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 2 

ABTRACT: 20 

Forest trees are dominant components of terrestrial ecosystems that have global 21 

ecological and economic importance. Despite distributions that span wide 22 

environmental gradients, many tree populations are locally adapted, and 23 

mechanisms underlying this adaptation are poorly understood. Here we use a 24 

combination of whole-genome selection scans and association analyses of 544 25 

Populus trichocarpa trees to reveal genomic bases of adaptive variation across a 26 

wide latitudinal range. Three hundred ninety-seven genomic regions showed 27 

evidence of recent positive and/or divergent selection, and enrichment for 28 

associations with adaptive traits that also displayed patterns consistent with natural 29 

selection. These regions also provide unexpected insights into the evolutionary 30 

dynamics of duplicated genes and their roles in adaptive trait variation.  31 

 32 

A suite of forces and factors, including mutation, recombination, selection, 33 

population history, and gene duplication influence patterns of intraspecific genetic 34 

variation. Distinguishing which factors have shaped sequence variation across a genome 35 

requires extensive whole-genome sequencing of multiple individuals, which has only 36 

recently become tractable
1
. Most large-scale whole-genome resequencing studies have 37 

focused on model and domesticated species
1–5

. However, large-scale genome sequencing 38 

of natural populations holds great promise for advancing our understanding of 39 

evolutionary biology, including identifying functional variation and the molecular bases 40 

of adaptation. Recent work in a number of species has identified genomic regions that 41 

show signatures of positive selection and infer that such regions contain loci that control 42 
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adaptive traits
4,6–8

. Relatively few studies, however, have combined genome-wide scans 43 

with phenotypic data to determine if computationally-identified selected regions 44 

influence adaptive phenotypic variation
5,9–13

. Genome-wide studies of large natural 45 

populations combined with phenotypic measurements are necessary to determine which 46 

factors shape patterns of genetic variation within species, and therefore enhance our 47 

understanding of adaptation. 48 

With large geographic ranges spanning wide environmental gradients and a long 49 

history of research demonstrating local adaptation
14

, forest trees are ideal for examining 50 

the processes shaping genetic variation in natural populations. Forest trees cover 51 

approximately 30% of terrestrial land area
15

, provide direct feedback to global climate
15

, 52 

and are often foundation species that organize entire biotic communities and 53 

biogeochemical systems
16,17

. Clearly, biotic and abiotic interactions have influenced 54 

population sizes and distributions of forest trees, leaving diagnostic signatures in the 55 

genomes of present-day populations
14,18,19

. A deeper understanding of the evolutionary 56 

and ecological forces that shaped these patterns will offer insights and options for 57 

ecosystem management, applied tree improvement, and accelerated domestication 58 

efforts
20

.   59 

 Black cottonwood, Populus trichocarpa Torr. & Gray, is a dominant riparian tree 60 

that has become a model for the advancement of genomic-level insights in forest trees
21

. 61 

The sequencing of 16 P. trichocarpa genomes revealed widespread patterns of linkage 62 

disequilibrium (LD) and population structure
22

 and extensive genecological studies have 63 

revealed a high degree of adaptive phenotypic variation in growth, vegetative phenology 64 

and physiological traits such as water use efficiency and photosynthesis
23–25

, suggesting 65 
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that local adaptation is prevalent. To date, candidate gene association analyses have 66 

revealed loci with significant effects on phenotypic traits
26,27

. However, thus far there 67 

have been no publications describing whole-genome associations for adaptive traits in P. 68 

trichocarpa, and their relationship to signatures of selection in any forest tree species. 69 

 One of the salient features of the P. trichocarpa genome is a remarkably well-70 

conserved whole-genome duplication that is shared by all members of the Salicaceae and 71 

near relatives: the Salicoid duplication
28,29

. Despite the extensive occurrence of segments 72 

of collinear paralogous genes, over two-thirds of the duplicate pairs have been lost since 73 

the duplication event and there are substantial functional biases in the remaining gene 74 

pairs, in particular, an overabundance of gene categories with large numbers of protein-75 

protein interactions
30,31

. A major unexplored question is whether the fundamental, 76 

diagnostic differences in diversity between retained duplicate pairs and genes lacking 77 

paralogs from the Salicoid duplication (singletons) are connected to patterns of natural 78 

selection and adaptive phenotypic variation.  79 

 Here we report the whole-genome resequencing of a collection of 544 P. 80 

trichocarpa individuals, spanning much of the species’ natural latitudinal range, that have 81 

been clonally replicated in three contrasting environments. We use this resource to detect 82 

signatures of recent selection across the Populus genome and on adaptive traits 83 

themselves. We also show that the signals of association with adaptive traits are stronger 84 

in positively selected regions. Finally, we demonstrate that Salicoid duplicate genes have 85 

distinctive patterns of adaptive variation that reveal the evolutionary effects of dosage 86 

constraints.  87 

 88 

 89 
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RESULTS 90 

Polymorphism and population structure 91 

From high-coverage whole-genome sequencing of 544 unrelated P. trichocarpa 92 

individuals (Fig. 1a, Supplementary Table 1) we collected over 3.2 Tbp of data that 93 

aligned to 394 Mbp of the P. trichocarpa genome. Approximately 87.5% of the 3.2 Tbp 94 

was accessible for analysis based on median sequencing depth across all samples 95 

(Supplementary Fig. 1). From these data, we detected 17,902,740 single nucleotide 96 

polymorphisms (SNPs). 97 

Using this resource, there was a two-fold higher nucleotide diversity in intergenic 98 

sequence than in genic sequence, largely consistent with purifying selection (Table 1). 99 

Diversity was particularly low in coding sequence, where nonsynonymous diversity was 100 

one-third that of synonymous diversity. Most SNPs were rare (MAF≤0.01), particularly 101 

those predicted to have major effects (e.g., splice site mutations) (Table 1, Supplementary 102 

Fig. 2). We also identified 5,660 large (>100 bp) and 254,464 small (<50bp) 103 

insertion/deletion (INDEL) polymorphisms, which will be described in detail in a 104 

separate publication.  105 

Based on principal components analysis (PCA) of all 17.9 million SNPs, we 106 

identified four major regional genetic groups corresponding to geographical origin (Fig. 107 

1a). We also found genetic-geographical structure within regional groupings that 108 

clustered as separate subgroups within source locations (Fig. 1b). These data indicate that 109 

there is genome-wide genetic structure at both broad latitudinal and local spatial scales.  110 

  111 
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Phenotypic evidence of selection 112 

 We examined two different indicators of selection using phenotypic data from 113 

three clonally replicated plantations representing the center and southern extent of the 114 

extant range of P. trichocarpa. We found that quantitative differentiation (QST) in height, 115 

spring bud flush, and fall bud set among source rivers was greater than genome-wide 116 

marker differentiation (FST) (Fig. 2a), suggestive of spatially divergent selection
32

, as is 117 

commonly observed in forest trees
14,24,25

. Furthermore, at all three plantations, these same 118 

adaptive traits show correlations with multivariate climate variables (Fig 2b-d; 119 

Supplementary Fig. 3). Warmer climates (negative PC1) are associated with earlier bud 120 

flush and later bud set, strongly supporting the hypothesis that climate is a major 121 

determinant of adaptive genetic variation throughout the sampled range of P. 122 

trichocarpa
24,25

. 123 

Recent positive and divergent selection  124 

 We next attempted to relate the strong evidence of climate-driven, divergent 125 

selection on adaptive traits to genomic regions that also appear to be affected by natural 126 

selection. We examined five distinct metrics of natural selection using 1-kb windows 127 

across the genome. These metrics included allele frequency differentiation among 128 

subgroups (FST), allele frequency cline steepness across mean annual temperature and 129 

precipitation measurements (SPA
33

), extended haplotype homozygosity around alleles 130 

from rapid allele frequency increase (iHS
8
), and allele frequency clines with each of the 131 

first two climate principal components axes (bayenv
34

, PC1 and PC2, respectively). From 132 

this data we classified the empirical top 1% of windows/regions as “selection outliers,” 133 

i.e., regions with unusually strong polymorphism patterns consistent with recent 134 
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positive/divergent selection (Fig. 3, Supplementary Fig. 4 & 5, Supplementary Tables 2-135 

6). Most of the selection outlier regions occurred uniquely among selection scan metrics, 136 

suggesting that each metric provides a distinct view of selection and that different 137 

selective forces are shaping these genomic regions (Fig. 3a). However, we found 397 138 

regions in the top 1% for at least two of the selection scan metrics; we termed these 139 

regions “candidate selection regions” (CSRs) (Supplementary Table 7).  140 

We tested whether the genes spanning or nearest to these CSRs (452 genes) and 141 

the selection outliers (1418, 1718, 1151, 257, and 312 genes for FST, SPA, iHS, 142 

bayenvPC1, and bayenvPC2, respectively) were overrepresented among annotation 143 

categories, gene families or genes with known involvement in several biological 144 

processes (Supplementary Tables 8-11, Fig. 3). Based on Fisher exact tests, certain 145 

functional categories were overrepresented, including GO annotations related to: 146 

response to stimuli, 1,3--glucan (callose) synthesis, and metabolic processes, as well as 147 

panther annotations for leucine-rich repeat receptor-like protein kinase and homeobox 148 

protein transcription factors (Supplementary Tables 8-10).  149 

Despite some similarities, genes associated with the top 1% of each scan were 150 

generally overrepresented in unique categories (Fig. 3). For example, transcription factors 151 

(TFs) as a group were overrepresented among FST and SPA outliers; DELLA proteins 152 

(PF12041, gibberellin-interacting transcriptional regulators), among FST and bayenvPC2; 153 

and phytochromes (PF00360), genes involved in photoperiodic/circadian clock regulation, 154 

ATPase activity, and transmembrane movement (e.g., GO:0042626) were only 155 

overrepresented in FST (Supplementary Tables 8,9). Heat shock-related annotations were 156 

significantly overrepresented only in SPA (PTHR10015, PTHR11528), while proteins 157 
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induced by water stress or abscisic acid (PF02496) were overrepresented in bayenvPC2 158 

and SPA outliers. 4-nitrophenylphosphatase, a hydrolase, was overrepresented among 159 

bayenvPC1 and weakly in FST (Supplementary Table 9). Class-III aminotransferases 160 

(PTHR11986, involved in abiotic stress
35

) were overrepresented most strongly in 161 

bayenvPC2 (Fig. 3).  162 

Intriguingly, while moderate-effect SNPs were underrepresented among genic 163 

regions of all selection scan outliers, presumably due to purifying selection, SNPs with 164 

predicted high impacts were overrepresented among strong sweep loci implicated by the 165 

iHS scans (Supplementary Table 12), potentially because SNPs with major, presumably 166 

beneficial effects are more likely to be swept to high frequency. Because different 167 

selection processes (e.g., hard sweeps vs. subtle frequency shifts of standing variation) 168 

will influence diversity patterns differently, these five metrics reveal an assortment of 169 

potential selection pressures acting on P. trichocarpa through the largely non-170 

overlapping regions identified in each  171 

 172 

Adaptive trait associations in candidate selected regions 173 

 If climate is a major force driving the signatures of positive selection, we predict 174 

polymorphisms in these regions to be associated with climate-related adaptive traits. In 175 

particular, vegetative bud phenology should be a major determinant of fitness in these 176 

perennial populations, since timing of the onset and release of dormancy is largely shaped 177 

by photoperiod and temperature regimes
23,24

. Indeed, genes related to photoperiod, 178 

drought, and stress response were overrepresented among the selection outliers 179 

(Supplementary Table 11). To more directly test this hypothesis, we performed a 180 



 9 

genome-wide association study (GWAS) with spring bud flush, fall bud set, and tree 181 

height measured at the three test sites, accounting for population stratification and 182 

background genetic effects in a mixed model framework for both univariate
36

 and 183 

multivariate traits
37

 (Fig. 1b, Supplementary Tables 1 & 13, Supplementary Fig. 6-10). 184 

More specifically, we found that those regions in the top 1% of scans had stronger 185 

adaptive trait association signals at all three test sites than expected by chance (i.e., the 186 

observed mean association signal was stronger than randomly resampled windows, 187 

controlling for gene density; all p<0.00005; Fig. 4, Supplementary Fig. 11). This was the 188 

case for all scans, including those based on spatial variation in allele frequency (e.g., FST, 189 

bayenv) as well as those based on long haplotypes (iHS). This correspondence is 190 

therefore unlikely to be artifactual, supporting the hypothesis that these outlier regions 191 

are partly driven by selection on adaptive traits. 192 

We found strong associations for both univariate analyses as well as the multi-193 

trait GWAS for each trait among test sites (Supplementary Table 13). Though some of 194 

the strongest univariate associations were also identified in the multiple-plantation 195 

GWAS, many associations were non-overlapping, perhaps due to the strong 196 

environmental differences among the locations, which ranged from cool and wet 197 

(Clatskanie, OR) to hot and dry (Placerville, CA).  Strikingly few individual height-198 

associated SNPs overlapped in comparisons between the Placerville, CA plantation and 199 

the other two sites.  200 

 201 

  202 
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Dormancy-related candidate genes in the selection and GWAS regions 203 

A number of dormancy-related genes were near the strongest GWAS and 204 

selection signals. A region on chromosome 10, characterized by high LD, was one of the 205 

CSRs and was associated with bud flush (p=5.19x10
-6

, Fig. 5). The strongest selection 206 

signal occurred near Potri.010G079600, a DNA-damage repair protein, and a number of 207 

lipid biosynthesis transferases. A strong bud set association also occurred near this region 208 

(Clatskanie and Corvallis, Supplementary Fig. 12). The strongest association signal 209 

(p=5.69x10
-7

), within 15 kb of a CSR, was just downstream of the coding region of 210 

Potri.010G076100, a ureidoglycolate amidohydrolase (UAH) whose leaf and root 211 

expression is down-regulated with short days
38

. Ureides are transportable intermediates 212 

of purine catabolism, and by catalyzing the final step in ureide catabolism, UAH plays a 213 

role in the remobilization of nitrogen
39

.  The ureide allantoin is also known to influence 214 

ABA metabolism and promotes abiotic stress tolerance in Arabidopsis
39

.  However, to 215 

our knowledge, ureides and UAH have not previously been implicated as having 216 

important roles in seasonal N cycling or cold tolerance in Populus.  217 

Among the photoperiodic and dormancy genes we found an FST outlier, 218 

Potri.010G179700 (FT2), which influences growth cessation in Populus
40

. This gene had 219 

an intronic SNP strongly associated with bud set and height (p<0.00015, Supplementary 220 

Table 13) and was near strong SPA and bayenv outliers. A second gene, 221 

Potri.008G117700 (similar to PFT1), occurred as an FST outlier region and was within 5 222 

kb of several multi-trait association signals (p=7.17x10
-5

). Arabidopsis PFT1 is 223 

hypothesized to influence both defense and phytochrome B-mediated FT regulation
41

.  224 
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Among the strongest bud flush associations (p=2.72x10
-14

) was a nonsynonymous 225 

mutation in a 4-NITROPHENYLPHOSPHATASE locus, Potri.008G077400 (Clatskanie 226 

and Corvallis, Fig. 6). This mutation is in high LD with many other significantly 227 

associated SNPs in the surrounding 40 kb, including Potri.008G076800, (FAR1 228 

transcription factor) and Potri.008G077300 (UDP-galactose transporter), and is in an FST 229 

and bayenvPC1 outlier region. In this same region there is a bud flush association signal 230 

in all three test sites (p=2.01x10
-7

 - 1.08x10
-5

) within Potri.008G077700 (FT1), a gene 231 

previously implicated in Populus dormancy cycling
42

. However, it appears to be an 232 

unlinked (r
2
=0.14), separate association signal from that in Potri.008G077400.  233 

In summary, we have detected genomic regions with patterns of diversity that are 234 

consistent with divergent and/or recent positive selection on a range of traits, and 235 

particularly on climate-related phenological and growth patterns. While our selection 236 

scans and GWAS analyses identified genes previously known to influence adaptive traits, 237 

they have also identified many loci of unknown function, which would not have been 238 

considered in any a priori candidate gene approach. Furthermore, the results and 239 

discussion presented above focus primarily on vegetative phenology, but many other 240 

traits are likely to be involved in determining fitness in these highly variable 241 

environments. In fact, the CSRs contained genes that have been implicated in controlling 242 

numerous other adaptive characteristics, including temperature stress tolerance, ion 243 

uptake and homeostasis, insect and pathogen defense, and reproduction. These are 244 

discussed in more detail in a Supplementary Note.  245 

 246 

  247 
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Duplication and Network Connectedness 248 

 We tested whether genes associated with selection outliers were over- or under-249 

represented among the 7,906 identified gene pairs resulting from the Salicoid whole-250 

genome duplication
29,31

 (hereafter referred to as “Salicoid duplicates”), vs. genes that 251 

occur as singletons (Table 2). These analyses suggest that recent positive selective 252 

sweeps (indicated by iHS) are less likely for retained Salicoid duplicates than for 253 

singleton genes, but when one occurs, the sweep tends to occur for both duplicates. We 254 

also found that genes nearest to the individual FST, SPA, and iHS outliers had more 255 

predicted protein-protein interactions (PPI) than genes in the rest of the genome 256 

(Supplementary Fig. 13; p≤0.05). Furthermore, PPI were negatively correlated with 257 

nucleotide substitutions (T, S, and Nonsynymous/Synonymous ratio; r <-0.06, p<0.0001). These 258 

results suggest that patterns of selection (both purifying and positive) are influenced by 259 

genomic context, including past whole-genome duplication events and gene or protein-260 

protein interactions. We discuss these analyses further in the Supplementary Note. 261 

  262 

DISCUSSION  263 

 A primary goal of evolutionary biology is to determine the influences of positive 264 

and purifying selection, as well as neutral forces in shaping genetic variation. Natural 265 

populations spanning wide climatic gradients offer an ideal opportunity to investigate 266 

these patterns. We sequenced over 500 P. trichocarpa individuals from across much of 267 

the species range and identified over 17 million SNPs (Table 1, Fig. 2). These 268 

polymorphisms revealed significant spatial/geographic structure, even at fine scales. As 269 

previously suggested based on small-scale sequencing and genotyping
22

, such patterns 270 
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appear to have resulted from a combination of restricted gene flow and complex 271 

demographic history.  272 

 Geographically structured, adaptive phenotypic variation is common among forest 273 

trees
14,24,43

. Climate is a fundamental driver of such variation
14,24,25

, and we identified 274 

quantitative trait differentiation and climate-related variation within our sample 275 

consistent with this pattern. However, the molecular and evolutionary processes 276 

underlying such adaptation often remain unknown. While genome-wide polymorphism 277 

patterns suggest strong purifying selection throughout genic space, we also identified 278 

regions of the genome with unusually long haplotypes, among population differentiation, 279 

and climatic gradients consistent with recent positive or divergent selection. Genes within 280 

these regions contain a variety of annotations plausibly related to local biotic and abiotic 281 

conditions, including photoperiod-responsive and dormancy-related loci, insect and 282 

pathogen defense, abiotic stress tolerance, and phenylpropanoid metabolism. Such genes 283 

provide excellent targets for natural selection and for functional studies aimed at 284 

elucidating the drivers of local adaptation in black cottonwood and other species. 285 

These largely non-overlapping regions also provide insight into the variety of 286 

selection pressures and modes of selection acting within and among populations. For 287 

instance, classic, recent selective sweeps (iHS) are overrepresented among genes with 288 

annotations associated with heavy metal homeostasis and symbiosis. On the other hand, if 289 

climate-driven selection primarily acts upon standing variation rather than new mutations, 290 

subtle allele frequency shifts among populations for many loci of small effects may be 291 

expected rather than hard selective sweeps. This is consistent with relatively little overlap 292 

among outlier regions identified with bayenvPC2 and iHS. Adaptation, therefore, likely 293 
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occurs through different process for different mutations, perhaps dependent on mutation 294 

age, trait heritability and penetrance, and number of loci involved as has been suggested 295 

to occur in human populations
44

. 296 

Remarkably, the selection outlier loci were also enriched for polymorphisms 297 

associated with adaptive traits like bud flush, bud set, and height. While factors such as 298 

stratification and linkage may produce erroneous associations
45

, mapping traits to 299 

computationally identified selection regions lends greater support to their functional 300 

significance. Similar patterns have been observed in the model annual plant Arabidopsis, 301 

where genomic regions showing signatures of selection are structured by climate 302 

variation
9,12

 and co-located with adaptive trait associations
9
.  Similar examples have been 303 

identified in domesticated crops
5,11

. However, to our knowledge this is the first report of 304 

such concordance in a widespread, ecologically important undomesticated plant species. 305 

We recognize that complex peaks of association may also be partially responsible 306 

for the overlap between selection scans and GWAS and differences in GWAS signal 307 

among gardens. LD combined with spurious patterns of random mutation or neutral 308 

stratification may produce synthetic associations
45

 and/or composite phenotypes driven 309 

by multiple causal loci
46

. However, there is no reason to expect this correlative effect at 310 

high frequency on a genome-wide scale. Therefore, our findings suggest that the outliers 311 

contain variation relevant to adaptation based on their statistically stronger than expected 312 

adaptive trait association signal. 313 

The power of combining selection scans and association analyses is well 314 

illustrated by insights gained from our study into winter dormancy control in natural 315 

settings. Building upon previous functional studies under highly controlled 316 
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environments
40–42,47

, our results support a model of vegetative bud set and spring bud 317 

flush timing that centers on regulation of expression and symplastic mobility of the FT1 318 

and FT2 proteins. FT1 is known to be transiently induced by chilling during winter and 319 

promotes the floral transition
40

. However, associations of FT1 with vegetative bud flush 320 

suggest an additional function. Prolonged chilling releases endodormancy, the timing of 321 

which is correlated with bud flush through subsequent accumulation of warm-322 

temperature units
24

. Moreover, the timing of the reopening of callose-plugged symplastic 323 

paths, endodormancy release, and FT1 upregulation are correlated
42

. Based on our 324 

association results, we hypothesize that FT1 is also involved in regulating endodormancy 325 

release, and hence subsequent bud flush timing.   326 

Reported studies of Populus CEN1, a flowering repressor and homolog of the FT 327 

antagonist TFL1, also provide support for this model
48

. Its winter expression is low when 328 

FT1 expression is high, but CEN1 is highly and transiently upregulated shortly before 329 

bud flush.  However, constitutive overexpression of CEN1 delays endodormancy release 330 

and bud flush
48

. In Arabidopsis, the balance between FT and TFL1 appears to be central 331 

to the transition to flowering versus maintenance of indeterminate meristems
49

.  Thus, 332 

CEN1 might counterbalance FT1 promotion of endodormancy release. In this model, the 333 

relative timing of FT1 regulation could influence phenotypic variation observed in bud 334 

flush timing. 335 

 Patterns of adaptive variation are not independent of genomic history, and large-336 

scale events such as whole-genome duplications can alter the evolutionary trajectories of 337 

certain loci. The deficiency of Salicoid duplicates among iHS outliers indicates that 338 

recent hard selective sweeps are less likely for genes retained from genome duplication, 339 
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possibly because of fitness costs associated with altered function and/or stoichiometry of 340 

paralogs with large numbers of protein-protein interactions
50,51

. Furthermore, selective 341 

sweeps tend to affect both paralogs of a duplicated pair when they do occur, providing 342 

further support for the role of dosage constraints in duplicate gene evolution.  343 

This is not to suggest that dosage constraints are the sole or even the primary 344 

drivers of the retention and evolution of duplicate genes. Abundant evidence supports 345 

subfunctionalization and neofunctionalization of Salicoid duplicates
31

. The case of the FT 346 

paralogs is again illustrative. FT1 and FT2 are Salicoid duplicates with divergent 347 

functions affecting distinct aspects of phenology, and displaying diametrically opposed 348 

expression patterns in Populus
40

. While FT1 is primarily expressed during winter in 349 

dormant buds, FT2 is mainly expressed during the growing season, maintaining 350 

vegetative growth
40

. Short days during fall lead to FT2 suppression, in part through 351 

phytochrome influence on the transcription factor PFT1
40,41

. In support of this model, we 352 

found bud set associations with FT2 and a PFT1 paralog, and bud flush associations for 353 

FT1. This remarkable divergence in function demonstrates the adaptive potential of 354 

Salicoid duplicate pairs, consistent with classic models of duplicate gene evolution
52,53

. 355 

Intriguingly, a Salicoid duplicate pair that occurred in the CSRs are 1,3--glucan 356 

[callose] synthase homologs (Potri.002G058700 & Potri.005G203500). Arabidopsis 357 

callose synthases, when expressed in the phloem, deposit callose in the plasmodesmata, 358 

altering sugar and signaling molecule transport
54,55

. Returning to the phenological model 359 

outlined above, Rinne et al.
42

 hypothesized the formation and degradation of callose 360 

plugs to be a control point for dormancy onset and release, possibly blocking 361 



 17 

translocation of FT1/FT2. These duplicates may also have divergent functions and 362 

expression patterns, similar to those observed for the FT paralogs. 363 

Our findings have important implications for understanding mechanisms of 364 

adaptation of ecologically dominant plants with widespread distributions. While forestry 365 

trials have for over 200 years indicated substantial local adaptation of dominant trees
56

, 366 

ours is the first to explore the genomic legacy of this selection across the entire genome 367 

and highlight both the wide range of selection pressures as well as the climatic influence 368 

on phenological systems. These findings also have important implications for the 369 

management of natural populations in the face of environmental change. Traditionally 370 

seed transfer zone guidelines have required large numbers of plantations to accurately 371 

estimate transfer parameters
57

. Computationally identifying adaptive variants through 372 

selection scans and genome-wide phenotypic prediction could provide information in the 373 

absence of extensive plantation trials, maximizing genetic diversity while matching 374 

germplasm to current and future environmental pressures. Management and modification 375 

of such genetic diversity will undoubtedly impact dependent biotic communities and 376 

ecosystem functioning, which are known to be influenced by tree genetic variation
17

. 377 

The 17.9 million SNPs we identified represent naturally segregating variants 378 

found in wild populations, which can be utilized for multiple objectives. Forest tree 379 

improvement has traditionally relied upon natural variation in breeding programs through 380 

targeted crossing based on superior phenotypes
20

. The availability of whole-genome 381 

sequences can enable alternative breeding approaches, including genome-wide 382 

phenotypic prediction
58

 and breeding with rare defective alleles, which relies on rare, 383 

recessive mutations of large effect that are commonly heterozygous and therefore masked 384 
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from many approaches
59

. Most SNPs found here are intergenic and uncommon, but many 385 

have predicted major effects in genic regions. Several SNPs of the latter type are in the 386 

candidate selection regions, including altered start and stop codons and alternative splice 387 

variants, which could represent an immediate set of tractable targets for breeding 388 

programs constrained by long generation times. Several occur at high frequency in the 389 

isolated southern or northern populations, demonstrating that sampling populations 390 

throughout the range, including marginal populations, will yield many more variants of 391 

potential utility. 392 

Online Methods – see separate document 393 

URL 394 

http://www.phytozome.net/poplar.php  395 
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FIGURE LEGENDS: 416 

Figure 1. Geographic locations and genetic structure of the 544 P. trichocarpa 417 

individuals sequenced. a. Map of collection locations of the 544 P. trichocarpa 418 

genotypes sampled in this study from along the Northwest coast of North America, with 419 

the species range shaded in tan, and PCA of all 544 individuals color-coded by general 420 

geographic regions. Yellow diamonds represent plantation locations. b. PCA of the 421 

central WA/BC group of individuals (outlined by box in part (a)) color-coded by 422 

collection river. The percent of the variance explained by the first two PC axes for both 423 

the regional analysis and the WA/BC group is shown. 424 

 425 

Figure 2. Phenotypic evidence of climate-driven selection in P. trichocarpa. a. Patterns 426 

of quantitative trait differentiation (QST) are stronger than genome-wide differentiation 427 

(FST) among sampled geographic locations. Shaded area represents the 95% confidence 428 

interval (CI) of FST, while points and bars represent the point and 95% CI of QST. b-d. 429 

Genotypic estimates of best linear unbiased predictors for adaptive traits growing in 430 

multiple plantation environments show strong correlations with the first principal 431 

component of 20 climate variables measured at the collection location. Negative PC1 432 

values are associated with warmer conditions, while more positive bud flush and bud set 433 
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BLUPs indicate more earlier flush or set, respectively. Correlation coefficient and p-434 

value are shown above each. 435 

 436 

Figure 3. Unique and shared genomic regions among five selection scans. a. A Venn 437 

diagram of the number of regions throughout the genome in the top 1% for each selection 438 

scan. b. Overrepresentation p-value for panther annotation categories in selection outliers. 439 

Only the 10 most strongly overrepresented categories for each selection scan are shown. 440 

 441 

Figure 4. The selection outliers have a stronger association signal with adaptive traits 442 

than expected by chance. a-c. The genome-wide distribution of association signal in 1-kb 443 

windows through the genome (blue; left axis) and the association within the selection 444 

outliers (green; right axis; red line indicates mean) for three traits in different gardens.  445 

 446 

Figure 5. A region of chromosome 10 that displays an abundance of bud flush 447 

association and strong evidence of selection from multiple different selection scans. 448 

Dashed lines represent the 1% cutoff mark for selection scans.  449 

  450 

Figure 6. A region of chromosome 8 that displays multiple strong bud flush associations, 451 

in addition to evidence of positive selection. Dashed lines represent the 1% cutoff mark 452 

for selection scans.  453 

 454 
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Table 1. Per-site nucleotide diversity, , estimated across the genome for all annotated 455 

features of the P. trichocarpa v3 genome, and the number of variants annotated in each 456 

class using SnpEff
60

. 457 

Feature  (median and central 95% range)

Overall 0.0041 (0.0004-0.01226) 

Intergenic 0.0064 (0.0012-0.0125) 

Genic
a
 0.003 (0.0006-0.0106) 

5'UTR 0.0028 (0.0001-0.0114) 

3'UTR 0.0033 (0.0001-0.0123) 

Intron 0.0034 (0.0005-0.0114) 

Coding Sequence 0.002 (0.0002-0.0111) 

Nonsynonymous 0.0018 (0-0.0122) 

Synonymous 0.0054 (0-0.0348) 

Nonsyn/Synon 0.3179 (0-14.5447) 

  Annotation Number of variants
b
 

Intergenic 14,520,224 

Intron 1,962,848 

Non-synonymous coding 612,655 

Non-synonymous start 253 

Start lost 1631 

Stop gained 18,702 

Stop lost 2175 
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Splice site acceptor 3748 

Splice site donor 4449 

Synonymous coding 386,103 

Synonymous stop 959 

3’ UTR 389,771 

5’ UTR 169,083 

 458 

a
 Predicted  transcript from 5’ to 3’UTR 459 

b
 Total is greater than total observed number of variants because some SNPs have 460 

multiple annotations for alternative transcripts   461 

 462 

  463 
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Table 2. Tests of over- and underrepresentation of retained Salicoid duplicate genes and 464 

pairs among the selection outliers. Shown are the number of genes in each category and 465 

the associated p-value. 39,514 genes are found on the 19 chromosomes, with 7609 pairs 466 

from 15,797 genes. 467 

 468 

Selection 

Scan 

Duplicate 

Genes in 

Outlier 

Regions 

Fisher’s Exact 

Test (p-value)
a
 

Duplicate 

Pairs in 

Outlier 

Regions 

Fisher’s Exact 

Test (p-value)
 a
 

CSR 178 NS (0.623) 2 NS (0.263) 

FST 674 Over (2.8x10
-9

) 27 Over (0.002) 

SPA 741 Over (0.004) 24 NS (0.065) 

iHS 348 Under (3.0x10
-12 

) 8 Over (0.039) 

BFPC1 100 NS (0.661) 1 NS (0.263) 

BFPC2 134 NS (0.156) 0 NS (1) 

 469 

a NS, not significant; Over or Under, genes or pairs were significantly 470 
overrepresented or underrepresented within outlier regions, respectively, 471 
compared to genome-wide expectation. 472 

  473 
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Methods 474 
Sequencing, assembly, and variant calling 475 

We obtained plant materials from 1100 black cottonwood (Populus trichocarpa 476 
Torr & Gray) from wild populations in California, Oregon, Washington, and British 477 
Columbia, as previously described

22
. We resequenced a set of 649 genotypes to a 478 

minimum expected depth of 15x using the Illumina Genome Analyzer, HiSeq 2000, and 479 
HiSeq 2500. Sequences were down-sampled for those individuals sequenced at greater 480 
depths to ensure even coverage throughout the population (Supplementary Fig. 1a). Short 481 
reads were then aligned to the P. trichocarpa version 3 genome using BWA 0.5.9-r16 482 
with default parameters

61
. We corrected mate pair metadata and marked duplicate 483 

molecules using the FixMateInformation and MarkDuplicates methods in the Picard 484 
package (http://picard.sourceforge.net). Next, we called SNPs and small indels for the 485 
merged dataset using SAMtools mpileup (-E –C 50 –DS –m 2 –F 0.000911 –d 50000) 486 
and bcftools (-bcgv –p 0.999089)

62
.  487 

 488 
Genotype validation 489 

We compared the samtools mpileup genotype calls for 649 individuals to 22,438 490 
SNPs assayed on the Populus Illumina Infinium platform, which was designed based on 491 
assembly version 2.0

22,63
. These were high-quality SNPs that we could confidently place 492 

on the v3 reference genome. The 649 individuals had, on average, a 97.9% match rate. 493 
SNPs with a minor allele frequency (MAF) ≥ 0.05 had a match rate of 98.1%, while those 494 
with MAF ≤ 0.01 (n=159 SNPs) had a match rate of 78.2%, similar to other published 495 
studies

4,64,65
. Stringent filtering had minimal impact on match rate, though it reduced 496 

substantially the number of known SNPs passing the filtering thresholds. For example, 497 
requiring an individual minimum depth of 3, minimum mapping quality of 30, minor 498 
allele count of 15, and minimum quality score of 30 increased the false negative rate by 499 
3.9%, but only increased the match rate by 0.3%. Therefore, no additional filtering after 500 
samtools mpileup variant calling was performed. 501 

Nisqually-1 was the original individual sequenced by Tuskan et al.
29

 using Sanger 502 
technology, and it was also resequenced during this study using the Illumina platform. 503 
716,691 heterozygous polymorphisms found in the v3.0 reference genome assembly 504 
(http://www.phytozome.net/poplar.php) had at least three Sanger reads of each allele, and 505 
therefore had strong evidence of being heterozygous in the Sanger assembly. In the 506 
current study, we correctly identified 557,738 of these (77.82%), including 3,205 of 507 
3,220 singleton variants in Nisqually-1 in the Illumina data, suggesting a 22.18 % false 508 
negative rate. Conversely, of 1,115,963 heterozygous positions identified in Nisqually-1 509 
in the current Illumina genotyping, 972,254 had at least one Sanger read supporting each 510 
allele, suggesting a 12.86 % false positive rate. All of these comparisons were done with 511 
no filtering of the samtools mpileup genotype calls. It is important to note that errors 512 
occur in both the Sanger and Illumina methods, so these are likely to be overestimates of 513 
the true error rates in the resequencing SNP data. 514 
 515 
The Accessible Genome 516 

Next, we identified the Populus trichocarpa "accessible genome" as those 517 
positions that had sufficient read depth across enough individuals to enable genotypes to 518 
be accurately determined (similar to the approach used in the 1000 Genomes Project

1
). 519 

http://picard.sourceforge.net/
http://www.phytozome.net/poplar.php
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We estimated the median and interquartile range of depth for each position in the genome, 520 
for all sequenced individuals, using samtools mpileup. With our target of 15X coverage, 521 
"accessible" positions were those with median depth between 5 and 45 (inclusive) and 522 
with an interquartile range less than or equal to 15 (Supplementary Fig. 1a,b). Of the 523 
394,507,732 positions that were sequenced across all individuals, 345,217,484 met these 524 
criteria (~87.51%), 17,902,170 of which were single nucleotide polymorphisms (SNPs) 525 
(15,454,190 biallelic). We observed a slight deficiency of heterozygotes at lower depth 526 
positions; however, these positions cumulatively comprise only between 0.7 and 2.5% of 527 
positions at an uncorrected HWE p-value threshold of 0.001 (Supplementary Fig. 1c). 528 
Furthermore, these cutoffs did not bias the outcomes of selection scans throughout the 529 
genome, as putative selection outliers (see below) had a very similar distribution of depth 530 
as the rest of the genome (Supplementary Table 14) and there was no relationship with 531 
association p-value (see below; all Pearson |r| < 0.005, Supplementary Fig. 1d). 532 
 533 
Relatedness, Hybridization, and Population Structure 534 

We next identified individuals that showed evidence of admixture with other 535 
species of Populus because hybridization is common within the genus

66
. We used 7 536 

additional individuals sequenced to at least 32X depth as above: 3 P. deltoides, 1 P. 537 
fremontii, 1 P. angustifolia, 1 P. nigra, and 1 P. tremuloides. These were aligned to the P. 538 
trichocarpa v3.0 reference genome using Bowtie2 in local alignment mode and default 539 
parameters

67
, and variants were called using the samtools mpileup function for each 540 

species separately. We then used smartpca
68

 to identify sampled individuals in this study 541 
that were genetically similar to these alternative species. This method identified 3 542 
individuals that appear intermediate between the P. trichocarpa cluster and an alternate 543 
species (Supplementary Fig. 14).  544 

We performed similar analyses using overlapping genomic regions from 32 P. 545 
balsamifera transcriptomes (provided courtesy of Dr. Matt Olson, Texas Tech University; 546 
Supplementary Fig. 15), and, separately, the Illumina Infinium array data, which 547 
contained additional individuals of alternative species

63
. These identified an additional 548 

three genetically intermediate individuals. These 6 potentially admixed individuals were 549 
removed from subsequent analyses. 550 

We next identified and removed individuals more related than first cousins using 551 
the program GCTA

69
. Because this, like most other relatedness estimates, relies on allele 552 

frequency estimates within populations, it was necessary to first identify genetic clusters. 553 
We iteratively identified genetic clusters using PCA

68
, each representing a putative 554 

genetic group. We removed related individuals within each from further analyses, leaving 555 
a total of 544 individuals, which were used for all subsequent analyses. 556 

To assess population structure, we used PCA analyses with these unrelated 544 557 
individuals. This identified roughly 4 major groupings (Figure 1a). We then performed 558 
PCA analysis using only those individuals from the Washington/British Columbia group 559 
to investigate finer-scale structure (Fig. 1b). PCA was performed using all 17.9 million 560 
SNPs. 561 
 562 
Phenotypic Evidence of Selection 563 
 We investigated phenotypic evidence of selection using two methods. First, we 564 
compared neutral genetic differentiation among collection rivers/subpopulations (FST, see 565 
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below for details of estimation) to differentiation among rivers for second-year height and 566 
fall and spring phenology using data collected from three replicated plantations (QST). 567 
Briefly, over 1000 P. trichocarpa genotypes were planted in 2009 in three replicated 568 
common gardens (Clatskanie and Corvallis, OR, and Placerville, CA) in a randomized 569 
block design with three replicates of each genotype. In 2010, we measured spring bud 570 
flush, fall bud set, and total height in each garden. We removed within-garden micro-site 571 
variation using thin-plate spline regression (fields R package), then estimated among river, 572 

among genotypes within rivers, and residual variance components (
2

R, 
2
G, and 

2
, 573 

respectively) using mixed-model regression (lmer function of the lme4 R package). QST 574 
was estimated at the river level as 

2
R/(

2
R +2*

2
G)

32
. A 95% confidence interval of QST 575 

was estimated by resampling rivers, with replacement, 1,000 times and estimating QST for 576 
each bootstrapped dataset. We directly compared the 95% CIs for QST and FST. We note 577 
that in using clonal replicates 

2
G includes additive and non-additive genetic effects, 578 

rather than the additive genetic variance alone; however, simulations have shown that this 579 
approach lowers QST estimates, and is therefore a conservative test of QST > FST

70
. 580 

 Second, we tested for correlations between these adaptive traits and the climate of 581 
the source location. We tested correlations with mean annual temperature, mean annual 582 
precipitation, and the first two principal components (cumulatively > 85% of variance 583 
explained) of 20 climate variables obtained using ClimateWNA

71
. We used the genotypic 584 

best linear unbiased predictors obtained from mixed model analysis (lmer function of the 585 
lme4 R package) as the phenotypic traits. Climate variables were averaged within 586 
collection locations prior to correlation analysis. 587 
 588 
Genetic Variation and Signatures of Recent Positive Selection Throughout the 589 
Genome 590 
 We assessed species-wide nucleotide diversity ()

72
 using the MLE estimate of 591 

allele frequency from the samtools mpileup output
62

 in all annotated regions (coding 592 
sequence, introns, 5’ and 3’ UTRs) of the v3 genome greater than 150 bp long and with at 593 
least 95% accessibility. 594 

We performed five genome-wide scans of recent positive selection, using four 595 
conceptually different approaches. First, we estimated genetic differentiation

72
 among 596 

collection rivers as FST in 1-kb windows throughout the genome (again, requiring at least 597 
95% accessibility and using the accessible positions in a window as the window’s full 598 
length). We restricted this analysis to rivers/subpopulations with at least eight individuals, 599 
and randomly chose 20 individuals from those that contained > 20 individuals (14 rivers 600 
total: Homathko, Skwawka, Lillooet, Squamish, Salmon, Fraser, Columbia, Nisqually, 601 
Nooksack, Puyallup, Skagit, Skykomish, Tahoe, Willamette). We estimated nucleotide 602 
diversity across all individuals (T) and weighted within-river nucleotide diversity (S), 603 
accounting for sequencing error

73
. We calculated FST as difference between total and 604 

weighted within-river diversity, divided by the total diversity (T-S / T)
72

. We took the top 605 
1% of the empirical distribution of FST as genomic regions representing unusually strong 606 
allele frequency differences among rivers and candidates of divergent selection. 607 

The second selection scan quantified the steepness of allele frequency clines 608 
across two climate variables, using the program SPA

33
. SPA uses a logistic regression-609 

based approach to model allele frequency clines, without a priori population assignment 610 
and represents a fundamentally different approach than the FST scan described above. We 611 
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used mean annual temperature and mean annual precipitation of the source location for 612 
each sample, obtained using ClimateWNA

71
, because these variables are significantly 613 

correlated with growth and phenological traits. We averaged SPA in non-overlapping 1-614 
kb bins throughout the genome, requiring at least 5 SNPs in each window. We identified 615 
the top 1% of these windows as regions of the genome with unusually steep allele 616 
frequency clines across mean annual temperature and precipitation. 617 
 Third, we identified regions of the genome with recent, unusually rapid increases 618 
in allele frequency across the range. Strong, recent selective sweeps will result in long 619 
haplotypes associated with the selected allele

8,74
. First, we phased the 544 diploid 620 

individuals using SHAPEIT2
75

. Because we have no reference haplotype panels to test 621 
the accuracy of computationally-determined haplotypes, we determined the optimal 622 
method by estimating the accuracy of imputed masked loci

76
. We used 10 Mb of 623 

chromosome 2 (5-15Mb), using only variants with MAF>0.1 (307,123 sites). We 624 
randomly masked out 5% of the center 260,000 positions for each individual (avoiding 625 
the ends), treating them as missing for phasing. To determine the optimal number of 626 
hidden Markov states (K) and the window size (W) used in SHAPEIT2, we phased the 627 
data using combinations of parameters from K=50-600 and W=0.1-2Mb (Supplementary 628 
Fig. 14), using the default Ne=15K, and run with 4 threads. The genetic position was 629 
determined through linear interpolation using a genetic map derived from a P. 630 
trichocarpa x P. deltoides pseudo-backcross pedigree and 3,559 Infinium  SNP markers

22
. 631 

Genetic position and recombination rate were estimated using local linear regression with 632 
the loess function in R. For comparison, we also phased the same data using the default 633 
settings of BEAGLE

77
. We then determined the squared correlation coefficient (R

2
) 634 

between the known allele dosages (0, 1, or 2) and the imputed genotypes for masked 635 
positions in each individual. The average R

2
 is shown in Supplementary Fig. 16, and 636 

peaks at approximately K=350, W=0.1 Mb. We varied Ne from 10,000 – 20,000, and 637 
found that Ne=15,000 gave the highest correlation between known and imputed allele 638 
dosage for masked missing data. Using the same 10Mb region of chromosome 2, we 639 
tested whether the 0.1 MAF cutoff affected accuracy, and found that with no MAF cutoff 640 
accuracy was actually increased. We therefore phased all chromosomes using SHAPEIT2 641 
with K=350 states, W=0.1 Mb window size, and Ne=15,000 effective population size, 642 
using all non-singleton and -private doubleton sites, parallelized using 24 threads. 643 
 We then estimated the integrated haplotype score (iHS

8
) for SNPs. Because the 644 

program is computationally intensive, we thinned the dataset to SNPs separated by at 645 
least 100bp and with a MAF of at least 0.05, resulting in 1,898,506 SNPs throughout the 646 
genome. In calculating iHS, we used the genetic distance as described above. iHS was 647 
standardized within allele frequency bins

8
, and |iHS| averaged within non-overlapping 1-648 

kb windows, again requiring at least 5 SNPs in a window. We took the top 1% of these 649 
bins as genomic regions that have experienced an unusually rapid allele frequency change, 650 
resulting in extended haplotype homozygosity, and potential targets of positive selection. 651 
 Finally, we used bayenv2.0

34
 to identify regions of the genome with unusually 652 

strong allele frequency clines along climatic gradients while controlling for background 653 
neutral population structure. We performed this analysis with 13 of the populations used 654 
in the FST analysis described above. We excluded the Tahoe population because it was so 655 
divergent that the neutral model of bayenv2.0 had difficulty accounting for the 656 
covariance in allele frequencies among populations (data not shown). We used the first 657 
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two principle components (PCs) of the climate data from source locations, averaged 658 
within populations, which cumulatively explained >85% of the variance in the correlation 659 
matrix. Loadings showed that the first PC was strongly related to all climateWNA 660 
variables, while the second PC was more strongly related to precipitation, heat-moisture 661 
indices, and frost free period metrics (Supplementary Fig. 17). To estimate the covariance 662 
matrix of allele frequency among populations, we used 19,420 genome-wide SNPs that 663 
were separated by at least 20Kbp and with MAF > 0.01 across the 13 populations using 664 
bayenv2.0 with 100,000 steps through the chain, performed three times independently. 665 
The three runs were very similar (all Mantel R > 0.985, p<0.001), and the difference in 666 
covariances among runs were always less than 3% of the smallest estimated covariance, 667 
indicating convergence

78
. We assessed the strength of the correlation of allele frequency 668 

and the climate variables, as estimated by the Bayes factor (BF) and Spearman 669 
correlation, for 9,519,343 SNPS (MAF > 0.01 across the 13 populations). We tested, for 670 
20,000 randomly-chosen SNPs, the effect of chain length on the Bayes factors. 671 
Correlations of the individual SNPs among the different chain lengths and independent 672 
runs for each chain length indicated that 10 chains of 50,000 steps were sufficient to 673 
ensure repeatability and accuracy (Supplementary Fig. 18), while tractable for millions of 674 
SNPs. For the final analysis of all >9.5million SNPs, we calculated the Bayes factor and 675 
Spearman correlation using 50,000 steps in each of 10 independent runs. We averaged 676 
the log10(BF) and the posterior Spearman correlation estimate for each SNP, normalized 677 
these values within MAF bins (0.05 bin size), and averaged these within 1-kb windows 678 
throughout the genome, requiring at least 5 SNPs per 1-kb window. 679 

To identify regions of the genome with unusually strong allele frequency-climate 680 
correlations, we selected the windows in the top 1% of Spearman climate-allele 681 
frequency correlations and top 1% of Bayes Factors as those with unusually strong 682 
climate related allele frequency clines. This process was done separately for the first and 683 
second PCs, resulting in two separate selection scans. 684 
 685 
Candidate Selection Regions (CSRs) and Annotation Analysis 686 
 The selection scans represent five different approaches to identifying unusually 687 
strong patterns throughout the genome that are consistent with recent positive or 688 
divergent selection. Merging nearby windows (5Kb), we found 397 regions that were in 689 
the top 1% of at least two of the five scans (the candidate selection regions, or “CSRs”), 690 
spanning or adjacent to 452 different genes. We identified the genes spanning or nearest 691 
to the CSRs and selection outlier regions. We used Fisher Exact Tests to determine if GO, 692 
PANTHER, and PFAM annotations were overrepresented in the genes associated with 693 
the CSRs and outlier regions. 694 
 We also tested whether these genes were overrepresented among lists from known 695 
gene families and pathways, and known to be responsive to drought and dormancy 696 
cycling. Families of transcription factors were identified using the Plant Transcription 697 
Factor Database v3.0 (http://planttfdb.cbi.pku.edu.cn/index.php?sp=Pth

79
). Genes in 698 

additional pathways and families are listed in Supplementary Table 11. When necessary, 699 
we used the best reciprocal BLAST hit between the v1 and v3 genome assemblies to 700 
locate the gene models identified by previous studies for each set of published genes. 701 
 702 
Genome Duplication and Network Connectedness  703 

http://planttfdb.cbi.pku.edu.cn/index.php?sp=Pth
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 First, we examined the genes spanning or nearest to the CSRs and the windows of 704 
the top 1% of each selection scan in the context of the Salicoid whole-genome 705 
duplication using the 7,936 duplicate pairs identified by Rodgers-Melnick et al.

31
. We 706 

used Fisher Exact Tests (FET) to test whether these selection scan lists were under- or 707 
over-represented among the duplicate pairs. To determine if there were more duplicate 708 
pairs in which both genes of the pair were associated with the selection outliers than 709 
expected by chance, we used a random resampling procedure. For each selection scan, we 710 
resampled without replacement the same number of genes observed in that scan that were 711 
also retained duplicates from the total number of retained duplicates (15,812) 10,000 712 
times and recoded how many complete pairs were resampled each time, meaning how 713 
many times both genes of a pair were randomly sampled. We tested whether genes 714 
associated with selection outliers had more protein-protein interactions (PPI) than 715 
expected. We used the number of connections in protein-protein interaction networks 716 
with 65 % confidence determined by the ENTS random forest prediction program

30
. We 717 

tested whether PPIs of the genes in each scan were different from the genome-wide 718 
average using Wilcoxon two-sample tests. These analyses examined patterns of genes 719 
associated with the CSRs and the selection outlier regions. 720 

We also examined patterns at the whole-gene level, by calculating S, T, and the 721 
ratio of nonsynonymous/synonymous polymorphism (Nonsynonymous/Synonymous) for 39,514 722 
genes on the 19 chromosomes using the same methods described above. We then 723 
calculated the correlation of each statistic between the 7,936 Salicoid duplicate pairs of 724 
genes. To determine if the observed correlation was greater than expected by chance, we 725 
randomly chose 7,936 pairs of genes from all genes 10,000 times, as a null distribution of 726 
correlation between pairs of randomly chosen genes. 727 
 We also tested whether the mean observed selection statistic differed between 728 
Salicoid duplicates and non-duplicate gene using Wilcoxon two sample tests. To test 729 
whether the connectedness of genes may influence patterns of selection, we examined 730 
correlations between PPI and the observed statistics. We assessed significance using 731 
10,000 permutations of connectedness across the test statistic as above. We log10-732 
transformed the data as necessary. 733 
 734 
Signal of Association Throughout the Entire Genome and Within the CSRs 735 
 To determine if loci within the identified regions may have functional 736 
significance, we tested for statistical associations with second-year height and fall and 737 
spring bud phenology using data collected from three replicated plantations. We 738 
estimated genotypic best linear unbiased predictors using mixed-model regression (lmer 739 
function of the lme4 R package, see Phenotypic Selection section above) as the 740 
phenotypes for GWAS. We used the same set of resequenced, unrelated individuals used 741 
described above, excluding the highly differentiated Tahoe, Willamette Valley, and far 742 
northern British Columbia samples because strong stratification can lead to spurious 743 
associations

80
, leaving 498 individuals. We only tested phenotypic association with SNPs 744 

having a MAF≥0.05, leaving 5,939,334 SNPs. The analysis was performed for single 745 
traits in each plantation using emmax

36
, using the IBS kinship matrix to account for 746 

background genetic effects. To account for population structure, for each trait we 747 
included as covariates the principal components axes that were significant predictors of 748 
the trait, chosen using stepwise regression (step function in the R package). We used the 749 
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gemma multi-trait association model
37

 to test for SNP association with each trait across 750 
all three plantations simultaneously, and in a 9-trait model as well (3 traits x 3 751 
plantations). We used the mixed-model framework incorporating kinship and principal 752 
component axes that were significant (nominal alpha=0.05) in a multivariate multiple 753 
linear regression.  754 

We estimated alpha values for association p-values by permutation
81

. We 755 
permuted individual alleles among individuals, randomly generating genotypes while 756 
mirroring exactly the true MAF distribution. We then tested for association of these 757 
random genotypes with the observed phenotype data using the actual kinship matrix and 758 
principal components as above, thereby testing only the effect of randomly assigned 759 
genotypes while the structure of population stratification, relatedness, and the phenotypes 760 
was held constant. For univariate analyses performed in emmax we performed 10

8
 761 

permutations. For gemma multi-trait analyses, we used >10
8
 permutations for bud set and 762 

height and 8-33x10
6
 permutations for bud flush and the 9-trait model, which were 763 

computationally more intensive. For each trait, we then estimated the cutoffs at various 764 
alpha levels (Supplementary Table 15). 765 
 To determine if the observed associations within the selection outliers was greater 766 
than expected by chance, we used the –log10(p-value) as the association signal within 767 
each selection outlier, and used the average of these values for each trait. We then 768 
randomly sampled the same number of 1-kb bins from throughout the genome 20,000 769 
times. The number of random samples with a mean equal to or greater than the observed 770 
for each trait represents the probability of finding a median association signal in the 771 
selection outliers by chance alone. We also calculated the empirical p-value for each CSR 772 
using the distribution of average association p-values within 1-kb windows throughout 773 
the genome. This was done while controlling for the distribution of gene density within 774 
the surrounding 100 kb of the selection scans (Supplementary Figure 11g). We also 775 
repeated this with a 50-kb window and without controlling for gene density, and found 776 
the same patterns (data not shown). 777 
 778 
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