators in the

case of singular perturbations of the domains (see [27],
[29] and references therein).

The paper is organized as follows. Sec. 2 describes

the geometry problem under consideration and presents
the (real-variable) Hele-Shaw model in a domain with
an obstacle. The model is further reduced to the form
containing an unknown parametrization of the bound-

ary of the fluid domain and an unknown Green’s func-
tion of the corresponding mixed boundary value prob-
lem for the Laplace operator.

In Sec. 3 we rewrite the original problem in a form
suitable for direct application of Maz’ya & Movchan
asymptotic representation of Green’s function.

Sec. 4 is devoted to the asymptotic study of the
solution to the Hele-Shaw boundary value problem in
a domain with an obstacle. Numerical example is pre-

sented in Sec. 5. The final conclusions are summarised
in Sec. 6.

2 Problem formulation

Let us consider the Hele-Shaw problem with an internal
obstacle located in the flow region. Viscous incompress-
ible fluid occupies the doubly connected domain D1(t)

at a time instant t ≥ 0. Internal domain F is a fixed
small obstacle. The simply connected domain without
hole will be denoted D(t). We assume that F ⊂ D(0)

has a nonempty interior, and a diameter of the obstacle
2δ := diamF is positive. D(0) is supposed to be open
bounded set with a smooth boundary such that

c ≤ min dist {0, D(0)} ≤ max dist {0, D(0)} ≤ 1

and

dist {∂F, ∂D(0)} = d > 0. (1)

Without loss of generality we can assume that δ and d

(δ < d) are dimensionless parameters, and d+δ < c. To

avoid technical difficulties, we accept a circular shape

of the the obstacle of the radius δ.

Following [11], [13], the initial free boundary ∂D(0)
is to satisfy the smoothness assumptions

∂D(0) ∈ C1,α, 0 < α < 1. (2)

We consider a two-dimensional potential flow of in-
compressible fluid in the Hele-Shaw cell, i.e. in a gap be-
tween two parallel plates of distance h (see [20], [22]).

The flow is described by a stationary velocity field
V(V1, V2), which is proportional to the pressure gradi-
ent (see, e.g. [17])

V = − h2

12µ
∇ p, (3)

where µ is the dynamic viscosity of the fluid. Equation
(3) is known as the Hele-Shaw equation.

For h and µ being constant, Hele-Shaw equation
together with continuity (or divergence-free) property

yield

△ p = 0, (4)

in the area of the flow without of sources/sinks.

Different driving mechanisms of the flow are consid-

ered (see, e.g. [17], [24], [47]). Hereinafter, we restrict
our attention a single source/sink situated, without loss
of generality, at a fixed point z0 = (x0, y0), while the

origin O = (0, 0) belongs to the interior of the fixed
domain F , i.e.

z0 ∈ D1(0) = D(0) \ cl F, O ∈ int F.

In this case, the pressure p exhibits a logarithmic singu-

larity at the origin, i.e. satisfies the following asymptotic
relation:

p(z, t) ∼ −Q(t)

2π
log |z − z0|, z → z0. (5)

The real-valued function Q(t) models injection (Q(t) >
0) or suction (Q(t) < 0). By introducing new time-

variable τ =
t∫
0

Q(ξ)dξ, one reduces the original problem

to the case of constant influx Q(t) = Q = const.

The so called impermeability condition is imposed
on ∂F

∂p

∂n
= 0, z ∈ ∂F, (6)

where n is an inward normal vector on each component
of ∂F .

We assume also, that two boundary conditions on
the free boundary Γ (t) = ∂D(t) have to be satisfied,

namely, zero surface tension dynamic boundary condi-
tion [20]

p(z) = 0, z ∈ Γ (t), (7)
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and kinematic boundary condition

dΓ

dt
= V, z ∈ Γ (t). (8)

On substitution of (3) to (8) one has:

dΓ

dt
= − h2

12µ
∇ p. (9)

Let us now introduce a new unknown function (see [17],
[23]), namely, a one-parametric family of C2-diffeomor-
phisms

w(s, t) = (u(s, t), v(s, t)) : ∂ U× I → Γ (t), (10)

U = {s = (s1, s2) ∈ R2 : |z| < 1}.

From the computational argument, we restrict our in-
terest to a small time-interval, i.e. I = (−η, η).

The function w(s, t) in (10) determines an unknown
parametrization of the free boundary Γ (t) [23]:

(i) w(s, t) ∈ Γ (t) for all (s, t) ∈ ∂ U× I,

(ii) w(·, t) : ∂U → Γ (t) is a C2-diffeomorphism for
each fixed t ∈ I,

(iii) w(·, ·) ∈ C2
(
∂U× I;R2

)
.

As it follows from the relations (4) – (7), the un-

known pressure p coincides up to constant factor with
Green’s function of the operator −△ in the doubly con-
nected domain D1(t) with the homogeneous Neumann

condition on the fixed boundary ∂ F and the homoge-
neous Dirichlet condition on the free boundary Γ (t):

p = Q · GD1(t), (11)

and for each t ∈ I the function GD1(t) = GD1(t)(z, z0; t)

is the solution of the following mixed boundary value
problem

△GD1(t)(z, z0; t) + δ0(z − z0) = 0, z ∈ D1(t), (12)

GD1(t)(z, z0; t) = 0, z ∈ Γ (t), (13)

∂ GD1(t)

∂ n
(z, z0; t) = 0, z ∈ ∂F. (14)

Finally, the problem is formulated in terms of the pair{
w(s, t);GD1(t)(z, z0)

}
, where the unknown function

GD1(t)(z, z0) depends on the spatial variable z, on a
position of the source/sink z0 and on the time variable

t. Taking this into account we will use hereinafter the
notation G(z, z0; t) = GD1(t)(z, z0).

Problem (HS0). Find a pair {w(s, t);G(z, z0; t)}, such
that w(s, t) : ∂ U × I → R2 is a C2-diffeomorphism
satisfying

(i) w(s, t) ∈ Γ (t) for all (s, t) ∈ ∂ U× I;

(ii) w(·, t) : ∂ U → Γ (t) is a C2-diffeomorphism for

each fixed t ∈ I;

(iii) w(0)(s) = w(s, 0) is a given C2-diffeomorphism

of the unit circle ∂ U, which describes the boundary
Γ (0) of initial domain D1(0);

(iv) G(z, z0; t) is Green’s function of the operator

−△ in the doubly connected domain D1(t) with the
homogeneous Neumann condition on the fixed bound-
ary ∂ F and the homogeneous Dirichlet condition on the

free boundary Γ (t), i.e. satisfies conditions (12)–(14) for
each fixed t ∈ I;

(v) ∂t w(s, t) = −Qh2

12µ ·∇G(w(s, t), z0; t) for all (s, t) ∈
∂ U× I.

Existence and uniqueness of the local in time classi-
cal solution to the Problem (HS0) was proved in [42] in
the case of injection/suction trough the unique source/

sink. The result was obtained by using the reduction of
the considered problem to an abstract Cauchy-Kovalev-
sky problem, which is handled in an appropriate scale of

Banach spaces of real analytic functions ([37]). Another
proof was given in [41] for so called complex-variable
Hele-Shaw model (see [20], [36], [51]).

It follows from [12] (see also [18], [20]) that the nec-
essary condition for existence of classical solution is the
analyticity of the boundary of the initial fluid domain.

Thus, the unique classical solution generates a smooth
one-parametric family of analytic diffeomorphisms of
the unit circle onto the moving boundary. For more gen-

eral driving mechanisms (in particular, for Hele-Shaw
flow in a domain with obstacles) the prove of existence
and uniqueness was obtained in [1] (see discussion of

classical solvability of the Hele-Shaw problem in [20],
[51]).

3 Reformulation of the problem HS0

The method of uniform asymptotic approximation of
Green’s function related to different boundary value
problems for a number of differential operators in sin-

gularly and regularly perturbed domains was created
and developed in a series of articles by V. Maz’ya and
A. Movchan (see [27], [29], [30]). One of these results

can be useful for our analysis and thus we reformulate
the problem of HS0 in such a way to apply directly
respective formulae by Maz’ya and Movchan. For sim-

plicity we assume that the obstacle F is a disc of radius
δ centered at the origin (F = B(0, δ)). For further con-
venience, we introduce here a small parameter ε related

to the diameter of the inclusion (ε = δ). Another vari-
ant of the problem is discussed in the conclusion.

Let us make the transformation

ζ = (ζ1, ζ2), ζ1 =
εx

|z|2
, ζ2 = − εy

|z|2
(z = (x, y)). (15)
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In this notation ζ0 = (ζ0,1, ζ0,2), ζ0,1 = εx0

|z0|2 , ζ0,2 =

− εy0

|z0|2 is the image of the source/sink point, ω(s, t) =

(ω1(s, t), ω2(s, t)), ω1(s, t) =
εw1(s,t)
|w(s,t)|2 , ω2(s, t) = − εw2(s,t)

|w(s,t)|2

is the image Γtr(t) of the moving boundary Γ (t), where

ω(s, 0) defines its initial shape.

Denote by Ftr = {ζ ∈ R2 : |ζ| < 1} and Ωtr(t) =
extΓtr(t) the images of the domains ext{clF} and D(t),
respectively, under transformation (15). The domain of

our interest is now Ω(t) = Ftr ∩Ωtr(t).

Simple calculations show that the problem HS0 can

be rewritten in the form

Problem (HStr). Find a pair {ω(s, t);Gtr(ζ, ζ0; t)},
such that ω(s, t) : ∂ U× I → R2 is a C2-diffeomorphism
satisfying

(i) ω(s, t) ∈ Γtr(t) for all (s, t) ∈ ∂ U× I;

(ii) ω(·, t) : ∂ U → Γtr(t) is a C2-diffeomorphism for
each fixed t ∈ I;

(iii) ω(0)(s) = ω(s, 0) is a given C2-diffeomorphism
of the unit circle ∂ U, which describes the boundary

Γtr(0) of initial domain Ωtr(0);

(iv) Gtr(ζ, ζ0; t) is Green’s function of the opera-
tor −△ in the doubly connected domain Ω(t) with the
homogeneous Neumann condition on the fixed bound-

ary ∂Ftr and the homogeneous Dirichlet condition on
Γtr(t);

(v) ∂t ω(s, t) = −Qh2|ω|4
12µε2 · ∇Gtr(ω(s, t), ζ0; t) for all

(s, t) ∈ ∂ U× I.

Direct calculations show that the new function
Gtr(ζ, ζ0; t) is indeed the Green’s functions for the op-

erator −△, satisfying the defined above homogenous
mixed boundary value problem.

According to [31, Thm. 2.2] Green’s function for ex-
terior domain Ωtr(t) encircled by the curve Γtr(t) can

be rewritten as:

Gtr(X;Y; t) = Gtr(X1, X2;Y1, Y2; t) = (16)

= G

(
1

ε
X;

1

ε
Y; t

)
+N (X;Y)− 1

2π
log

1

|X−Y|
+

+R(0,0) + εD

(
1

ε
Y; t

)
· ∇YR(X,0)+

+εD

(
1

ε
X; t

)
· ∇XR(0,Y) + rε (X;Y; t) .

This function satisfies the following conditions
△ξG(ξ; η; t) + δ(ξ − η) = 0, ξ, η ∈ 1

εΩtr(t),

G(ξ; η; t) = 0, ξ ∈ 1
εΓtr(t), η ∈ 1

εΩtr(t),

G(ξ; η; t) is bounded as |ξ| → ∞;

(17)

N is the Neumann function for the interior of the “fixed”

domain (|Y| < R)

△XN(X,Y) + δ(X−Y) = 0, |X|,

∂
∂nX

N(X,Y) = − ∂
∂nX

1
2π log |X|, |X| = R,∫

|X|=R

N(X,Y) ∂
∂nX

log |X|dSX = 0;

(18)

R(X,Y) is the regular part of the Neumann function
(18), namely,

R(X,Y) = − 1

2π
log |X−Y| −N(X,Y); (19)

D(ξ; t) is a vector whose components Dj(ξ; t), (j =
1, 2), are solutions of the Dirichlet problems for the
Laplace equation in the exterior domain Ωtr(t):

△ξDj(ξ, t) = 0, ξ ∈ 1
εΩtr(t),

Dj(ξ, t) = ξj , ξ = (ξ1, ξ2) ∈ 1
εΓtr(t),

Dj(ξ, t) is bounded as |ξ| → ∞.

(20)

In our case X = ζ,Y = ζ0. Since the domain Ωtr(t) is
small, we re-scale it by an auxiliary parameter ε

Ωε =
1

ε
Ωtr(t)

where ξ = 1
εX = 1

εζ, η = 1
εY = 1

εζ0 ∈ Ωε.

4 Green’s function for the problem HStr

In this section we analyze the components of the repre-
sentation (16). Let us first consider the Neumann func-
tion N having in this case an explicit representation:

N(X,Y) = − 1

4π
log |X−Y|2 + 1

2π
logR2− (21)

− 1

4π
log
∣∣(R2 − |X|2)(R2 − |Y|2) +R2|X−Y|2

∣∣ ,
satisfying the conditions (18) and symmetricN(X,Y) =
N(Y,X). Its regular part R(X,Y) is also symmetric
and calculated explicitly too

R(X,Y) = − 1

2π
logR2+ (22)

+
1

4π
log
∣∣(R2 − |X|2)(R2 − |Y|2) +R2|X−Y|2

∣∣ .
Green’s function G(ξ; η; t) for the exterior domain

Ωε is related to a normalised conformal mapping of Ωε

onto the unit disc U:

G(ξ; η; t) =
1

2π
log

1

|g(ξ, η)|
, (23)
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where g(ξ, η) = (g1(ξ, η), g2(ξ, η)) : Ωε → U satisfies

the following normalizing conditions g(ξ, η)∣∣
ξ=η0

= 0,

and g′(ξ, η)∣∣
ξ=η0

> 0. In our case, η0 stands for the

image of the source point, i.e. η0 = 1
εζ0. It is customary

to start with an arbitrary conformal mapping g0(ξ) :
Ωε → U and determine the normalised one:

g(ξ, η) = g(ξ, η0) =
g0(ξ)− g0(η0)

1− g0(η0)g0(ξ)
.

Function (23) is also used to determine the compo-

nents of the vector D via the following formulas

Dj(ξ, t) = −
∫

∂Ωε

ηj
∂

∂nη
G(η; ξ; t)dSη, j = 1, 2. (24)

4.1 Calculation of Green’s function derivatives

Let us start with the simplest terms corresponding to
the Neumann function N(X,Y). Since the relation (19)

holds, we have to differentiate only regular part:

(R(X,Y))
′
Xk

=
1

2π
×

× −Xk(R
2 − |Y|2) +R2(Xk − Yk)

(R2 − |X|2)(R2 − |Y|2) +R2|X−Y|2
. (25)

It follows, in particular, that

∇XR(0,Y) = − 1

2π
(Y1, Y2) , (26)

∇YR(X,0) = − 1

2π
(X1, X2) . (27)

In our notations, equation (25) takes the form

(R(ω, ζ0))
′
Xk

=
1

2π

ωk(ζ
2
0,1 + ζ20,2)− ζ0,k

A(ω, ζ0)
, (28)

A(ω, ζ0) = (1− ω2
1 − ω2

2)(1− ζ20,1 − ζ20,2)+

+1[(ω1 − ζ0,1)
2 + (ω2 − ζ0,2)

2].

The following notation will be used in the final system
(41):

R̃k = (R(ω, ζ0))
′
Xk

, k = 1, 2. (29)

The derivatives of Green’s function for external do-
main are

(G(ξ; η; t))
′
xk

=

= −
g1(ξ; η) (g1(ξ; η))

′
ξk

+ g2(ξ; η) (g2(ξ; η))
′
ξk

2πε(g21(ξ; η) + g22(ξ; η))
. (30)

To compute the leading term of Green’s function in

(16), we compute

1

ε
G̃k ≡

(
G

(
1

ε
ω;

1

ε
ζ0; t

))′

xk

= − 1

2πε
× (31)

×

[
g1

(
1

ε
ω;

1

ε
ζ0

)(
g1

(
1

ε
ω;

1

ε
ζ0

))′

ξk

+

+g2

(
1

ε
ω;

1

ε
ζ0

)(
g2

(
1

ε
ω;

1

ε
ζ0

))′

ξk

]
.

Analogously,(
D

(
1

ε
ζ0; t

)
· ∇YR(ζ,0)

)′

Xk

= (32)

= Dk

(
1

ε
ζ0; t

)(
− 1

2πR2

)
= Dk

(
1

ε
ζ0; t

)(
− 1

2πR2

)
.

Similarly(
D

(
1

ε
X; t

)
· ∇XR(0,Y)

)′

Xk

= (33)

=

(
D

(
1

ε
ζ0; t

)
· ∇YR(ζ,0)

)′

Xk

=

= − 1

2πεR2

{
ζ0,1 (D1(ξ; t))

′
ξk

+ ζ0,2 (D2(ξ; t))
′
ξk

}
.

Let us calculate the component:

D1(η0; t) =
1

4π

∫
∂Ωε

η1
∂

∂nη
log |g(η; η0)|2 dSη.

Since both functions η1 and log |g(η; η0)|2 are harmonic
in Ωε \ {η0} then, by Green’s formula, we have

D1(η0; t) =
1

4π

∫
|η−η0|=a

η1
∂

∂nη
log |g(η; η0)|2 dSη.

As the function g(η; η0) has a simple zero at η = η0,

D1(η0; t) =
1

4π

∫
|η−η0|=a

η1
∂

∂nη
log |η − η0|2 dSη+

+
1

4π

∫
|η−η0|=a

η1
∂

∂nη
log |g0(η; η0)|2 dSη,

where log |g0(η; η0)|2 is harmonic (and thus continuous)

in the disc B(η0, a). Direct calculations show that the
first integral tends to 0 as a → 0. By Green’s formula
the second integral is equal

1

4π

∫
|η−η0|=a

∂

∂nη
(η1 − η0,1) · log |g0(η; η0)|2 dSη =

=
1

2π

2π∫
0

cos θ·log |g0(η0,1 + a cos θ, η0,2 + a sin θ; η0)| adθ.
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By properties of g0, the integral tends to 0 as a → 0

too. Similar analysis can be done for D2. Therefore,(
D

(
1

ε
ζ0; t

)
· ∇YR(ζ,0)

)′

Xk

= 0. (34)

In order to calculate respective derivatives in (33),

we rewrite the representation of the functions Dj :

Dj(ξ; t) =
1

4π

∫
∂D

ηj
∂

∂nη
log |g(η; ξ)|2 dSη = (35)

= I1,j(ξ) + I2,j(ξ),

where

I1,j(ξ) =
1

4π

∫
∂Ωε

ηj
∂

∂nη
log

∣∣∣∣∣ g(η; ξ)1− ξ·η
|η|2

∣∣∣∣∣
2

dSη,

I2,j(ξ) =
1

4π

∫
∂Ωε

ηj
∂

∂nη
log

∣∣∣∣1− ξ · η
|η|2

∣∣∣∣2 dSη,

and ξ · η denotes the scalar product of corresponding

vectors. In I1,j(ξ) both functions ηj and log

∣∣∣∣ g(η;ξ)

1− ξ·η
|η|2

∣∣∣∣2
are harmonic in the exterior domain Ωε. Therefore, by
applying Green’s formula, we can replace the contour
of integration by the circle ∂B(0, A) of radius A and
interchange the normal derivative. Thus

(I1,j(ξ))
′
ξk

=
1

4π

∫
∂B(0,A)

∂

∂nη
ηj ·

log

∣∣∣∣∣ g(η; ξ)1− ξ·η
|η|2

∣∣∣∣∣
2
′

ξk

dSη.

Denote by Fk the values of the derivatives of log |g|2
with respect to ξk

Fk(η; ξ) =
(
log |g(η; ξ)|2

)′
ξk

.

Expanding this function in Taylor formula at η = ∞, we
calculate a part of the integral in (I1,j(ξ))

′
ξk

by setting

A to ∞. Analogously, we can calculate explicitly the
remaining part in (I1,j(ξ))

′
ξk
.

For the integrals in (I2,j(ξ))
′
ξk
, we apply Green’s

formula for a doubly connected domain to have

(I2,j(ξ))
′
ξk

=
1

4π

∫
∂B(0,a)

∂

∂nη
ηj ·

(
log

∣∣∣∣1− ξ · η
|η|2

∣∣∣∣2
)′

ξk

dSη,

where B(0, a) is a disc of a small radius a. Determining
explicitly the values of these integrals and setting a to

0 we make these terms vanishing. Finally, we obtain:(
D

(
1

ε
X; t

)
· ∇XR(0,Y)

)′

X1

=
1

4π2εR2
× (36)

×

[
ζ0,1

(
(F1)

′
η1

(∞; ξ)

2
+ 1

)
− ζ0,2

(
(F1)

′
η2

(∞; ξ)

2

)]
,

(
D

(
1

ε
X; t

)
· ∇XR(0,Y)

)′

X2

=
1

4π2εR2
× (37)

×

[
ζ0,1

(
(F2)

′
η1

(∞; ξ)

2

)
− ζ0,2

(
(F2)

′
η2

(∞; ξ)

2
− 1

)]
.

By relation (33) in our notation we have

1

ε
D̃1 ≡

(
D

(
1

ε
ω; t

)
· ∇XR(0, ζ0)

)′

X1

=
1

4π2εR2
× (38)

[
ζ0,1

(
(F1)

′
η1

(∞; 1
εω)

2
+ 1

)
− ζ0,2

(
(F1)

′
η2

(∞; 1
εω)

2

)]
1

ε
D̃2 ≡

(
D

(
1

ε
ω; t

)
· ∇XR(0, ζ0)

)′

X2

=
1

4π2εR2
× (39)

[
ζ0,1

(
(F2)

′
η1

(∞; 1
εω)

2

)
− ζ0,2

(
(F2)

′
η2

(∞; 1
εω)

2
− 1

)]

4.2 Final system of differential equations

The final system of equations to determine the unknown
boundary has the following form{
∂tω1(s, t) = −Qh2|ω|4

12µε2 (J1,1 − J1,2 + εJ1,3 + r1) ,

∂tω2(s, t) = −Qh2|ω|4
12µε2 (J2,1 − J2,2 + εJ2,3 + r2) ,

(40)

where

Jk,1 =

(
G

(
1

ε
ω;

1

ε
ζ0; t

))′

Xk

,

Jk,2 = (R (ω, ζ0))
′
Xk

,

J1,3 =

(
D

(
1

ε
ω; t

)
· ∇XR(0, ζ0)

)′

X1

,

J2,3 =

(
D

(
1

ε
ω; t

)
· ∇XR(0, ζ0)

)′

X2

are given respectively by the formulas (31), (28), (38)
and (39), and

r1 = (rε (ω; ζ0; t))
′
X1

, r2 = (rε (ω; ζ0; t))
′
X2

.

Another representation of the system (40) is∂T ω̃1(s, T )=−Qh2|ω̃|4
12µ

(
G̃1 − εR̃1 + εD̃1 + εr1

)
,

∂T ω̃2(s, T )=−Qh2|ω̃|4
12µ

(
G̃2 − εR̃2 + εD̃2 + εr2

)
,
(41)

where new time-variable T is introduced

T = ε−3t,
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ω̃k(s, T ) = ωk(s, ε
3T ), k = 1, 2.

The third representation of the system (40) is due
to the rescaling of the spatial variables:

Z =
1

ε
ω, Z0 =

1

ε
ζ0. (42)

In this notations, the system (40) has the form:

∂tZ̃1(s, t)=−Qh2|Z|4
12µ

(
G̃1(Z;Z0; t)− εR̃1(εZ; εZ0; t)

+εD̃1(Z;Z0; t) + εr1(εZ; εZ0; t)
)
,

∂tZ̃2(s, t)=−Qh2|ω|4
12µ

(
G̃2(Z;Z0; t)− εR̃2(εZ; εZ0; t)

+εD̃2(Z;Z0; t) + εr2(εZ; εZ0; t)
)
.

5 Numerical examples

Numerical computations were done for the classical
benchmark from Polubarinova-Kochina [39, p. 29]. We
started from two different shapes shown in Fig. 1 by

dashed lines. Bearing in mind the limitations of solution
continuity for the PDEs [20], we simulate the process
only for small time (as a result, we have small expansion

of the fluid domain). The final shapes of the domains
are depicted by solid lines in the same figure. Position of
the source is marked by the star, while two alternative

locations of the small inclusion (1 or 2 on the figure)
are given by the filled green dots.

−2 −1.5 −1 −0.5 0 0.5

−1

−0.5

0

0.5

1

final 
shapes

2

1

initial shapes

θ

source

Fig. 1 Two different shapes of the fluid domain before and
after the injection. The source is situated at the origin of
the coordinate system. Filled green dots mark two possible
locations of the small inclusion under consideration.

The numerical computations of the Green’s func-
tion (23) were done by means of the Schwarz-Christoffel
Toolbox for MATLAB (see [5], [6]). The shapes of the

domain were approximated by polygons built on N =

100 vertices. The derivatives of the conformal map-

ping along the boundary were approximated accord-
ingly. The results were verified in various ways. First,
we estimated the accuracy of computations by com-

paring the numerical solution for the problem without
inclusion. Also the fluid global balance was controlled.
This analysis proved that in case of the smaller initial

domain (blue dashed line in Fig. 1), the relative error
was less than 0.1% for the maximal time increment,
while for the lager domain (red dashed line in the same

figure), it was near 0.01%.

A number of simulations for the flow with inclusion

were performed. Since the inclusion is small, the final
shapes of the domains (with and without the inclusion)
are hardly distinguishable in the scale of the pictures.

Therefore, in Fig. 2 – Fig. 4 we present the relative
deformation, δρ, of the fluid domain, computed in the
standard manner: δρ(θ) = (ρin(θ)− ρ0(θ))/ρ0(θ). Here

ρin(θ) and ρ0(θ) are the radii describing the boundary
curves, with and without inclusion, while θ is the angle
coordinate shown in Fig. 1.

−1 −0.5 0 0.5 1
−7

−6

−5

−4

−3

−2

−1

0

1
x 10

−3

 

 

δ = 0.05

δ = 0.1

δ = 0.15

δρ

θ/π

Fig. 2 The relative deformation of the initial domain (de-
noted by the blue lines in Fig. 1). The center of the inclusion
is situated in the position 2 on the Fig. 1. Three different
sizes of the inclusion defined by their radii δ = 0.05, 0.1 and
0.15 are considered and the corresponding results are shown
by the different colors (see the legend).

6 Outline and discussion

The solution obtained in this paper is applicable also
for another geometric configuration. Namely, if one con-
siders the case when the diameter of obstacle is finite

(say diamF = 2, 0 ∈ F ) while the domain D(0) is large
enough (cR ≤ min dist{0, D(0)} ≤ max dist{0, D(0)}
≤ R), then by performing transformation (15) with

ε = 1 we arrive at the same as our geometry in ζ-plane.
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−1 −0.5 0 0.5 1
−20

−15

−10

−5

0

5
x 10

−4

 

 

δ = 0.05

δ = 0.1

δ = 0.15

δρ

θ/π

Fig. 3 The relative deformation of the lager initial domain
(denoted by the red lines in Fig. 1). The center of the inclusion
is situated in position 2 – see Fig. 1. All other notations are
the same as in Fig. 2.

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−3

 

 

δ = 0.05

δ = 0.1

δ = 0.15

δρ

θ/π

Fig. 4 The relative deformation of the lager initial domain.
The center of the inclusion is situated in position 1 – see
Fig. 1. All other notations are the same as in Fig. 2.

In such a case, the role of the small parameter will be
attributed to δ = 1/R.

As we have shown, the asymptotic approach by
Maz’ya, Movchan and Nieves [31] is an efficient tool
to deal with the local deformations of the fluid domain

with a small inclusion. Since the asymptotic formula for
Green’s function is uniform, the only difficulties with its
application result from the numerics. However, to study

the process at large time scale, one needs to analyse
additionally the asymptotic properties of the solution
at infinity.

As one could expect, a small inclusion has only lo-
cal impact on the process and its overall influence is
rather negligible. In our examples it caused no more

than 3% deviation measured as the relative difference
between the increments δρin(θ) and δρ0(θ) of the shape
position defined in the following manner δρin,0(θ) =

ρin,0(t, θ)− ρin,0(0, θ). As anticipated, the greatest dis-

tortion is observed approximately along the line source-

inclusion.

However, in the case of a set of small inclusions,

the qualitative and quantitative results of the process
may change dramatically. To consider such situation,
one can use an approach proposed in [29], developed to

find a uniform asymptotic expansion for Green’s func-
tion in a finite domain with a cloud of inclusions.
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