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Deformation of a free interface pierced by a tilted cylinder:

variation of the contact angle
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Simon Cox

Institute of Mathematics and Physics, Aberystwyth University, Aberystwyth SY23 3BZ, UK

Abstract

We investigate the effects of the contact angle θw, and the angle of inclination θi on the interaction between an infinite
cylinder and a free fluid-fluid interface governed only by its surface tension. We describe a numerical method to calculate
the deformation of the interface, and use it to validate a theory for the force on the cylinder based only on knowledge of
the interface shape where it meets the cylinder.
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1. Introduction

There are many instances of a long slender object pierc-
ing an interface such as a liquid surface or a soap film.
They appear in applications throughout biology and engi-
neering, and include animal locomotion [1, 2, 3, 4]; surface
processing for nano-micro-applications, for example fiber
coating and cleaning [5, 6, 7], the assembly of hairs, car-
bon nanotubes and biological filaments [8, 9, 10, 11, 12,
13, 14, 15, 16]; uses of AFM probes [6, 17, 18]; and impact
of liquid jets [19].

There are a number of methods for calculating the in-
terface shape by integrating the Young-Laplace equation
with given boundary conditions. These include a mesh-
free finite difference method to determine the 3D menis-
cus around a pair of vertical cylinders [20]; Surface Evolver
simulations coupled to finite-difference simulations to de-
termine the deformation of an interface induced by pinning
to pillars [21]; and an ordinary differential equation solver
(MATLAB) for boundary value problems to determine the
interface shape deformed by a flexible cylinder [3].

In previous work [22], we showed that in the case of
total wetting (θw = 0), the force on the cylinder is ver-
tical, irrespective of the angle of inclination θi, and its
magnitude (which does depend on the inclination) can be
calculated from the shape of the contact line according to

Fz = 2γπR/ cos(θi), (1)

where γ is the surface tension of the interface and R is the
radius of the cylinder. This result agrees with Neukirch’s
energetic approach to describing the geometry of an infi-
nite soap film totally wetting a strip [10].

Here, we show how to generalise the approach to non-
zero contact angles. A simple expression is proposed to
quantify the contact line distortion as a function of the
inclination angle.

2. Simulations

We use the Surface Evolver [23] to calculate the shape
of a single area-minimizing surface that meets a cylindri-
cal rod, inclined at an angle θi to the vertical, at a contact
angle of θw. The Surface Evolver works by refining the
surface into a mesh of many small triangles, and moving
the vertices of these triangles so as to minimize the en-
ergy of the interface-cylinder system. This method was
previously validated in the case θw ≈ 0 [22], and indeed
this is the most severe test of the numerics. All units are
dimensionless, without loss of generality.

We first create a planar surface in the Oxy plane in
a fixed square frame of side-length 5.0 and a cylinder,
with axis in the vertical (z) direction and radius R = 0.1,
through its centre. The tension of the surface is cos(θw)−1

and, to ensure that the cylinder is partially wetted, we in-
clude a virtual liquid film on the lower half of the cylinder
with unit tension. We use the highest level of refinement
described in [22], with roughly 14,000 triangles, and 81
vertices around the contact line. This proves insufficient
only when θw is less than about 10◦ and θi is larger than
about 65◦, for which a higher level of refinement around
the cylinder is required. (This is more significant in deter-
mining the accuracy than increasing the size of the square
frame.)

One iteration consists of tilting the cylinder by ∆θi =
1.5◦ in the x − z plane and finding the new minimum
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(a)
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Figure 1: Side view of a simulation, showing how the interface deforms, in the case θi = 30◦, with an imposed contact angle of (a) θw = 90◦

and (b) θw = 60◦.

Figure 2: Schematic representation of the interface-cylinder system.

area configuration of the surface (Fig. 1). Convergence
requires up to 6000 conjugate gradient iterations, which
takes about one hour on a desktop PC. At each iteration,
the location of the points along the contact line is recorded
which, as we shall show below, is sufficient to calculate all
quantities of interest.

The shape and position of the contact line where the
interface meets the cylinder is sketched in Fig. 2. To
describe our results we will denote the reference frame of
the initially flat interface as R (Oxyz), with Ox horizontal,
and the reference frame of the cylinder as R′ (Ox′y′z′);
they are related by

x′ = cos(θi)x + sin(θi)z, (2a)

y′ = y, (2b)

z′ = − sin(θi)x + cos(θi)z. (2c)

contact angle θw 2◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

symbol ◦ ¤ ⋄ ∗ ⊲ ⊳ ▽

Table 1: The key used to represent different contact angles in the
figures.

In the reference frame of the cylinder, R′, with cylindrical
coordinates (r′, θ′, z′), any point M has ~OM = x′~ex′ +
y′~ey′ + z′~ez′ = r′~er′ + θ′~eθ′ + z′~ez′ , with

x′ = r′ cos(θ′) (3a)

y′ = r′ sin(θ′) (3b)

~er′ = cos(θ′)~ex′ + sin(θ′)~ey′ (3c)

~eθ′ = − sin(θ′)~ex′ + cos(θ′)~ey′ . (3d)

By symmetry, the contact line is given by

r′ = R (4a)

z′ = z′(θ′), (4b)

with θ′ ∈ [−π, π].

3. Results

3.1. Distortion and shift of the contact line

The shape and position of the contact line, referred to
the reference frame of the cylinder R′, for different θi and
θw, are shown in Figs. 3 and 4. Observe that the contact
line is stretched, distorted, and shifted as θi and θw vary.

The distortion of the contact line is defined by the dif-
ference in its height on two sides of the cylinder:

∆z′ = z′θ′=π − z′θ′=0. (5)
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Figure 3: Projection of the contact line on to (a) the Ox′z′ plane
and (b) the Oy′z′ plane in the reference frame of the cylinder R′ for
θi = 30◦. The contact angle θw increases upwards, according to the
key in Table 1.
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Figure 4: Projection of the contact line on to (a) the Ox′z′ plane
and (b) the Oy′z′ plane in the reference frame of the cylinder R′ for
θw = 45◦. From top to bottom θi = 6◦, 18◦, 30◦, 42◦ and 54◦.

The (dimensionless) relative perimeter of the contact line
P/2πR − 1 is also used to quantify its deformation.

If Ax′y′ , Ax′z′ and Ay′z′ denote the absolute values of
the area enclosed by the contact line when projected on
the (Ox′y′), (Ox′z′) and (Oy′z′) planes respectively, then
by symmetry, Ax′y′ = πR2 and Ax′z′ = 0. For a given
θw, Ay′z′ and ∆z′ are equal to zero when θi = 0 and both
increase monotonically as θi increases. Fig. 5 shows how
the perimeter of the contact line and its distortion ∆z′/R
depend on θi and θw. In particular, note that the effect of
θw is weak in each case.
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Figure 5: The relative perimeter (lower data) and distortion (Eq.
(5)) (upper data) plotted versus the inclination angle. Solid lines are
for the model described in § 4.1. Insert: same data plotted on log
axes, showing that the agreement is good even at small angles.

3.2. Force measurement

Following the approach for θw = 0 [22], we generalize
the force measurement to any value of θw.

We denote by M(R, θ′, z′(θ′)) a point on the contact

line and d ~M an infinitesimal variation of position along
the contact line (Fig. 2):

d ~M = Rdθ′~eθ′ + dz′~ez′ = dθ′
(

R~eθ′ +
dz′

dθ′
~ez′

)

.

For total wetting (θw = 0), the local force d~F |θw=0 on

d ~M is perpendicular to d ~M and to ~er′ :

d~F |θw=0 = γ~er′ ∧ d ~M. (6)

This generalizes to any contact angle θw as follows:

d~F = γ cos(θw)~er′ ∧ d ~M + γ sin(θw)~er′ds,
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with ds = ‖d ~M‖ the infinitesimal arclength along the con-
tact line, which gives

~F = γ cos(θw)

∮

C

~er′ ∧ d ~M + γ sin(θw)

∮

C

~er′ds. (7)

The first integral was shown in [22] to be equal to
∮

C

~er′ ∧ d ~M =
Ay′z′

R
~ex′ + 2πR~ez′ .

The second can be expanded using
∮

C

~er′ds =

∮

C

cos(θ′)~ex′ + sin(θ′)~ey′ds

=

∮

C

cos(θ′)ds~ex′ +

∮

C

sin(θ′)ds~ey′

=
1

R

∮

C

x′ds~ex′ +
1

R

∮

C

y′ds~ey′

=
1

R

∮

C

x′ds~ex′ .

This gives the expression for the force on the cylinder in
the reference frame R′:

Fx′ = 2γπR

(

cos(θw)
Ay′z′

2πR2
+ sin(θw)

1

2πR2

∮

C

x′ds

)

Fy′ = 0

Fz′ = 2γπR cos(θw),

which is related to the force in the reference frame R by

Fx = cos(θi)Fx′ − sin(θi)Fz′ , (8a)

Fy = 0, (8b)

Fz = sin(θi)Fx′ + cos(θi)Fz′ . (8c)

We observe in our simulations that the force is always
vertical in the reference frame R (data not shown). In-
troducing the condition Fx = 0 in our force expressions
(Eq. (8)) leads, after some manipulation, to the following
prediction for the vertical force:

Fz/2γπR = cos(θw)/ cos(θi), (9)

which is validated in Fig. 6 by plotting Fz for all values
of cos(θw) and cos(θi).

4. Discussion

The cylinder perturbs the soap film, and this pertur-
bation relaxes towards the horizontal as the distance from
the cylinder increases. Although a description of the exact
film shape is highly non-trivial [24], it is possible to charac-
terize the film shape and distortion using approximations.
We also give an empirical expression for the distortion of
the contact line ∆z′.
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Figure 6: Force measurements. The dimensionless vertical force
Fz/2πR versus cos(θw)/ cos(θi). One point is slightly off the lin-
ear main trend, indicating a lack of mesh refinement when θw . 10◦

and θi & 65◦ (see § 2). Insert: the dimensionless vertical force vs
the inclination angle for all data points.

Figure 7: 2D projection of the film shape for θw = 90◦ showing the
various geometrical quantities defined in the text.

4.1. Film shape

The film shape can be described in terms of its height
above the underformed film in cylindrical coordinates, z =
S(r, θ). This is shown in Fig. 8 for several θi in the case
θw = 90◦.

Assuming that the film is a minimal surface, the mean
curvature is equal to zero. If we make the convenient and
often-used assumption that the gradient of S is small, then
S(r, θ) satisfies Laplace’s equation, and a separable solu-
tion of the form

S(r, θ) =

∞
∑

n=1

An

cos((2n − 1)θ)

r2n−1
(10)

is appropriate for the case θw = 90◦ (which is the case
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Figure 8: Film characterization for θw = 90◦. Contour plot of film height S for (a) θi = 15◦, (b) 30◦, (c) 45◦ and (d) 60◦. (e) |z0|/R versus
tan(θi) for all inclination angles.

with the highest degree of symmetry; other terms would
be needed for other θw). For that wetting angle, our re-
sults indicate (data not shown) that the fundamental mode
is dominant whatever the inclination angle, but that the
higher order terms gain in importance close to the cylinder
as θi increases. In particular, we find that the fundamental
mode is sufficient to describe the distortion of the contact
line for small θi, but fails for larger inclination angles.

4.2. Empirical approach

We denote by M0(x0, z0) the point at which the film
touches the cylinder in the Oxz plane (Fig. 7). For
θw = 90◦, we find empirically that the position of M0, as a
function of the inclination angle, is well approximated by
the following expression (Fig. 8e):

z0 ≃ −R tan(θi). (11)

From geometrical considerations (Fig. 7), the distortion
can then be expressed as

∆z′ = 2(R tan(θi) + |z0|/ cos(θi))

which leads to the following empirical expression for the
contact line distortion:

∆z′ ≃ 2R tan(θi)

(

1 +
1

cos(θi)

)

. (12)

It is remarkable that this expression shows excellent agree-
ment with measurements for all θi and all θw (Fig. 5) and
that such a simple law (Eq. 11) captures the effect of the

whole contact line, despite the fact that this profile is de-
termined by a local condition (that the contact angle is
equal to θw). Eq. (12) should be useful in testing models
or possible candidates to describe the whole film shape.
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Figure 9: Ellipse approximation. The dimensionless relative perime-
ter versus the dimensionless distortion. The solid line holds for the
ellipse approximation model described in the main text. Insert: same
data plotted on log axes, showing that the agreement is good even
at very small ∆z′/R.
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4.3. Contact line profile - elliptical approximation

Plots of the contact line profiles (Figs. 3 and 4) sug-
gest that they are roughly elliptical. This approximation
certainly appears appropriate for the smallest θi and the
largest θw. Approximating the contact line as an ellipse
allows us to link ∆z′ and P. The ellipse should have a

semi-major axis a = R

√

1 + 1

4

(

∆z′

R

)2
(see Fig. 7) in the

Oxz plane and a semi-minor axis b = R in the perpen-
dicular direction. The ellipse perimeter can be estimated
using Ramanujan’s approximation:

P = π
(

3(a + b) −
√

(3a + b)(3b + a)
)

,

and compared with simulations by plotting P/2πR − 1
versus ∆z′/R, as shown on Fig. 9. The comparison is
satisfactory even at large θi and small θw, validating its
use.

Combining this with the empirical expression for the
film shape (§4.2) as a way to predict the distortion ∆z′,
we can directly compare perimeter measurements with this
model on Fig. 5. Again, good agreement is found.

5. Conclusions

We have studied the deformation of a free interface
pierced by a tilted cylinder, varying both the contact angle
and the angle of inclination of the cylinder. We derive
equations that link the position of the contact line to the
interaction force, and give an explicit expression for the
latter (Eq. (9)).

The deformation of the interface may be characterized
by a superposition of cylindrical harmonics, the first of
which is dominant and sufficient to describe the far field
perturbation. We give an empirical expression for the dis-
tortion of the contact line (Eq. (12)) valid for all inclina-
tions and contact angles.
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