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Re-Evaluating Immune-Inspired Hypermutations
Using the Fixed Budget Perspective

Thomas Jansen and Christine Zarges

Abstract—Different studies have theoretically analysed the
performance of artificial immune systems in the context of
optimisation. It has been pointed out that in comparison with
evolutionary algorithms and local search, hypermutations tend
to be inferior on typical example functions. These studies have
used the expected optimisation time as performance criterion and
cannot explain why artificial immune systems are popular in spite
of these proven drawbacks. Recently, a different perspective for
theoretical analysis has been introduced concentrating on the
expected performance within a fixed time frame instead of the
expected time needed for optimisation. Using this perspective
we re-evaluate the performance of somatic contiguous hyper-
mutations and inverse fitness-proportional hypermutations in
comparison with random local search on one well-known example
function where random local search is known to be efficient
and much more efficient than these hypermutations with respect
to the expected optimisation time. We prove that, depending
on the choice of the initial search point, hypermutations can
by far outperform random local search in a given time frame.
This insight helps to explain the success of seemingly inefficient
mutation operators in practice. Moreover, we demonstrate how
one can benefit from these theoretically obtained insights by
designing more efficient hybrid search heuristics.

Index Terms—Computational complexity; Algorithm design
and analysis; Heuristic algorithms; Computational intelligence

I. INTRODUCTION

ARTIFICIAL IMMUNE systems are a large class of algo-
rithms that either model or are inspired by the immune

system of vertebrates [1]. When used as nature-inspired search
heuristics for optimisation they are in direct competition with
other such heuristics as evolutionary algorithms [2], ant colony
optimisation [3], and simulated annealing [4]. Also other
general randomised search heuristics which are not necessarily
nature-inspired like tabu search [5] and random local search [6]
can be applied to the same optimisation problems. It is
therefore natural to ask what kind of search heuristic performs
best. Such questions are often examined using typical example
or benchmark functions [7].

In comparison to theory of evolutionary computation, theory
of artificial immune systems is a rather novel field that has sig-
nificantly advanced over the last couple of years. In the context
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of optimisation, research started with the analysis of Markov
chain models and convergence in the early 2000’s (see [8] for
an overview). Since 2008 runtime analysis on different aspects
of artificial immune systems have emerged, in particular with
respect to working principles of specific operators such as
mutation [9]–[12] and ageing [13]–[15]. Initial results for com-
binatorial optimisation (Vertex Cover [16], Longest Common
Subsequence [17]) are available. Very recently first results in
the area dynamic optimisation have been presented [15], [18].
For the sake of completeness we remark that theoretical studies
in other subareas of artificial immune systems exist, e. g., in
the context of classification we refer the reader to the above
review article [8] and recent work by Textor et al. [19], [20].

One aspect that sets artificial immune systems apart from
other randomised search heuristics is that they employ mu-
tations at a high rate, called somatic hypermutations [21].
There are different variants of such hypermutation operators,
among them inversely fitness-proportional mutation (as used in
CLONALG [22] and opt-aiNet [23]) and somatic contiguous
hypermutation as used in the B-cell algorithm [24].

If one wants to understand and compare the performance
of different mutation operators it makes sense to consider
them in a minimalistic algorithmic framework to study them
in isolation. Following this approach the performance of
inversely fitness-proportional mutation and somatic contiguous
hypermutation has been analysed on simple example functions
and been compared with standard bit mutations which are
commonly used in evolutionary algorithms (see [9], [10] for
inversely fitness-proportional mutation and [11] for somatic
contiguous hypermutation). One of the simplest example func-
tions used for such analytical purposes is known as ONEMAX.
It operates on bit strings of fixed length and yields as function
value simply the number of 1-bits. Finding its unique global
optimum, the all ones bit string, should be a very simple
task for any reasonable randomised search heuristic. However,
analyses reveal that both kinds of hypermutation perform much
worse on ONEMAX than standard bit mutation from evolution-
ary algorithms or random local search [9], [11]. These results
appear to suggest that using hypermutation is not a very good
idea and are in apparent contrast to the popularity and actual
usefulness of artificial immune systems as optimisers. The
contradiction can be explained by the analytical perspective
that is adopted in such studies.

When analysing randomised search heuristics one often
uses the number of evaluations of the objective function as
performance measure until a solution of sufficient quality
is found [25]. If ‘sufficient quality’ is defined as some ap-
proximation of an optimal solution this number is called the
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approximation time, if one waits for an optimal solution to
be found it is called optimisation time. It has recently been
pointed out [26], [27] that this performance measure is in
strange contradiction to the way randomised search heuristics
are usually applied. Clearly, in practice, the optimal value
is not known and thus one cannot stop once it is reached.
Most often a randomised search heuristic is stopped after
a pre-specified number of steps. Taking this into account
the analytical perspective of fixed budget computations has
been introduced [26]. This new measure allows to perform
more realistic, detailed, and practically relevant analyses. It
is, however, technically more challenging than analysing the
optimisation time. To date, results for the optimisation time
can only be used to infer fixed budget results if additionally
tail bounds for the optimisation time are known [28]. Recently,
a first fixed budget analysis for a combinatorial optimisation
problem, namely the traveling salesperson problem, has been
presented [29].

We use this perspective of fixed budget computations to re-
evaluate the performance of inversely fitness-proportional and
somatic contiguous hypermutation. We perform an analysis for
ONEMAX and compare both with random local search since
this very simple search heuristic is for this example function
even faster than standard bit mutations from evolutionary algo-
rithms: The (1+1) EA using standard bit mutations with prob-
ability 1/n has expected optimisation time en lnn−Θ(n) [30]
while random local search (which for ONEMAX corresponds
to the well-known Coupon Collector process) only requires
n lnn + Θ(n) steps [31]. We prove that in comparison with
this strong competitor hypermutations from artificial immune
systems actually perform very well. They can have a very
large advantage in the beginning of the run and only losing
out later when approaching an optimal solution. This explains
their very good performance in experiments that concentrate
on not too long runs. We perform the analysis for different
starting points, specific starting points as well as randomly
selected ones. Moreover, we accompany our findings with the
results of experiments to demonstrate how our bounds on the
expected performance compare with empirical results. Finally,
we turn our theoretically gained insights into practice by using
them to devise useful hybrid strategies.

In the next section we define the analytical framework and
the different mutation operators as well as the algorithmic
framework we apply. We also state the known results for
random local search there. Section III contains analytical
results for somatic contiguous hypermutation. Section IV
contains analytical results for inversely fitness-proportional
mutation. We provide empirical supplements to our theoretical
bounds in Section V. We demonstrate that theoretical analysis
and insights gained in theoretical studies are of practical
importance in Section VI. Using our results on the benefits of
the different mutation operators we design hybrid algorithms
that benefit from combining both mutation operators in a way
that is informed by theoretically obtained results. We conclude
and outline possible future research directions in Section VII.

II. ANALYTICAL FRAMEWORK

We compare two different hypermutation operators with
random local search on the well-known example function
ONEMAX. For the sake of clarity we give a formal definition
for ONEMAX. For a bit string x ∈ {0, 1}n of length n we
denote its bits by x[0], x[1], . . . , x[n− 1].

Definition 1. The function ONEMAX : {0, 1}n → N0 is

defined by ONEMAX(x) =
n−1∑
i=0

x[i] for all x ∈ {0, 1}n.

We choose to embed the different mutation operators into
a minimalistic algorithmic framework. The search is based
on a single point in the search space and works in rounds.
In each round a new search point is created by means of
mutation. The function values of the two search points are
compared and the new search point replaces the current one
if its function value is not worse. Note that random local
search and the (1+1) evolutionary algorithm [32] both fit this
framework while simulated annealing does not (due to the
less simple rule for replacing the current search point). We
formally define the framework as Algorithm 1.

Input : number of function evaluations b
Output: xt, f(xt)

1 Set t := 0;
2 Select xt ∈ {0, 1}n;
3 while t+ 1 < b do
4 y := mutate(xt);
5 if f(y) ≥ f(xt) then
6 xt+1 := y
7 else
8 xt+1 := xt
9 end

10 t := t+ 1;
11 end

Algorithm 1: Algorithmic Framework

The algorithmic framework can be instantiated by defining
the choice of the initial search point in line 2 and the mutation
in line 4. When the mutation operator M is used we denote
the search point xt as x(M)

t . Using this notation we define
three mutation operators: random local search (Algorithm 2),
somatic contiguous hypermutations (Algorithm 3) and inverse
fitness-proportional hypermutations (Algorithm 4). We define
the algorithms RLS, CHM and CLONALG by using the
algorithmic framework (Algorithm 1).

Input : bit string x = x[0]x[1] · · ·x[n− 1]
Output: bit string y = y[0]y[1] · · · y[n− 1]

1 y := x;
2 Select p ∈ {0, 1, . . . , n− 1} uniformly at random;
3 y[p] := 1− y[p];

Algorithm 2: Mutation RLS

We consider the performance of the three algorithms RLS,
CHM, and CLONALG on ONEMAX. We do this considering
their performance in the fixed budget computation model. To
distinguish the three algorithms we denote xt as x(RLS)

t , x(CHM)
t ,
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Input : bit string x = x[0]x[1] · · ·x[n− 1]
Output: bit string y = y[0]y[1] · · · y[n− 1]

1 y := x;
2 Select p ∈ {0, 1, . . . , n− 1} uniformly at random;
3 Select l ∈ {0, 1, . . . , n} uniformly at random;
4 foreach i ∈ {0, 1, . . . , l − 1} do
5 y[(p+ i) mod n] := 1− y[(p+ i) mod n]
6 end

Algorithm 3: Mutation CHM

Input : bit string x = x[0]x[1] · · ·x[n− 1], ρ ∈ R+

Output: bit string y = y[0]y[1] · · · y[n− 1]
1 y := x;
2 v := f(y)/n #normalise fitness in [0,1];
3 foreach i ∈ {0, 1, . . . , n− 1} independently do
4 With probability e−ρ·v(y) set y[i] := 1− y[i].
5 end

Algorithm 4: Mutation CLONALG

x(CLONALG)
t depending on the mutation operator used. In the

fixed budget computation model we analyse E
(
x

(A)
b

)
for a

fixed number of steps b and A ∈ {RLS,CHM,CLONALG}.
We use three different starting points in the initialisation

(line 2 in Algorithm 1). We consider deterministic initialisation
in the all zero bit string, 0n, deterministic initialisation in the
bit string that consists of n/2 1-bits followed by n/2 0-bits,
1n/20n/2, and random initialisation in a bit string x ∈ {0, 1}n
selected uniformly at random. For the sake of convenience
we assume n to be even. Note that the expected number of
1-bits in a randomly selected x equals n/2. Since RLS and
CLONALG are not sensitive to the positions of the 1-bits, in
expectation, there are no differences in their performance for a
random bit string and 1n/20n/2. For CHM, many consecutive
0-bits are beneficial. Thus, 1n/20n/2 is a best case for CHM
under all bit strings with n/2 1- and n/2 0-bits.

For RLS, results are already known. We cite the relevant
results from [27]. Note that the result for x = 1n/20n/2 is
not contained in [27] but a direct consequence of the fact that
RLS is oblivious to reordering of the 1-bits as long as their
number is not changed.

Theorem 1 (Theorems 4 and 5 from [27]). With x(RLS)
0 = 0n,

E
(

ONEMAX
(
x(RLS)
b

))
= n ·

(
1− (1− 1/n)b

)
holds for all

budgets b ∈ N0.
With x(RLS)

0 = 1n/20n/2 and x(RLS)
0 ∈ {0, 1}n selected

uniformly at random, E
(

ONEMAX
(
x(RLS)
b

))
= (n/2) +

(n/2) ·
(
1− (1− 1/n)b

)
holds for all budgets b ∈ N0.

Both statements can be proven by straightforward calcula-
tions. We refer to [27] for details and depict both function for
n = 1000 in Figure 1 for illustration.

III. SOMATIC CONTIGUOUS HYPERMUTATIONS

A. CHM on ONEMAX starting in 0n

We start with a lower bound on the expected function
value. The expected progress for CHM heavily depends on the
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Fig. 1. Visualisation of E
(

ONEMAX
(
x(RLS)
b

))
for n = 1000, initialisation

in 0n and random initialisation.

distribution of 0- and 1-bits over the bit string. Thus, already
after a few steps deriving the expected progress becomes very
involved. Examining a few steps is sufficient to make our
point, so we restrict ourselves to the first two iterations, only.
We show that we make progress in order of Θ(n) in the very
beginning. Since the step size of RLS is 1 it takes at least
Ω(n) steps until RLS can catch up. Later in the run, however,
RLS is clearly faster than CHM so that the expected function
value for RLS becomes larger than that for CHM.

Theorem 2. Let x
(CHM)
0 = 0n. For all b ∈ N \ {1},

E
(

ONEMAX
(
x(CHM)
b

))
≥ (13/24)n holds.

Proof. Let Fi := ONEMAX(xi) for all i ∈ {0, 1, . . . , b}. Let
∆i := Fi − Fi−1 for all i ∈ {1, 2, . . . , b}. We see that

Ft =

t∑
i=1

∆i

holds for all t ∈ {1, 2, . . . , b}. Due to the selection we have
Fi ≥ Fi−1 for all i ∈ {1, 2, . . . , b}. Thus, for a lower bound
on E(Ft) for not too large t it suffices to consider E(∆i) for
very small i.

We consider the situation with x0 = 0n so that F0 = 0
holds. The very first mutation is guaranteed to be accepted and
the function value of the new search point equals the number
of mutated bits. Thus, we have

E(∆1) =

n∑
l=0

l · 1

n+ 1
=
n

2

and can already conclude that E(Fi) ≥ n/2 holds for all i ≥ 1.
For a lower bound on E(∆2) we consider all mutations that

only affect 0-bits in x1. Since the number of 0-bits equals
n − l if l is the length of the mutated region in the first
mutation we have i 0-bits with probability 1/(n + 1) for all
i ∈ {0, 1, . . . , n}. Given i 0-bits we mutate l of these if in the
mutation we select l as length of the mutated region and any
position p such that all l bits starting at p are 0-bits. There are
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i + 1 − l such positions for l ≤ i and no such positions for
larger l. Therefore, we have

E(∆2) ≥
n∑
i=1

1

n+ 1
·

i∑
l=1

l · 1

n+ 1
· i+ 1− l

n

=
(n+ 3)(n+ 2)

24(n+ 1)
>

n

24

and conclude that Ft ≥ 13n/24 holds for all t ≥ 2.

For the upper bound we observe that the expected progress
decreases considerably once a sufficiently large number of 1-
bits has been collected. Recall that the expected progress for
CHM heavily depends on the distribution of the 0-bits over the
bit string. We consider the best case, i. e., all remaining 0-bits
are consecutive, and show that even in this case the expected
progress is too small to keep up with RLS.

Theorem 3. Let x(CHM)
0 = 0n. For all b ∈ N0 and all constants

ε ∈ (0, 1/2), δ > 2/3

E
(

ONEMAX
(
x(CHM)
b

))
≤ n− nε +

δb

n2−3ε

holds.

Proof. We want to prove an upper bound on
E
(

ONEMAX
(
x(CHM)
b

))
. Consider some x(CHM)

t

for an arbitrary t ∈ N0. The expected in-
crease in function value in one generation, i. e.,
E
(

ONEMAX
(
x(CHM)
t+1

)
− ONEMAX

(
x(CHM)
t

)
| x(CHM)

t

)
,

is largest when the 1-bits in xt are all in a single consecutive
block. We can therefore restrict our interest to bit strings
x(CHM)
t of the form 1i0n−i with i = ONEMAX

(
x(CHM)
t

)
when bounding the expected function value.

The proof is carried out in two steps. In the first step we
show that

E
(

ONEMAX
(
x(CHM)
b

)
| ONEMAX

(
x(CHM)
b−1

)
= j − k

)
≤ E

(
ONEMAX

(
x(CHM)
b

)
| ONEMAX

(
x(CHM)
b−1

)
= j
)

(∗)

holds for any b ∈ N0 j ∈ {0, 1, . . . , n} and k ∈
{0, 1, . . . , j}. We use this to bound the expected func-
tion value after b steps by proving an upper bound on
E
(

ONEMAX
(
x(CHM)
b

)
| ONEMAX

(
x(CHM)

0

)
= n− nε

)
in-

stead of E
(

ONEMAX
(
x(CHM)
b

)
| ONEMAX

(
x(CHM)

0

)
= 0
)

.
For this it suffices to prove

E
(

ONEMAX
(
x(CHM)
b

)
| ONEMAX

(
x(CHM)
b−1

)
= j − 1

)
≤ E

(
ONEMAX

(
x(CHM)
b

)
| ONEMAX

(
x(CHM)
b−1

)
= j
)

for arbitrary b ∈ N0 and j ∈ {1, 2, . . . , n} since the original
claim then follows by induction. Remember that we only con-
sider bit strings of the form 1j0n−j . We consider an arbitrary
but fixed mutation for x = 1j0n−j and x′ = 1j−10n−j+1 and
are interested in the expected function values of the resulting
offspring. We can ignore mutations that are not accepted for
both bit strings since they do not contribute to the function

values. We can ignore mutations that do not affect the only
differing bit since they have identical effects for both x and
x′. We can ignore mutations that affect the only differing bit
and are only accepted for x′: since they are not accepted for
x we conclude that the difference in function value between x
and its offspring was negative, −1 or smaller. The difference
in function value between the offspring of x and x′ equals
1 since they differ in exactly one bit. Thus, the difference in
function value between x′ and its offspring equals 0 and has
no contribution to the expected change in function value. The
remaining mutations occur with a probability p < 1. Their
expected additional contribution in x′ in comparison to their
contribution in x is bounded by p. We conclude that

E
(

ONEMAX
(
x(CHM)
b

)
| xb−1 = x′

)
≤ E

(
ONEMAX

(
x(CHM)
b

)
| xb−1 = x

)
holds since the x contains one 1-bit more and this difference
cannot be made up for by the contribution of p.

We now consider the situation for ONEMAX
(
x(CHM)
t

)
≥

n−nε. For bit strings of the form 1i0n−i the expected increase
in function value in one generation is strictly decreasing with
increasing i. Using the notation from the proof of Theorem 2
we prove a bound on E(Fi − Fi−1 | Fi−1 ≥ n− (1 + γ)nε)
for a bit string xi−1 = 1Fi−10n−Fi−1 and a constant γ > 0
since this yields an upper bound as (∗) shows.

The number of 1-bits can be increased in a single mutation
by z ∈ {1, 2, . . . , n − Fi−1}. Consider one fixed value z ∈
{1, 2, . . . , n − Fi−1} to see how this can be achieved. The
mutation flips exactly z + j 0-bits and j 1-bits for some j ∈
{0, 1, 2, . . . ,min{Fi−1, n−Fi−1−z}}. Note that exactly z+2j
bits flip so that l = z + 2j is the only matching choice for
the random length of the mutating block. In the case that only
0-bits flip (j = 0) there are n−Fi−1−z+1 possible positions
for the beginning of the mutating block. Now consider the case
j > 0. If not all 0-bits flip (z+ j < n−Fi−1) there can be at
most two positions for the beginning of the mutating block,
either before the block of 0-bits or within it. Thus, this sub-
case contributes at most 2(min{Fi−1, n − Fi−1 − z} − 1) =
2(n − Fi−1 − z) − 2 possible positions for the beginning of
the mutating block (where the inequality holds since we have
Fi−1 � n−Fi−1). Finally, we consider the case that all 0-bits
are flipped. Since we have j flipping 1-bits there are at most
j+ 1 ≤ n−Fi−1− z+ 1 possible positions for the beginning
of the block since the number of mutated 1-bits preceding the
block of 0-bits is between j and 0. Together this yields

E(Fi − Fi−1 | Fi−1 ≥ n− (1 + γ)nε)

≤
n−Fi−1∑
z=1

z

(
(n− Fi−1 − z + 1) + (2(n− Fi−1 − z)− 2)

n · (n+ 1)

+
(n− Fi−1 − z + 1)

n · (n+ 1)

)

=
2 · (n− Fi−1 − 1) · (n− Fi−1) · (n− Fi−1 + 1)

3n(n+ 1)

<
2(n− Fi−1)3

3n2
.
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We make use of the fact that the improvement decreases
monotonically with an increasing number of 1-bits and obtain

E(Fi − Fi−1 | Fi−1 ≥ n− (1 + γ)nε) < (2/3)·(1+γ)3·n3ε−2.

We set γ := (3δ/2)1/3 − 1 which is a valid choice since
δ > 2/3 implies (3δ/2)1/3 − 1 > 0. We now have
E(Fi − Fi−1 | Fi−1 ≥ n− (1 + γ)nε) < δn3ε−2 and con-
clude that for all points of time t where ONEMAX

(
x(CHM)
t

)
≥

n − (1 + γ)nε holds we have that the expected increase in
function value is bounded by δ/n2−3ε. Together this yields
E
(

ONEMAX
(
x(CHM)
b

))
≤ n−nε+δb/n2−3ε as claimed.

We summarise what we have in the following corollary.

Corollary 1. Let x(CHM)
0 = 0n. For all b ∈ {1, 2, . . . ,

b(13/24)nc} the expected function value after b function
evaluations is larger for CHM than for RLS.

For all ε ∈ (0, 1/2) and all b ∈ {
⌈
(1− ε2)n ln(n)

⌉
,⌈

(1− ε2)n ln(n)
⌉

+ 1, . . . ,
⌊
(3/2)n2−2ε

⌋
} the expected func-

tion value after b function evaluations is larger for RLS than
for CHM.

Proof. We have

E
(

ONEMAX
(
x

(CHM)
1

))
= n/2

> 1 = E
(

ONEMAX
(
x

(RLS)
1

))
and for all b ∈ {2, 3, . . . , b(13/24)nc} we have
E
(
ONEMAX

(
xCHM
b

))
≥ (13/24)n (Theorem 2). For

RLS we know that the increase in function value that can be
achieved in one step is bounded by 1 since only one bit is
flipped. This implies

E
(

ONEMAX
(
x

(RLS)
b

))
≤ b

in general and E
(

ONEMAX
(
x

(RLS)
b

))
≤ (13/24)n for b ≤

(13/24)n in particular.
For b =

⌈
(1− ε2)n ln(n)

⌉
we have

E
(

ONEMAX
(
x

(RLS)
b

))
= n ·

(
1−

(
1− 1

n

)d(1−ε2)n ln(n)e)

≥ n ·

(
1−

(
1− 1

n

)(1−ε2)n ln(n)
)

> n ·

(
1−

(
1

n

)1−ε2
)

= n− nε
2

.

Even for b =
⌊
(3/2)n2−2ε

⌋
} we have

E
(

ONEMAX
(
x

(CHM)
b

))
≤ n− nε + 1 < n− nε2 .

B. CHM on ONEMAX starting in 1n/20n/2

We consider initialisation 1n/20n/2 and see that things are
not that different to initialisation in 0n. As in the previous
section we start with a lower bound and consider the expected
function value after the first iteration (cf. Theorem 2). We see

that we still make large progress in the beginning since all
0-bits are consecutive.

Theorem 4. Let x
(CHM)
0 = 1n/20n/2. For all b ∈ N,

E
(

ONEMAX
(
x(CHM)
b

))
≥ (2/3)n− 1 holds.

Proof. Using the notation from Theorem 2 we have F0 = n/2
and

E(∆1) =

n/2∑
p=1

(n/2)−p+1∑
l=1

l

n(n+ 1)


+

(n/2)−1∑
p=1

n−2p+1∑
l=(n/2)+2−p

n+ 2− 2p− l
n(n+ 1)


+

 n∑
p=(n/2)+2

n−1∑
l=2n−2p+3

l − n+ p− 1

n(n+ 1)


=

4n2 − 9n+ 14

24n+ 24
>
n

6
− 1

and conclude that Ft ≥ (n/2)+(n/6)−1 = (2/3)n−1 holds
for all t ≥ 1.

For the upper bound we can use exactly the same argumen-
tation as in Theorem 3.

Theorem 5. Let x(CHM)
0 = 1n/20n/2. For all b ∈ N0 and all

constants ε ∈ (0, 1/2), δ > 2/3

E
(

ONEMAX
(
x(CHM)
b

))
≤ n− nε +

δb

n2−3ε

holds.

Proof. Reconsidering the proof of Theorem 3 we see that the
statement holds not only for x(CHM)

0 = 0n but for all x(CHM)
0

with ONEMAX
(
x

(CHM)
0

)
≤ n−nε. This implies the statement

here.

We again summarise what we have in the following corol-
lary.

Corollary 2. Let x(CHM)
0 = x

(RLS)
0 = 1n/20n/2.

For all b ∈ {1, 2, . . . , bn/6c − 1} the expected function
value after b function evaluations is larger for CHM than for
RLS.

For all ε ∈ (0, 1/2) and all b ∈ {
⌈
(1− ε2)n ln(n)

⌉
,⌈

(1− ε2)n ln(n)
⌉

+ 1, . . . ,
⌊
(3/2)n2−2ε

⌋
} the expected func-

tion value after b function evaluations is larger for RLS than
for CHM.

Proof. In comparison to the proof of Corollary 1 the only
change is in the initial function value. In the first mutation
the expected function value for CHM increases by at least
bn/6c − 1 and by less than 1 for RLS. This proves the first
part of the statement. The calculations for the second part
remain largely unchanged.

C. CHM on ONEMAX with random starting point

Things change if we initialise with a random starting point
since now 0-bits are not necessarily consecutive. However, in
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the first step CHM has a good chance of making a significant
step towards the optimum, a progress of order Θ(

√
n). Since

the step size of RLS is 1 it takes at least Ω(
√
n) steps until

RLS can catch up. Later in the run, however, RLS is clearly
faster than CHM so that the expected function value for RLS
becomes larger than that for CHM.

Theorem 6. Let x(CHM)
0 and x

(RLS)
0 be selected uniformly at

random. There is a b1 ∈ N with b1 ∈ Θ(
√
n) such that the

expected function value after b function evaluations is larger
for CHM than for RLS for any 1 ≤ b ≤ b1.

There is a b2 ∈ N with b2 ∈ Θ(n) such that the expected
function value after b function evaluations is larger for RLS
than for CHM for any b ≥ b2.

Proof. We know E
(

ONEMAX
(
x(RLS)
b

))
for any b exactly

from Theorem 1 and see that E
(

ONEMAX
(
x(RLS)
b

))
≤

(n/2) + b/2 holds.

For CHM we have E
(

ONEMAX
(
x(CHM)

0

))
= n/2 and

consider the first step. This first step flips a sequence of s
bits. The number of 0-bits Z in this sequence is binomially dis-
tributed with parameters s and 1/2. We know that Pr(Z = k)
is maximal for k ∈ {s/2, (s+ 1)/2} and that the maximum
equals c/

√
s for some constant c > 0 [33]. We conclude that

Pr(Z ≥ (s/2) + (1/(4c))
√
s) ≥ (1/2)−(1/(4c))

√
s ·c/
√
s ≥

1/4 holds. Therefore, flipping this sequence increases the
function value by Ω(

√
s) with probability at least 1/4. We

have s = Ω(n) with probability Ω(1). We conclude that
the expected increase in function value is Ω(

√
n) so that

E
(

ONEMAX
(
x(CHM)

1

))
= (n/2)+Ω(

√
n) holds and the first

claim follows.
When the number of 0-bits sinks below the number of 1-

bits the probability to have sequences of bits of length s where
the number of 0-bits exceeds the number of 1-bits decreases.
When the number of 1-bits is by Θ(n) larger it becomes
exponentially small in s. This is the case because we start with
a bit string that is selected uniformly at random, because the
application of contiguous hypermutations does not change the
uniform distribution and because the selection depends only
on the number of 1-bits in a bit string. Therefore the current bit
string is distributed uniformly at random among all bit strings
with an equal number of 1-bits.

The only non-obvious of the above three reasons is the
statement about contiguous hypermutations not changing the
uniform distribution. This holds in fact for any mutation
operator with the property that mutating from x to y has the
same probability as mutating from y to x (see the proof of
Theorem 5.16 (page 120) in [25] for a proof). For contiguous
hypermutations it is the case since a mutation that leads
from x to y is characterised by a choice of position p and
length l and the same pair of values for p and l characterises
a mutation leading from y to x. Thus, for a fixed number
of 0-bits z the current bit string is any one of them with
equal probability 1/

(
n
z

)
. Therefore, with z = (n/2) − Ω(n)

the probability to have a sequence of s bits where the number
of 0-bits is larger than the number of 1-bits is e−Ω(s). This
implies a bound on the expected increase in function value

of O
(
z ·max

{
s3/

(
n2es

)
| s ∈ {1, 2, . . . , n}

})
= O

(
z/n2

)
where z denotes the total number of remaining 0-bits. The
term s3/n2 stems from the expected increase in function for
a block of up to s 0-bits. The term e−s stems from the
decreasing probability of having an appropriate block. The
factor z takes care of the number of independent such blocks
we may have. Obviously, for not very small s using a factor
of z overestimates considerably. After t steps (with t = Θ(n)
sufficiently large) where the expected increase in function
value for RLS is Θ(1) and the expected increase in function
value for CHM is O(1/n) the function value for RLS is larger
than that of CHM with probability very close to 1. This implies
the second statement.

We see that random initialisation is the only case where
classical run time analysis provides an accurate picture of the
performance of CHM and RLS.

IV. INVERSELY FITNESS-PROPORTIONAL
HYPERMUTATIONS

We now consider the mutation operator from CLONALG in
the very same way as CHM in the previous section, i. e., with
the same initialisation schemes for the sake of consistency.
We see that in contrast to CHM, CLONALG mutation is
oblivious with respect to the distribution of 0- and 1-bits. We
therefore expect to see similar results for random initialisation
and initialisation in 1n/20n/2. However, it is important to note
that the mutation rate depends on the current function value
and thus, changes over time. This makes the analysis of this
operator a challenging task. We start with initialisation in 0n

since here it is easy to see that CLONALG is very efficient.

A. CLONALG on ONEMAX starting in 0n

We first see that random initialisation in 0n is very efficient
in the case of CLONALG mutation since the algorithms jumps
directly into the optimum. The following theorem is very easy
to show.

Theorem 7. Let x(CLONALG)
0 = 0n. For all ρ ∈ R+ and b ∈ N,

E
(

ONEMAX
(
x(CLONALG)
b

))
= n

holds.

Proof. Recall, that each bit in some bit string x ∈ {0, 1}n is
flipped with probability p(x) = e−ρ·v for v = f(x)/n. With
x0 = 0n, we have ONEMAX(x0) = 0. Thus, p(x0) = e0 = 1,
independent of ρ, and we are guaranteed to find the optimum
of ONEMAX after a single mutation.

B. CLONALG on ONEMAX starting in 1n/20n/2

In the case of deterministic initialisation in 1n/20n/2 things
are more complicated since the mutation rate depends on
the current function value and thus, is changing over time.
However, to make our point, we again only consider the
situation directly after initialisation (as we did for CHM,
too) and show that with constant probability we make large
progress in the very beginning. In this case, RLS needs time to
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catch up. We start with a lemma to facilitate our argumentation
and show bounds on the probability to deviate from the
expectation of binomially distributed variables.

Lemma 1. Let X1, X2, . . . , Xk ∈ {0, 1} be independently
identically distributed random variables with Pr(Xi = 1) =
1/
√

2k for all i ∈ {1, 2, . . . , k}. Then,

Pr(X ≤ E(X)) ≥ 23

100

Pr
(
X ≥ E(X) + k1/4

)
≥ 1

50

holds for X :=
k∑
i=1

Xi and k ≥ 3.

Proof. We know that X is binomially distributed with param-
eters k and 1/

√
2k so that E(X) =

√
k/2 holds. We start with

considering bounds on the probabilities for deviating from the
expectation by exactly k1/4 and 2k1/4, respectively. Using

Pr(X = v) =

(
k

v

)
·
(

1√
2k

)v
·
(

1− 1√
2k

)k−v
and using Stirling’s Formula to deal with the Binomial coef-
ficients, one can prove that the following statements hold in
the considered setting.(

lim
k→∞

Pr
(
X = E(X)− k1/4

)
· k1/4

)
=

1(
21/4 ·

√
π · e1/

√
2
) ≈ 0.234

(
lim
k→∞

Pr
(
X = E(X) + 2k1/4

)
· k1/4

)
=

1(
21/4 ·

√
π · e2

√
2
) ≈ 0.028

From this, it is easy to conclude that

lim
k→∞

Pr
(
X = E(X)− k1/4

)
≥ 23(

100k1/4
)

lim
k→∞

Pr
(
X = E(X) + 2k1/4

)
≥ 1(

50k1/4
)

holds for sufficiently large k.
We use p := 1/

√
2k in the following. We know that for

b ∈ {0, 1, . . . , k} the probability Pr(X = b) is maximal for b
with (k+ 1)p−1 < b ≤ (k+ 1)p [33, Chap. VI.3]. Moreover,
Pr(X = b′) is strictly increasing for all b′ < b and strictly
decreasing for all b′ > b [33, Chap. VI.3]. We assume without
loss of generality that E(X) = kp =

√
k/2 ∈ N and k1/4 ∈

N. This implies that Pr(X = b) is maximal for b = E(X)
since −1 + (k + 1)/

√
2k <

√
k/2 < (k + 1)/

√
2k holds.

Using this observation, we can use the above lower bounds
on the deviation from the expectation to derive the desired
estimate. We know that Pr(X = v) ≥ 23/

(
100k1/4

)
holds

for all v = E(X)− i with i ∈
{

1, 2, . . . , k1/4
}

and get

Pr(X ≤ E(X)) ≥ k1/4 · 23

100k1/4
=

23

100
.

Analogously, we get

Pr
(
X ≥ E(X) + k1/4

)
≥ k1/4 · 1

50k1/4
=

1

50

since we have Pr(X = v) ≥ 1/
(
50k1/4

)
for all v = E(X) +

k1/4 + i with i ∈
{

1, 2, . . . , k1/4
}

.

Using this Lemma and in the same spirit as in Theorem 2
and 4 we can show a lower bound on the expected function
value after the first mutation. Based on the results in [9]
we restrict our analyses to the setting ρ = lnn in the
following. There it has been pointed out that extremely large
and extremely small values for ρ can be problematic. For the
intermediate value ρ = lnn the mutation rate tends to the
standard mutation rate 1/n and thus, this value seems to be a
natural choice.

Theorem 8. Let x(CLONALG)
0 = 1n/20n/2 and ρ = lnn. For all

b ∈ N,

E
(

ONEMAX
(
x(CLONALG)
b

))
>
n

2
+ 0.0038n1/4

holds.

Proof. After initialisation we have ONEMAX
(
x(CLONALG)

0

)
=

n/2. We consider the expected function value after the first
mutation.

Recall, that each bit in some bit string x ∈ {0, 1}n is flipped
with probability p(x) = e−ρ·v for v = f(x)/n. With x0 =
1n/20n/2, we have ONEMAX(x0) = n/2 and thus, p(x0) =
e− ln(n)·(n/2)/n = n−1/2 = 1/

√
n.

We first consider the 1-bits in x0 and assign a random
variable Xi ∈ {0, 1} with Pr(Xi = 1) = p(x0) to each of
these 1-bits, indicating if this specific bit is flipped. Then,
M1 =

∑n/2
i=1 Xi corresponds to the number of 1-bits flipping

in the current mutation. Since the Xi are independent and
initially, we have n/2 1-bits, we can apply Lemma 1 with
k = n/2 and get

Pr(M1 ≤ E(M1)) ≥ 23

100

for the number of 1-bits flipping to 0. Analogously, we get

Pr
(
M0 ≥ E(M0) +

(n
2

)1/4
)
≥ 1

50

for the number of 0-bits flipping to 1. The progress is at least
M0 −M1 with probability at least (23/100) · (1/50). Since
E(M0) = E(M1), we get M0 − M1 ≥ (n/2)1/4. Plugging
together what we have, the expected function value after the
first mutation is at least

E
(

ONEMAX
(
x(CLONALG)

1

))
≥ n

2
+

23

100
· 1

50
·
(n

2

)1/4

>
n

2
+ 0.0038n1/4

Since the function value cannot decrease in later iterations,
this proves the theorem.

We now derive an upper bound on the expected function
value and show that it does not increase beyond (1/2 + ε)n,
0 < ε < 1/2 some constant, within an exponential number
of iterations. The main proof idea follows the argumentation
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in [9] and shows that the algorithm gets stuck once a suf-
ficiently large number of ones is collected: Due to the very
large mutation probability, the mutation operator is then likely
to flip more 1-bits to 0-bits than 0-bits to 1-bits.

Theorem 9. Let x(CLONALG)
0 = 1n/20n/2 and ρ = lnn. For

all b ∈ N0 with b ≤ edn
1/2−ε

, 0 < ε < 1/2 constant, d > 0
constant and sufficiently small,

E
(

ONEMAX
(
x(CLONALG)
b

))
≤
(

1

2
+ ε

)
n+ o(1)

holds. We even have ONEMAX
(
x(CLONALG)
b

)
≤ (1/2 + ε)n

with probability 1− e−Ω(n1/2−ε).

Proof. Similarly to [9] we show that (for sufficiently large n)
with probability 1− e−Ω(n1/2−ε) the fitness function value is
not increased beyond (1/2+ε)n. This implies that for at least
edn

1/2−ε
iterations, the fitness function value is not increased

beyond (1/2 + ε)n with probability 1 − e−Ω(n1/2−ε) and we
get

E
(

ONEMAX
(
x(CLONALG)
b

))
≤
(

1− e−Ω(n1/2−ε)
)
·
(

1

2
+ ε

)
n+ e−Ω(n1/2−ε) · n

≤
(

1

2
+ ε

)
n+ o(1)

We are left with the proof of the probability to increase
the function value beyond (1/2 + ε)n. Initially we have
ONEMAX

(
x(CLONALG)
b

)
= n/2. We observe that the mu-

tation rate is monotonically decreasing in the fitness and
thus, it is maximal after initialisation. More precisely, we
have p(xb) ≤ 1/

√
n for all b ≥ 0. Thus, the expected

number of flipping bits is at most
√
n. Due to Chernoff

bounds [31] the probability that more than 2
√
n bits flip

is e−Ω(
√
n), implying that with high probability we do not

make larger ‘jumps’ towards the optimum. This implies that
with probability at least 1 − e−Ω(

√
n) we reach an interval

(1/2 + γ′)n ≤ ONEMAX
(
x(CLONALG)
b

)
≤ (1/2 + γ′′)n,

0 < γ′ < γ′′ < ε < 1/2 constant, before reaching the
optimum.

Consider some iteration with ONEMAX
(
x(CLONALG)
b

)
=

(1/2+γ)n, γ′ < γ < γ′′ constant, and let M0 and M1 denote
the number of flipping 0- and 1-bits, respectively. Due to
Chernoff bounds, the probability that more than (1+δ)E(M0)
or less than (1−δ)E(M1), 0 < δ < 2γ constant, many 0- or 1-
bits flip is at most e−Ω(E(M0)) = e−Ω(n1/2−γ). Assuming that
that many bits flip we still do not see a successful mutation:

M0 −M1

≤ (1 + δ)E(M0)− (1− δ)E(M1)

= (1 + δ) ·
(

1

2
− γ
)
n · 1

n1/2+γ

− (1− δ) ·
(

1

2
+ γ

)
n · 1

n1/2+γ

= (1 + δ)

(
1

2
− γ
)
n1/2−γ − (1− δ)

(
1

2
+ γ

)
n1/2−γ

= n1/2−γ · (δ − 2γ) < 0

Since γ < ε, this yields that with probability e−Ω(n1/2−ε) we
do not improve beyond (1/2 + ε)n within edn

1/2−ε
iterations.

We summarise our results in the following corollary. Note
that we restrict our attention to polynomial budgets, only, since
larger budgets are not of practical interest.

Corollary 3. Let x(CLONALG)
0 = x

(RLS)
0 = 1n/20n/2, ρ = lnn

and b ∈ N.
For all 1 ≤ b ≤

⌊
0.0038n1/4

⌋
− 1 the expected function

value after b function evaluations is larger for CLONALG than
for RLS.

For all b ≥ d1.61ne, b = nO(1), the expected function
value after b function evaluations is larger for RLS than for
CLONALG.

Proof. We have

E
(

ONEMAX
(
x

(CLONALG)
0

))
= E

(
ONEMAX

(
x

(RLS)
0

))
= n/2

and

E
(

ONEMAX
(
x(CLONALG)
b

))
>
n

2
+ 0.0038n1/4

for all b ∈ N. Since RLS is only flipping exactly one bit per
iteration, RLS needs at least 0.0038n1/4 iterations to gain a
progress of 0.0038n1/4. Thus, after 0.0038n1/4−1 iterations,
E
(

ONEMAX
(
x

(RLS)
b

))
< n/2+0.0038n1/4 still holds which

proves the first part of the claim.
Due to Theorem 9, the expected function value for CLON-

ALG is at most (1/2 + ε)n + o(1) for at least edn
1/2−ε

iterations. We set ε = 2/5 and investigate the number of
iterations RLS needs to improve the function value beyond
(1/2 + ε) = 9n/10. The expected function value for RLS
equals (n/2) + (n/2) ·

(
1− (1− 1/n)

b
)

(Theorem 1). A
straightforward calculation shows that this is larger than 9n/10
for b ≥ ln(1/5)/ ln(1− 1/n). Since ln(1− 1/n) ≈ −1/x for
large n, we see that b ≥ c · n, c > 0 constant, holds. A more
careful calculation shows that c = 1.61 is sufficient. Since
we restrict ourselves to polynomial budgets, this proves the
second claim.

C. CLONALG on ONEMAX with random starting point

Finally, we consider the case of random initialisation.
Compared to the previous section we now have to deal with
different possible mutation rates already after initialisation
since it is not clear how many 1-bits the initial search point
has. However, one can prove that this number is bounded and
thus things do not change significantly. Note, that again we
only consider the first iteration to make our point.

We start with a lower bound that is of the same order as
the one for initialisation in 1n/20n/2.
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Theorem 10. Let x(CLONALG)
0 be selected uniformly at random

and ρ = lnn. For all b ∈ N,

E
(

ONEMAX
(
x(CLONALG)
b

))
>
n

2
+ 0.0019n1/4

holds.

Proof. In comparison to the proof of Theorem 8 we do
not have a deterministic initial function value and thus, the
mutation rate for the initial search point can vary. Remember
that the expected number of initial 1-bits equals n/2. We
consider different cases to estimate the expected progress
in the first mutation. With probability 1/2 we have at least
n/2 many 1-bits after initialisation. In this case we have
p(x0) ≤ n−1/2 = 1/

√
n.

If the initial function value is at least n/2 + 0.0019n1/4

there is nothing to show. Thus, to prove the theorem we can
further assume that the initial function value is less than n/2+

0.0019n1/4 and thus p(x0) ≥ n−(1/2+n−3/4) holds. Note that
for n→∞ this converges to 1/

√
n.

Using Lemma 1 with n/2 ≤ k ≤ n1+2/n3/4

/2 we show that
we gain a progress of Ω

(
n1/4

)
with probability Ω(1) and see

that the different initialisation does not significantly influence
the behaviour of CLONALG. Note that the decreased progress
of 0.0019n1/4 in comparison to Theorem 8 stems from the
probability to have at least n/2 many 1-bits after initialisation.
In all other cases the change in the number of 1-bits cannot
be negative and can therefore be estimated by 0.

For the upper bound we can mostly reuse the proof of
Theorem 9. However, we need to additionally ensure that
initialisation does not significantly decrease the probability
to reach the considered interval, i. e., there exists a b with
(1/2 + γ′)n ≤ ONEMAX

(
x(CLONALG)
b

)
≤ (1/2 + γ′′)n,

0 < γ′ < γ′′ < 1/2 constant.

Theorem 11. Let x(CLONALG)
0 be selected uniformly at random

and ρ = lnn. For all b ∈ N0 with b ≤ edn1/2−ε
, 0 < ε < 1/2

constant, d > 0 constant and sufficiently small,

E
(

ONEMAX
(
x(CLONALG)
b

))
≤
(

1

2
+ ε

)
n+ o(1)

holds. We even have ONEMAX
(
x(CLONALG)
b

)
≤ (1/2 + ε)n

with probability 1− e−Ω(n1/2−ε).

Proof. The proof follows the line of thought of Theorem 9
and the work done in [9]. By Chernoff bounds, we have
Pr
(

(1/2− ε)n ≤ ONEMAX
(
x(CLONALG)

0

)
≤ (1/2 + ε)n

)
=

1 − e−Ω(n). For ONEMAX
(
x(CLONALG)

0

)
≥ n/2, the proof

from Theorem 9 carries over. For ONEMAX
(
x(CLONALG)

0

)
<

n/2, we can reuse results from Theorem 5 in [9] and see that
with probability at least 1 − e−Ω(n) we do not jump beyond
(1/2 + ε)n 1-bits. Analogously to the proof of Theorem 9 we
can conclude the above claim.

In comparison to the proof of Corollary 3 the only change is
in the initial function value. Thus, using essentially the same
arguments we get the following summarised result in the case
of random initialisation.

Corollary 4. Let x(CLONALG)
0 and x(RLS)

0 be selected uniformly
at random, ρ = lnn and b ∈ N.

For all 1 ≤ b ≤
⌊
0.0019n1/4

⌋
− 1 the expected function

value after b function evaluations is larger for CLONALG than
for RLS.

For all b ≥ d1.61ne, b = nO(1), the expected function
value after b function evaluations is larger for RLS than for
CLONALG.

V. EXPERIMENTAL SUPPLEMENTS

The results in Section III and Section IV prove that theo-
rems about the expected optimisation time that indicate that
random local search is much more efficient on ONEMAX than
hypermutations are misleading. Depending on initialisation the
immune-inspired algorithms can be superior for quite some
time and only be outperformed in the long run. While the
theorems from Section III and Section IV prove this in an
abstract sense it provides us with a more concrete and clearer
picture to consider the situation in practice, too. Therefore, we
consider the results of experiments in this section.

We consider the three different initialisations considered
in the preceding sections, namely deterministic initialisation
in 0n, deterministic initialisation in 1n0n, and random ini-
tialisation. For each type of initialisation and each of the
three algorithms we perform 100 independent runs where we
consider some still realistic but not too small value of n,
namely n = 1000. Our choice of n is mainly motivated
by the observation that for much smaller values users would
probably wait sufficiently long for RLS to find the optimum of
ONEMAX. For n = 1000 its expected optimisation time is ≈
n ln(n) ≈ 6908. We consider roughly half that many steps and
stop each run after 3500 function evaluations. The rationale
behind this lies in the nature of the fixed budget perspective.
It has been pointed out that for budgets close to the expected
optimisation time one is rather interested in the probability
that the optimum has already been found [27]. However, the
number of function evaluations considered should be as large
as possible to provide meaningful results. Setting the number
of steps to half the expected optimisation seems to be a natural
choice.

In Figure 2 we plot all average observed function values
for each step t ∈ {0, 1, . . . , 3500} together with the observed
standard deviation. This demonstrates that the function values
are rather concentrated around the averages for all algorithms
and starting points. Therefore, we present only the averages in
the other diagrams to make them less cluttered. It is notewor-
thy that the standard deviation is much larger for CHM than it
is for RLS and CLONALG. This is not difficult to understand.
For RLS, the progress in each step is either 0 or 1 since exactly
one bit is flipped. The process of RLS on ONEMAX is identical
with the well known coupon collecting process [31] and it is
well known that it is very much concentrated. For CLONALG,
the progress in one step is determined by a large number of
random experiments, one for each bit. Therefore, it is also
very much concentrated around its mean. For CHM things are
different. The progress in one step is determined by only two
random experiments (one for the position and the other for the
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length of the block) and can be any integer between 0 and n.
Thus, the variance is quite large as is evident from the much
larger standard deviation.

For deterministic initialisation in 0n, Corollary 1 states that
CHM outperforms RLS in the beginning of the run and is
outperformed by it later on. Theorem 7 states that CLONALG
will find the optimum in the first mutation and thus will be
always best among the three algorithms. We see in Figure 3
that this is the case. The initial advantage of CHM over RLS
is so large that it takes RLS almost 3000 function evaluations
to catch up. In order to investigate the significance of these
results we have performed Wilcoxon signed rank tests for
each pair of algorithms and each possible budget. Due to the
large number of tests, we perform Holm-Bonferroni correction
and depict the resulting p-values in Figure 3 along with the
standard confidence level of 0.05. We see that the differences
are significant at confidence level 0.05 after initialisation
and for RLS and CHM around the point of time when the
corresponding curves of the expected function values intersect.

For deterministic initialisation in 1n/20n/2, Corollary 2
states that CHM outperforms RLS in the beginning of the run
and is outperformed by it later on, however to a clearly lesser
degree than when initialising in 0n. Corollary 3 states similar
behaviour for CLONALG in comparison to RLS but for a
much shorter period of time. We see in Figure 4 that this is the
case. CHM and CLONALG both perform considerably better
than RLS in the beginning. RLS needs about 500 function
evaluations to catch up with CLONALG and about 1800
function evaluations to catch up with CHM. We again perform
statistical tests and depict the results in Figure 4. We see that
the differences are significant at confidence level 0.05 after
initialisation and around the points of time when two curves
of the corresponding expected function values intersect.

For random initialisation, Theorem 6 states that CHM is
always worse than RLS. Corollary 4 states that CLONALG
performs not much different from initialisation in 1n/20n/2,
i. e., initially outperforming RLS and being worse later on.
We see in Figure 5 that for CLONALG this is the case. While
CHM is very slow as predicted it performs surprisingly well in
the first three or four steps. This is due to the large variance
where a single lucky mutation increasing the number of 1-
bits by some number D (say D ∈ {4, 5, . . . , 9}) leads to
an advantage that RLS cannot catch up with in less than D
steps. As before we perform statistical tests (Figure 5) and
see that the differences are significant at confidence level 0.05
except for some short period after initialisation and around the
points of time when two curves of the corresponding expected
function values intersect.

VI. FROM ANALYSIS TO DESIGN

We have seen that depending on the choice of the initial
starting point hypermutations can make far more progress than
random local search. We have also seen that this huge benefit
in the beginning quickly decreases while optimisation pro-
gresses and that, in the end, random local search outperforms
hypermutations. This motivates a hybrid approach where one
uses hypermutations in the beginning of the search when those

promise to lead to larger progress and switch to single bit
mutations (i. e., random local search) later.

Designing such hybrid or adaptive algorithms is a very
active field across different classes of (nature-inspired) search
heuristics. One prominent example are memetic algorithms
(see e. g., [34] for a recent overview), a hybridisation of evo-
lutionary algorithms and local search. A recent development
in this area considers adaptive memetic algorithms [35] [36]
where a local search operator is adaptively selected from
a pre-defined set of different such operators. There is also
some similarity of this technique to more classical methods
such as variable neighbourhood search [37]. Another emerging
research direction are hyper-heuristics [38]–[40], which aim at
automating the design of more powerful heuristic methods by
selecting, combining and adapting several simpler heuristics.

In this section we investigate this idea for somatic contigu-
ous hypermutations, explore the point of time for the switch
and empirically evaluate the approach, and compare it with
an adaptive approach based on the same idea but exploit-
ing problem-specific knowledge. Since exploiting problem-
specific knowledge is a significant advantage we consider
this adaptive approach not so much as competition but as a
baseline for comparison, an implementation of an ideal case
that explores what can be achieved.

In order to estimate the progress a somatic contiguous
hypermutation can deliver we concentrate on the length of the
longest block of 0-bits. By ignoring other ways of increasing
the number of 1-bits our estimate becomes pessimistic.

Lemma 2. If a bit string contains a block of s consecutive 0-
bits with s ≤ n/3, then the expected increase in the number of
1-bits after application of somatic contiguous hypermutation
and selection is bounded below by s3/(2n2).

Proof. We only consider mutations that are at least partly
within the block of s 0-bits. First we consider mutations where
the starting position is within this block and the length of the
mutating block of bits is chosen such that the end is within the
block of s 0-bits, too. Second, we consider mutations where
the starting position is within this block but the length is so
large that the end of the mutating block is outside this block.
Finally, we consider mutations that start outside the block of
s 0-bits but end in it. We pessimistically assume that outside
of the block of s 0-bits we only have 1-bits. This implies that
the second and third case are symmetric and we obtain(

s−1∑
p=0

s−p∑
l=1

l

n(n+ 1)

)
+2

s−1∑
p=0

2(s−p)−1∑
l=s−p+1

s− p− (l − (s− p))
n(n+ 1)

=
s3 + s2

2n2 + n
≥ s3

2n2

as lower bound.

At least if s3/(2n2) is larger than 1 − s/n we can expect
somatic contiguous hypermutations to be more profitable than
single bit mutations. Thus, we should apply them at least as
long as s ≥ (2n2)1/3 holds.

Consider the situation where we start with 0n. Each somatic
contiguous hypermutations has the potential to introduce two
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Fig. 2. Average function values together with standard deviations on ONEMAX for 1000 bits, for initialisation in 01000 (top row), 15000500 (middle row),
and random initialisation (bottom row), for the algorithms RLS (left column), CHM (middle column), and CLONALG (right column), plotted over the number
of function evaluations. Since the standard deviations are very small they appear jointly with the averages similar to a single thick line.

separations into the bit string such that the separations cut
the bit string into blocks and each block is either a complete
block of 0-bits or a complete block of 1-bits. This implies that
the number of such blocks after t steps is bounded above by
2t. (Note that the number is not 2t + 1 since the mutations
wrap around.) Thus, the length of a longest block is bounded
below by n/(2t). We assume that there is a block of this
length that is still a 0-block. Thus, we use n/(2t) as lower
bound on the length of a longest block of 0-bits. We want this
length to be bounded below by (2n)1/3 to see an advantage for
somatic contiguous hypermutations. Thus, when starting with
0n we will use somatic contiguous hypermutations for the
first

⌈
n1/3/(2 · 21/3)

⌉
steps. When starting in 1n/20n/2 not

much is changed since already the first somatic contiguous
hypermutations leads from 0n to a bit string where our
crude estimate for the length of a longest blocks of 0-bits
is n/4. Thus, in the following experiments we use somatic
contiguous hypermutations for the first

⌈
n1/3/(2 · 21/3)

⌉
steps

when starting with 0n or 1n/20n/2. Note that the actual block
size may be much larger because our simple calculations
assumes that every step introduces new blocks. In reality only
hypermutations that lead to search points with at least equal
fitness do this.

In the unlikely case that we overestimate the length of a
longest block of 0-bits we may ‘waste’ steps by performing
somatic contiguous hypermutations in a situation where single
bit flips are expected to be more profitable. The number of

steps we may do this is O
(
n1/3

)
. The gain we expect by

starting with somatic contiguous hypermutations and switch-
ing to single bit flips in comparison to doing only random local
search is Θ(n). (This follows directly from the results about
the coupon collector scenario when comparing the situation of
a start without any coupons with the situation where initially
a linear number of coupons is given.) Thus, the potential
waste of O

(
n1/3

)
should be negligible. We investigate this

empirically by comparing the simple heuristic that switches
between the two mutation operators with an adaptive variant
that selects this point of time a bit more cleverly.

We use the same heuristic to devise this adaptive algorithm.
We scan the current bit string to determine the current number
of 0-bits z and the length of a longest block of 0-bits s. Using
Lemma 2 we apply somatic contiguous hypermutations if
s3/(2n2) ≥ 1−z/n holds and single bit mutations otherwise.
Note that this adaptive variant is a bit more computational
expensive than the hybrid variant since it requires the de-
termination of the length of the longest blocks of 0-bits. If
this is integrated into the computation of the fitness value the
additional computational effort becomes negligible, though.

We report the results of experiments for
n ∈ {250, 500, 750, . . . , 5000}. For each value of n and each
algorithm we perform 100 independent runs and use boxplots
to visualise the results. We perform experiments using the
three different starting points we have used throughout the
paper. This does not only have the advantage to match the
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Fig. 3. Average function values on ONEMAX for 1000 bits (left) and p-values of the Wilcoxon tests after Holm-Bonferroni correction (right), for initialisation
in 01000 and all three algorithms, plotted over the number of function evaluations.
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Fig. 4. Average function values on ONEMAX for 1000 bits (left) and p-values of the Wilcoxon tests after Holm-Bonferroni correction (right), for initialisation
in 15000500 and all three algorithms, plotted over the number of function evaluations.

discussion in the previous sections. It can also match the
situation in applications. E. g., in combinatorial optimisation
it is common practice not to start with a random search point
but with a trivial feasible solution (which often is 0n or 1n)
[41]. Moreover, fitness landscapes may have the property that
the population will almost surely pass through a specific point
in the search space. This is very similar to starting in such
a specific point. See work by Jansen, De Jong and Wegener
[42] for an example and note that Definition 7 in that paper
can be used as a general construction method.

In Figure 6 we see the results for the three different
choices of the initial bit string we consider. We see that the
hybrid algorithm is clearly faster than random local search.
We know that there is no asymptotical advantage but the
advantage that we expect to be in the order of Θ(n) (for a
runtime that is n ln(n) ± Θ(n)) is clearly visible and would
be noticeable in practice. We see that the adaptive variant is
even faster, outperforming the hybrid approach. This holds for
both deterministic initialisations x0 = 0n and x0 = 1n/20n/2.
When the initial bit string is chosen uniformly at random we
do not expect any advantage when using somatic contiguous
hypermutations in the beginning since there are no long blocks

of 0-bits. This is also confirmed empirically since we see
hardly any difference in the performance of random local
search, the hybrid algorithm and the adaptive algorithm in the
right column of Figure 6. We note, however, that the initial
use of somatic contiguous hypermutations does not constitute
a significant waste that would be visible as clearly inferior
performance.

To give a clearer idea of the gain in performance we fit the
function n ln(n) + cn to the mean values obtained in the 100
runs for each of the three different choices of the initial search
point x0 and each of the three algorithms. The results can be
seen in Table I. As before, we additionally perform Wilcoxon
signed rank tests to investigate the significance of the observed
differences. The results are shown in Table II and indicate that
results for initialisation in 0n and 1n/20n/2 are significant at
confidence level 0.05.

We see that the hybrid and the adaptive algorithms have
clear advantage over random local search for initialisation in
0n and 1n/20n/2. We can quantify the advantage of the hybrid
algorithm as 1.6n for x0 = 0n and 1.3n for x = 1n/20n/2. The
adaptive algorithm is about 0.7n faster than this in both cases.
Again, when the initial search point is selected randomly there
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Fig. 6. Boxplots of number of function evaluations needed to optimise ONEMAX for different initial bit strings x0: for x0 = 0n in the left column, for
x0 = 1n/20n/2 in the middle column, for random x0 in the right column. The boxplots annotated ‘RLS’ refer to random local search, ‘hybrid’ refers to the
hybrid variant that switches from somatic contiguous hypermutations to local search after the first

⌈
n1/3/(2 · 21/3)

⌉
steps, ‘adaptive’ refers to the adaptive

variant.

x0 = 0n x0 = 1n/20n/2 random x0

RLS 0.3 −0.3 −0.3
hybrid −1.3 −1.0 −0.4
adaptive −2.0 −1.8 −0.3

TABLE I
VALUES OF c OBTAINED WHEN FITTING THE FUNCTION n ln(n) + cn TO

THE MEAN VALUES OBTAINED IN THE 100 RUNS FOR EACH OF THE THREE
DIFFERENT CHOICES OF THE INITIAL SEARCH POINT x0 AND EACH OF THE

THREE ALGORITHMS.

x0 = 0n x0 = 1n/20n/2 random x0

RLS v hybrid < 2.2e-16 < 2.2e-16 0.1116
RLS v adaptive < 2.2e-16 < 2.2e-16 0.2505
hybrid v adaptive < 2.2e-16 < 2.2e-16 0.3128

TABLE II
p-VALUES OF WILCOXON SIGNED RANK TESTS.

is hardly any difference between the three algorithms.
Since the adaptive algorithm outperforms the hybrid al-

gorithm it is interesting to find out when it switches from
somatic contiguous hypermutations to local search. We display

in Figure 7 the number of steps the adaptive and hybrid
algorithm make use of somatic contiguous hypermutations.
For the hybrid algorithm this number is always equal to⌈
n1/3/(2 · 21/3)

⌉
(and, consequently, the boxplots degenerate

to a line representing this value). For the adaptive algorithm
this number depends on the initialisation. We see that the
adaptive algorithm uses somatic contiguous hypermutations
much longer than the hybrid algorithm for the two determin-
istic initialisation variants. However, when the search point is
randomly chosen it does not make use of somatic contiguous
hypermutations at all which is now less than the hybrid variant.

VII. CONCLUSIONS

Recently, the traditional analytical perspective for ran-
domised search heuristics in the context of optimisation has
been challenged and an alternative model has been proposed,
fixed budget computations. It has been argued that it offers a
perspective that is more in line with the way randomised search
heuristics like evolutionary algorithms and artificial immune
systems are actually applied. Comparing random local search
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Fig. 7. Boxplots of the number of steps the adaptive and hybrid algorithms
make use of somatic contiguous hypermutations. For the hybrid algorithm this
number is always

⌈
n1/3/(2 · 21/3)

⌉
regardless of the choice of the initial

bit string. For the adaptive algorithm this number is a random variable and
depends on the choice of the initial bit string.

with two hypermutation operators, one from CLONALG and
the other from the B-cell algorithm, we have proved that this
novel perspective can lead to radically different findings.

Using one of the best known example functions, ONEMAX,
we have compared the fixed budget performance of these three
mutation operators embedded in a minimalistic algorithmic
framework. It was known before that under the traditional per-
spective of expected optimisation time RLS outperforms CHM
clearly (beating it by a factor of Θ(n) where n is the length
of the bit strings) and that RLS outperforms CLONALG by
far (polynomial vs. exponential expected optimisation time).
We have demonstrated analytically and empirically that the
perspective of fixed budget computation leads to very different
results.

We have considered three different choices of the starting
point, namely deterministic start in the all zero bit string,
in the bit string starting with half the bits being 1-bits and
the second half of the bits being 0-bits, and with a bit string
selected uniformly at random. CLONALG outperforms RLS
with all three starting points, at least at the beginning of
the run. If the start point is different from 0n, however, it
is eventually overtaken later in the run. CHM has a better
start than RLS with the two deterministic starting points, also
being eventually overtaken later in the run. With the random
starting point its performance is poor. We see that using the
fixed budget perspective we obtain a much more balanced
and differentiated picture of the performance of algorithms in
comparison to results based on expected optimisation time. It
depends on the computational budget one is willing to allocate
which algorithm performs best.

Our results show that the traditional perspective of expected
optimisation time has its limitations: It may be unable to
explain observed good performance that is due to limiting the
length of runs. Since in practice one always considers runs of
limited length this restriction is serious. Therefore, we have
demonstrated that the perspective of fixed budget computations
provides valuable information and additional insights.

We have turned our theoretical results into practical ideas
by using a simple idea based on the gained insights to
devise a hybrid algorithm that applies somatic contiguous
hypermutations in the beginning when they can be expected
to be more beneficial and switching to local search when
somatic contiguous hypermutations start becoming too slow.
The number of steps somatic contiguous hypermutations are
used is based on our theoretical findings. We demonstrate
empirically that this hybrid algorithm exhibits noticeable im-
provements in performance in comparison with random local
search for initialisation in 0n and 1n/20n/2 (not for random
initialisation). To evaluate the effectiveness of this simple
hybrid approach we compare it with a more sophisticated
adaptive approach that determines the number of steps somatic
contiguous hypermutations are used based on the expected
progress of the two different mutation operators. Experiments
reveal that this more complicated algorithm yields no signifi-
cant advantage which validates the effectiveness of the simple
hybrid approach.

Clearly, our results are restricted to one very simple toy
problem and simplistic algorithms concentrating on the choice
of the mutation operator, only. Results for more example
problems and more complete algorithms are needed. We hope
that the introduction of fixed budget computations as analytical
perspective to the field of artificial immune systems helps
practitioners to appreciate theoretical results as practically
relevant. Moreover, we hope that demonstrating the feasibility
of fixed budget analysis in the context of artificial immune
systems motivates theoreticians to perform more advanced and
ambitious analyses.
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