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the losses of each ecosystem (mangrove, 75%; tidal marsh, 69%; tidal flats; 62%; Table S10), 135 

confirming the negative effects of widespread coastal transformation on coastal ecosystems. 

Although the impact of coastal development on mangroves and tidal wetlands have been 

previously reported (9, 14), our results reveal that Asian tidal marshes have similarly been 

severely degraded by human activities. Compared with Asia, direct human activities had a much 

lesser role in the losses of tidal wetlands in Europe (28%), Africa (27%), North America (9%), 140 

South America (2%) and Oceania (0%; Fig. S9). 

Indirect or ex situ drivers include both natural coastal processes and those influenced by 

human activities remotely from the location of observed change. They include processes of 

isostatic change (21), sea level rise (8), storm impacts (22), erosion and progradation (22), along-

shore coastal development (9), and their combined effects. More than 90% of tidal wetland 145 

losses in North America (91%), South America (98%) and Oceania (100%) were attributed to 

indirect drivers (Fig. S9). Globally, indirect drivers accounted for most losses of tidal marsh 

(78%) and tidal flats (66%), whereas mangrove losses were equally a result of direct and indirect 

drivers (50%; Table S9).  

Most tidal wetland gains (86%) were the result of indirect drivers, highlighting the 150 

prominent role that broad-scale coastal processes have in controlling tidal wetland extent and 

facilitating natural regeneration. However, disentangling the specific processes underpinning 

drivers is challenging with analyses conducted at large-spatial scales. In most cases direct drivers 

could be clearly identified, but many indirect drivers operate over large spatial and temporal 

scales and may originate tens to thousands of kilometers from an observed tidal wetland change. 155 

Change in ecosystem extent can also be the result of more than one indirect driver or of 

interactions between drivers. Our work therefore suggests a need for continued monitoring, 
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Table 1. Tidal wetland change estimates by intertidal ecosystem type for different regions 400 

of the world from 1999 to 2019. Change estimates are in square kilometers. Tidal wetlands in 

this study collectively refer to tidal flat, tidal marsh and mangrove ecosystems, such that area 

change of tidal wetlands is the sum of the change area of the three component intertidal 

ecosystems. Per-pixel loss and gain were summed to estimate loss and gain area of tidal wetlands 

and their component ecosystem types at these regional scales, with 95% confidence intervals 405 

derived from quantitative accuracy assessment in brackets. Analysis units are realms from the 

Marine Ecoregions of the World. 

 

Marine 
Ecoregion  
Realm 

Tidal flat Mangrove Tidal marsh Tidal wetlands 

Loss Gain Loss Gain Loss Gain Loss Gain 

Central  
Indo-Pacific 

-952  
(-1169,-570) 

1156  
(589,1871) 

-2719  
(-3338,-1626) 

758  
(387,1227) 

-12  
(-15,-7) 

7  
(4,12) 

-3683  
(-4522,-2203) 

1921  
(980,3110) 

Western  
Indo-Pacific 

-1573  
(-1932,-941) 

1741  
(888,2818) 

-1139  
(-1398,-681) 

380  
(194,616) 

-18  
(-22,-11) 

66  
(34,107) 

-2730  
(-3351,-1633) 

2187  
(1115,3541) 

Tropical Atlantic -1067  
(-1309,-638) 

1082  
(552,1752) 

-1541  
(-1892,-922) 

567  
(289,919) 

-14  
(-18,-9) 

5  
(2,8) 

-2622  
(-3219,-1569) 

1654  
(844,2678) 

Temperate 
Northern Pacific 

-2355  
(-2891,-1408) 

1415  
(722,2291) 

-31  
(-38,-18) 

26  
(13,43) 

-192  
(-236,-115) 

428  
(218,693) 

-2578  
(-3165,-1542) 

1869  
(954,3027) 

Temperate 
Northern Atlantic 

-594  
(-729,-355) 

827  
(422,1338) 

-2  
(-2,-1) 

2  
(1,3) 

-680  
(-835,-407) 

478  
(244,774) 

-1276  
(-1566,-763) 

1307  
(667,2116) 

Tropical Eastern 
Pacific 

-106  
(-131,-64) 

110  
(56,178) 

-93  
(-115,-56) 

86  
(44,139) 

0  
(0,0) 

0  
(0,1) 

-200  
(-246,-120) 

196  
(100,317) 

Temperate South 
America 

-110  
(-135,-66) 

117  
(60,190) 

-4  
(-5,-2) 

5  
(3,8) 

-66  
(-82,-40) 

111  
(57,180) 

-181  
(-222,-108) 

233  
(119,378) 

Arctic -118  
(-145,-71) 

173  
(88,280) 

0  
(0,0) 

0  
(0,0) 

-30  
(-36,-18) 

36  
(19,59) 

-148  
(-182,-88) 

209  
(107,339) 

Temperate 
Australasia 

-86  
(-105,-51) 

66  
(34,107) 

-13  
(-16,-8) 

2  
(1,2) 

-43  
(-53,-26) 

20  
(10,32) 

-141  
(-174,-85) 

87  
(44,141) 

Eastern  
Indo-Pacific 

-53  
(-65,-32) 

4  
(2,7) 

-1  
(-1,-1) 

1  
(0,1) 

0  
(0,0) 

0  
(0,0) 

-54  
(-67,-33) 

5  
(3,8) 

Temperate 
Southern Africa 

-9  
(-11,-5) 

8  
(4,13) 

-19  
(-23,-11) 

1  
(0,1) 

-6  
(-7,-4) 

11  
(6,18) 

-33  
(-41,-20) 

20  
(10,32) 

Southern Ocean -4  
(-5,-3) 

2  
(1,4) 

0  
(0,0) 

0  
(0,0) 

-1  
(-1,-1) 

1  
(1,2) 

-5  
(-6,-3) 

4  
(2,6) 

Total -7028 
(-8628,-4204) 

6700 
(3418,10849) 

-5561 
(-3326,-6827) 

1828 
(932,2960) 

-1064 
(-1306,- 636) 

1164 
(594,1884) 

-13652  
(-16760,-8166) 

9692 
(4944,15693) 
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where samples could not be attributed to a direct driver of change (Figure S8). Samples where clear attribution to the 

two driver classes was not possible due to lack of imagery or uncertainty about tidal wetland change were removed 760 

from the sample set. The relative contribution of direct and indirect drivers of tidal wetland loss and gain were 

estimated as the proportion of the randomly sampled pixels attributed to the two driver categories. 
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Figure S1. 765 

Representative examples of the three intertidal ecosystem types included in the tidal wetland 
map class. 
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Figure S4. 
Example of change detected in tidal wetlands from 1999 to 2019. The figure shows (A) the 785 
distribution of tidal wetlands (tidal flat, tidal marsh or mangrove) in Malaysia and Singapore, 
centered at approximately 1.4°N, 103.6°E; (B) the loss (red) and gain (blue) data layers. The 
detailed insets show a new area of tidal wetland caused by sediment deposition, by gain type (C) 
and gain year (D); and (E) detailed inset of loss by deforestation for an industrial port 
development, showing loss type (E) and loss year (F). 790 
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Figure S5. 795 

The validation samples (n = 1359) used to assess the accuracy of the tidal wetland extent 
product. 
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Figure S6. 
The validation samples (n = 3060) used to assess the accuracy of the global tidal wetland change 
product.  
  805 


































