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Convolutional LSTM-Based Hierarchical Feature
Fusion for Multispectral Pan-Sharpening

Dong Wang, Yunpeng Bai, Chanyue Wu, Ying Li, Changjing Shang, and Qiang Shen

Abstract—Multispectral (MS) pan-sharpening aims at produc-1

ing High Resolution (HR) MS images in both spatial and spectral2

domains, by merging single-band panchromatic (PAN) images3

and corresponding MS images with low spatial resolution. The4

intuitive way to accomplish such MS pan-sharpening tasks, or5

to reconstruct ideal HR-MS images, is to extract feature pairs6

from the given PAN and MS images and to fuse the results.7

Therefore, feature extraction and feature fusion are two key8

components for MS pan-sharpening. This paper presents a novel9

MS Pan-sharpening Network (MPNet), including a heterogeneous10

pair of Feature Extraction Pathways (FEPs) and a Convolutional11

LSTM (ConvLSTM)-based Hierarchical Feature Fusion Module12

(HFFM). Specifically, we design a PAN FEP to extract 2D feature13

maps via 2D convolutions and dual attention, while an MS FEP is14

introduced in an effort to obtain 3D representations of MS image15

by 3D convolutions and triple attention. To merge the resulting16

hierarchical features, the ConvLSTM-based HFFM is developed,17

leveraging intra-level fusion, inter-level fusion, and information18

exchange within one single framework. Here, the inter-level19

fusion is implemented with the ConvLSTM to capture the20

dependencies amongst hierarchical features, reduce redundant21

information, and effectively integrate them via its recurrent22

architecture. The information exchange between different FEPs23

helps enhance the representations for subsequent processing.24

Systematic comparative experiments have been conducted on25

three publicly available data sets at both reduced-resolution26

and full-resolution, demonstrating that the proposed MPNet27

outperforms state-of-the-art methods in the literature.28

Index Terms—Hierarchical Feature Fusion, Convolutional29

LSTM, Multispectral Pan-sharpening, Information Fusion, Triple30

Attention.31

I. INTRODUCTION32

H IGH Resolution (HR) remote sensing images in both33

spatial and spectral domains are desirable for many34

practical applications, e.g., environmental monitoring [1], ob-35

ject detection [2], land cover classification [3], [4], remote36
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sensing scene classification [5]–[7], etc. However, due to 37

hardware limitations, it is often difficult to obtain such ideal 38

images. Instead, only panchromatic (PAN) images with high 39

spatial resolution and low spatial resolution MS images may 40

be captured by some sensors, e.g., IKONOS, QuickBird, 41

and WorldView-4. From this regard, techniques for MS pan- 42

sharpening are desirable that are developed to obtain HR-MS 43

images by fusing the PAN images and the corresponding MS 44

images [8], [9]. 45

Over the last decades, many and various MS pan-sharpening 46

approaches have been proposed, e.g., Component Substi- 47

tution (CS)-based methods [10], Multi-Resolution Analysis 48

(MRA)-based methods [11], model-based methods [12]–[14], 49

CS/MRA hybrid methods [15], CNN-based methods [16]– 50

[20], etc. The advantages of CS-based methods are fast, 51

easy to implement, and robustness to misregistration errors 52

and aliasing. MRA-based approaches typically characterize 53

temporal coherence, spectral consistency, and robustness to 54

aliasing under certain appropriate conditions. CS/MRA hybrid 55

methods combine both of them and inherit their advantages. 56

Generally speaking, model-based methods can obtain fused 57

images of relatively high quality. However, these approaches 58

bear their own limitations. For CS-based methods and MRA- 59

based approaches, there is a conflict between retaining the 60

spectral information in MS images and improving the spatial 61

resolution, especially when the spectrum range of the MS 62

images and that of the PAN images are only partially overlap- 63

ping. Model-based methods rely heavily on priori knowledge 64

and hyper-parameters, while requiring high computational 65

resources. 66

Recently, Convolutional Neural Network (CNN)-based tech- 67

niques have shown great potential in the field of MS pan- 68

sharpening, thanks to the high non-linearity of deep CNNs that 69

facilitates sophisticated modeling tasks. Such fusion methods 70

can be coarsely classified into two groups: single-level feature 71

fusion (Fig.1a and Fig.1b) and multi-level feature fusion 72

(Fig.1c), with most of which [16], [21]–[24] adopting the 73

single-level feature fusion approach, involving early fusion 74

(Fig.1a) or late fusion (Fig.1b), through fusing the representa- 75

tions from different sources regarding a given position. Single- 76

level feature fusion can only merge partial information to 77

perform MS pan-sharpening however, which may hinder the 78

full achievement of fusion potential. In contrast, multilevel 79

features are capable of representing different characteristics 80

of PAN and MS images, thereby significantly improving the 81

fusion performance. 82

Despite the promising performance obtained by the above 83

methods, three key issues have not been solved yet. One is 84
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(a) Early fusion (b) Late fusion

(c) hierarchical fusion

Fig. 1. Example of early fusion, late fusion, and hierarchical fusion.

that most of the existing multilevel feature fusion methods85

[20], [25] only use simple fusion manners, such as summa-86

tion, concatenation, etc., to fuse features of several levels.87

The hierarchical features may provide redundant but com-88

plementary information since different-level features contain89

specific information. Only fusing a portion of hierarchical90

features can limit the pan-sharpening performance. In addition,91

such naive fusion methods hardly reduces the redundancy of92

the hierarchical features without learning the dependency of93

the hierarchical features. Another issue is that most existing94

methods treat diverse features at each spatial-spectral position95

equally, which lacks flexibility in dealing with different types96

of information. For instance, edges containing high-frequency97

information are much more difficult to reconstruct than flat98

regions and should gain more attention during pan-sharpening.99

The third issue has to do with the fact that most of these100

approaches employ 2D convolutions for both spatial and spec-101

tral information processing. Unfortunately, 2D convolutions102

typically cause the extracted features in the spectral dimension103

of a layer to be averaged and collapsed to a scalar [26],104

resulting in low spectral resolution.105

Having taken notice of the aforementioned issues, a novel106

network for MS Pan-sharpening (MPNet) is proposed in107

this work, where attention-based Feature Extraction Pathways108

(FEPs) and ConvLSTM-based Hierarchical Feature Fusion109

Module (HFFM) are exploited. First, A heterogeneous pair of110

FEPs is employed to extract hierarchical spatial and spectral111

features. In PAN FEP, 2D convolutions and dual attention,112

i.e., Channel-Spatial Attention (CSA), are utilized to obtain113

more informative feature maps. In contrast, the MS FPS114

extracts the 3D representations by 3D convolutions and triple115

attention, i.e., Channel-Spectral-Spatial Attention (CSSA). We 116

then employ the hierarchical fusion (shown in Fig.1c), one 117

kind of multi-level feature fusion, to merge all hierarchical fea- 118

tures in a shallow-to-deep manner. Specifically, all generated 119

hierarchical features are merged with the ConvLSTM-based 120

HFFM, which captures the dependencies amongst hierarchical 121

features, reduce redundant information, and integrate them ef- 122

fectively via its recurrent architecture. The main contributions 123

of this paper are outlined as follows: 124

1) We develop a heterogeneous pair of FEPs for MS pan- 125

sharpening. The PAN FEP equipped with 2D convolutions 126

and CSA obtains the feature maps from PAN images, 127

while the MS FEP acquires 3D representations via 3D 128

convolutions and CSSA from MS images. This provides 129

a novel approach that integrates the CSSA mechanism to 130

address the issue of MS pan-sharpening, which can adap- 131

tively learn further informative channel-wise, spectral- 132

wise, and spatial-wise features simultaneously. 133

2) Different from most existing pan-sharpening methods that 134

adopt single-level feature fusion, the multi-level represen- 135

tations are investigated for fusion in this study. To fully 136

exploit the potential representation capacity of multi-level 137

features, hierarchical fusion is investigated that merges 138

all hierarchical features in a shallow-to-deep manner. 139

Taking advantage of the representations of a wider range 140

of levels, information on different sources can be better 141

fused. 142

3) We present a ConvLSTM-based HFFM to merge the hi- 143

erarchical spatial and spectral features of different levels. 144

The HFFM leverages intra-level fusion, inter-level fusion, 145

and information exchange within one single framework. 146

The inter-level fusion is herein implemented originally 147

with the ConvLSTM to capture the dependencies amongst 148

hierarchical features, reducing redundant information, and 149

to integrate them effectively via its recurrent architecture. 150

4) Extensive comparative experiments on three publicly 151

available benchmark data sets (namely, IKONOS, Quick- 152

Bird, and WorldView-4) are conducted at both the full- 153

resolution and the reduced-resolution level. In reduced- 154

resolution experiments, the proposed MPNet substantially 155

outperforms the State-Of-The-Art (SOTA) methods. Re- 156

sults of full-resolution experiments also demonstrate that 157

MPNet achieves competitive performance. 158

The remainder of this paper is organized as follows. Section 159

II briefly introduces the background knowledge of the Con- 160

vLSTM and the existing CNN-based pan-sharpening meth- 161

ods. The proposed approach is detailed in Section III. The 162

experimental results are presented and discussed in Section 163

IV. Finally, the conclusion of this paper is given in Section V. 164

II. RELATED WORK 165

For academic completeness, this section presents an 166

overview of the relevant background, regarding CNN-based 167

pan-sharpening approaches and ConvLSTM. 168

A. CNN-Based Pan-Sharpening 169

Recently, CNNs have become increasingly popular in the 170

implementation of systems for MS pan-sharpening. The fol- 171
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lowing part describes CNN-based methods according to the172

classification of early fusion, late fusion, and multilevel fusion.173

Early fusion-based methods concatenate the up-sampled MS174

image and the PAN image and then reconstruct the HR-MS175

image. Inspired by the significant work of SRCNN [27], PNN176

[21] was proposed, being the first utilising CNN for pan-177

sharpening. In the architecture of PNN, each MS image is178

up-sampled and concatenated with the PAN image, thereby179

implementing early fusion. PNN has been further extended180

with residual learning [16], leading to a significant perfor-181

mance gain over the original PNN. A target-adaptive tuning182

phase is introduced in the PNN+ [16] to solve the problem183

of insufficient data. As with PNN, a Multi-Scale and multi-184

Depth Convolutional Neural Network (MSDCNN) is proposed185

[24], which also concatenates the PAN band and the MS bands186

together, feeding the concatenated into the network. Recently,187

a novel unsupervised framework has been introduced for pan-188

sharpening based on GAN and PNN, termed as Pan-GAN,189

which does not rely on the availability of information on190

ground-truth during the phase of network training [19].191

Late fusion is also employed in some pansharening methods.192

Unlike the methods mentioned above, a remote sensing image193

fusion mechanism, named RSIFNN, is considered in [28] that194

can adequately extract spectral and spatial features from the195

source images. In RSIFNN, the spatial and spectral features196

are only integrated at the late stage, without leveraging the197

Hierarchical features of the PAN and MS streams. Liu et198

al. [18] proposed a Two-stream Fusion Network (TFNet)199

that extracts CNN features from PAN and MS images with200

two 2D CNN and subsequently fuses the deepest features201

with concatenation operation. Subsequently, they proposed a202

generative adversarial network for remote sensing image pan-203

sharpening (PSGAN) [29], consisting of a generative network204

(i.e., TFNet) and a discriminative network.205

Another popular family is based on the multilevel fea-206

ture fusion. Zhang et al. [25] introduced a new end-to-end207

bidirectional pyramid network (BDPN) for pan-sharpening.208

Two bidirectional pyramid branches process MS and PAN209

images separately, and merge them at only two levels with the210

summation operation. Cai et al. [20] propose and develop a211

novel pan-sharpening algorithm that is guided by a deep super-212

resolution convolutional neural network, where the progressive213

pan-sharpening with two-level fusion is used to achieve a214

gradual and stable pan-sharpening process.215

B. ConvLSTM216

LSTM has achieved great success for sequence modeling217

in performing various natural language processing tasks, in-218

cluding speech recognition [30] and visual question answering219

[31]. With the gates, LSTMs can remove or add information220

to the cell states and can model the long-term dependencies.221

Note however, that LSTMs only take as input 1D vectors222

and thus, cannot be applied for 2D feature maps. The 2D223

convolution operation is therefore introduced to LSTM, result-224

ing in ConvLSTM [32], which can process 2D feature maps,225

automatically capturing temporal dependencies between states.226

ConvLSTMs can also be exploited for 3D data processing.227

For instance, a fast video salient object detection model is 228

proposed in [33], based on Pyramid Dilated Bidirectional Con- 229

vLSTM (PDB-ConvLSTM). In [34], a powerful tree-structure 230

based traversal method is presented to model 3D skeletons, 231

with LSTM employed to handle the noise and occlusions in 232

the 3D data. Also, an Object-to-Motion convolutional neural 233

network (OM-CNN) has been reported [35], in which a two- 234

layer ConvLSTM (2C-LSTM) network is utilised to predict 235

video saliency. 236

Although aforementioned CNN-based methods have 237

achieved great advances in the field of pan-sharpening, 238

there are three issues still existing. One is that the existing 239

multilevel feature fusion methods only merge part levels with 240

a simple fusion manner, e.g., summation or concatenation. 241

As demonstrated by many visualization works, shallow level 242

features contain more details. With the increase of layers, the 243

features will become more abstract. The hierarchical features 244

can provide redundant but complementary information. Only 245

fusing a portion of hierarchical features with such naive 246

fusion methods may limit the pan-sharpening performance. 247

Another issue goes that most existing treat diverse features at 248

each spatial-spectral position equally, which lack flexibility 249

in dealing with different types of information. The last 250

issue is that most of them employ 2D convolutions for both 251

spatial and spectral information processing. Unfortunately, 252

2D convolutions cause the extracted features in the spectral 253

dimension of a layer to be averaged and collapsed to a scalar 254

[26], which leads to low spectral resolution. 255

III. PROPOSED APPROACH 256

The purpose of MS pan-sharpening is to obtain HR-MS im- 257

ages by fusing single-band PAN images and the corresponding 258

MS images with � bands (e.g., � = 4 for IKONOS, QuickBird, 259

and WorldView-4 satellites). In this paper, the observed PAN 260

images are denoted as -% ∈ '�×, , where � and , are the 261

height and width, respectively. Also, -" ∈ '
�
4 ×

,
4 ×� repre- 262

sents the MS images, with 4 being the spatial resolution ratio 263

between the PAN images and the corresponding MS images. 264

The ideal HR-MS images are denoted as ." ∈ '�×,×�. A 265

detailed illustration of the proposed MPNet is shown in Fig. 2. 266

Particularly highlighted in the yellow and blue background, the 267

PAN and MS FEPs extract hierarchical features from the PAN 268

and MS images, respectively. The HFFM fuses the resulting 269

hierarchical features level by level. The reconstruction module 270

is devised to recover the ideal HR-MS images. More details 271

about the four main parts of our newly proposed MPNet and 272

the object function are given in Section III-A-III-E. 273

A. PAN FEP 274

PAN FEP is designed to extract 2D hierarchical features 275

from the PAN image. Without loss of generality, the idea 276

of the ResNet [36] is applied to implement this FEP, where 277

the DenseNet [37] can be readily constructed by replacing 278

ResBlocks with DenseBlocks [37]. In addition, the 2D features 279

which contain distinct information across channels or spatial 280

positions, contribute differently to the pan-sharpening process. 281

The channel attention and the spatial attention should highlight 282



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4
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Fig. 2. Architecture of the proposed MPNet. The left coordinate system indicates dimensionalities of width, height, bands, and channels. � and , represent
image height and width. � indicates the number of bands. � denotes the number of channels. FEP denotes the feature extraction pathway. HFFM represents
the hierarchical feature fusion module. CSA and CSSA indicate channel-spatial attention and channel-spatial-spectral attention, respectively. V is the filter
number ratio between the FEPs. �; and �; denote hidden and cell states of ConvLSTM, respectively.

the most informative feature maps and regions, respectively.283

Thus, the PAN FEP contains a stem layer and ! stacked284

CSAResBlocks with 2D convolutions and these attentions.285

Batch normalization and sampling operation are removed to286

reduce the brought noise and to preserve details, respectively.287

In short, the PAN FEP can be formulated as follows:288

�0
2� = 50 (-%) (1)

289

�!2� = 5 ;2� (�
;−1
2� + �

;−1
�,2�) (2)

where 50 denotes the stem layer consisting of a 2D convolu-290

tion and a Parametric Rectified Linear Unit (PReLU); 5 ;2�291

represents the CSAResBlocks; ; indexes the level number,292

ranging from 1 to !. CSAResBlock utilizes CSA to improve293

the representation ability of the FEP. We construct a channel-294

attention module and a spatial-attention module to exploit the295

interchannel relationships and the interspatial dependencies,296

respectively. The channel-attention module and the spatial-297

attention module are shown in Fig. 3, where A is the reduction298

ratio (which is herein set to 16 according to the practice in299

the literature [38]).300
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B. MS FEP 301

MS FEP is devised to extract 3D representations with 3D 302

convolutions. Note that 3D CNNs have been employed in 3D 303

data-related tasks despite their high computation complexity 304

to improve system performance [39]–[41]. This is due to the 305

recognition that the 3D convolutions are more consistent with 306

the underlying characteristics of 3D data. Although CNNs has 307

proven to be effective in the field of pan-sharpening, they may 308

be hindered by their modelling of all spectral bands with the 309

same weight, as generally not all bands are equally informative 310

and predictive [42]. Therefore, the CSSA mechanism is inte- 311

grated to address the issue of MS pan-sharpening, which can 312
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adaptively learn more informative channel-wise, spectral-wise,313

and spatial-domain features simultaneously.314

The overall structure of the MS FEP is similar to the PAN315

FEP. Using the bicubic interpolation algorithm [43], the input316

MS image is up-sampled to align with the PAN image. In317

particular, the first layer is a stem layer, in which a 3D318

convolution layer [44] replaces the 2D counterpart, and the319

others are CSSAResBlocks with 3D convolutions. The number320

of channels is reduced to V� to relax the computational burden321

(where V is empirically set to 0.5 in this paper to balance the322

computational cost of these two FEPs).323

Apart from channel attention and spatial attention,324

CSSAResBlock learns how to pay attention to spectral do-325

main. Although the general structures of the channel-attention326

module and the spatial-attention module are the same as that327

of CSAResBlock, certain components have been customized328

for 3D representation, e.g., the global pooling used in these329

modules is replaced with spatial-spectral average-pooling and330

channel-spectral average pooling, respectively. The structure331

of CSSAResBlocks is outlined in Fig. 4.332

The spectral attention is comprised of a global pooling333

layer and MLP. The channel-spatial information of the input334

features is aggregated by channel-spatial average-pooling. The335

spectral attention is computed such that336

"B?4 (�) = f("!%(�E6%>>; (�)))
= f(,1X(,2�

2,B?4
0E6 ))) (3)

where f represents the sigmoid function; X denotes the337

PReLU; ,0 ∈ '�×�; ,1 ∈ '�×�; and �2,B?40E6 is the generated338

channel-spetial context descriptor.339

C. ConvLSTM-Based HFFM340

Once the hierarchical representations are obtained, they will341

be fused in the next step. However, the normal multilevel342

feature methods only merge the multi-level features at several343

levels. In addition, most existing multi-level feature-based344

approaches employ simple fusion operations, e.g. concate-345

nation, summation, and multiplication, etc. The hierarchical346

features representing the input image at different positions347

have complementary and redundant information. With more348

levels involved, it may be more difficult for the feature fusion349

methods to decide what information needs to throw away or350

pick up with more levels involved. Such naive fusion man-351

ners ignore dependencies between features at different levels,352

which may hinder the fusion performance. In this paper, the353

ConvLSTM-based HFFM is utilized to integrate these features.354

ConvLSTM has the ability to retain long-term information355
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Fig. 5. Architecture of HFFM, where ⊗ denotes element-wise multiplication,
⊕ represents element-wise summation, and f indicates sigmoid function.

with the cell states, which facilitates mining their dependencies 356

in a learnable way. With the learned dependencies, HFFM can 357

reduce redundant information, and integrate effectively via its 358

recurrent architecture. 359

The architecture of HFFM is shown in Fig. 5. At each layer, 360

it has two inputs (�;2� and �;3�) and produces two outputs 361

(�;
� ,2� and �;

� ,3� for PAN and MS FEPs, respectively). Intra- 362

level fusion integrates the spatial and spectral information 363

from the FEPs, which is shown in Fig. 5. Inter-level fusion is 364

implemented with the ConvLSTM, where the gates learn the 365

dependencies of different levels from data. The resulting gates 366

can reduce the redundant information in hierarchical features, 367

which may boost the fusion performance. The exchanged 368

information is demonstrated in the right part of Fig. 5. 369

1) Intra-Level Fusion: The responsibility of intra-level fu- 370

sion is to integrate the spatial feature and spectral information 371

of the same level. The key motivation behind this is that feature 372

representations at different levels may differ significantly, e.g., 373

high-level features have abstract information, while their low- 374

level counterparts are of minor details concerning edges and 375

curves. Of course, the fusion of the same type of features 376

is more accessible than different types. Instead of integrating 377

a mass of low-level and high-level features in one step, 378

individual representations of the same level are fused before 379

merging those of different levels. The intra-level fusion can 380

be formulated as: 381

�; = ,�,1 ∗) �;2� +,�,2 ∗ �
;
3� (4)

where ∗) and ∗ denote a transpose convolution and a normal 382

convolution, respectively; ,�,1 and ,�,2 are weights of the 383

two filters. The ∗) increase the spectral dimension of the of 384

�2� . 385

2) Inter-Level Fusion via ConvLSTM: Whilst Conv-LSTM 386

is often applied for time sequence-related tasks, especially for 387

handling sequential inputs like video frames, LSTMs are also 388

widely used to model sequential relationships between differ- 389

ent image bands [45], [46]. For example, the issue of spectral 390

feature extraction has been considered as a sequence learning 391

problem [45] and as shown in [46], for each pixel, spectral 392

values from different channels are fed into spectral LSTM 393

one by one to learn the spectral features. Indeed, the inputs 394

of ConvLSTM in this work are closely related to the features 395

extracted from different levels. Yet, the inputs of ConvLSTM 396

in video processing are not necessarily independent features 397
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obtained simply at the same level because the frames in videos398

may also be closely correlated.399

In this work, ConvLSTM manages to mine the dependencies400

amongst hierarchical representations and to integrate them.401

As the cell states contains long-term information of previous402

levels, they act as the bridge to connect the current situation to403

prior levels. The input gate and the forget gate learn the depen-404

dencies between different levels and decide what information405

is to be removed from the cell states of the previous level406

and what new information to be selected for fusion. Based on407

�;−1, �;−1, and �;
�

, the gate outputs a number between 0 and408

1 for each spatial-spectral element, where 0 and 1 indicates409

completely forgetting and keeping the corresponding element,410

respectively. The input gate, then, decides on which part of411

the fused spatial-spectral feature will flow into the cell with a412

sigmoid layer. ConvLSTM automatically extracts hidden states413

with the output gate .414

Following the standard method for developing a ConvL-415

STM, apart from the current inputs, previous hidden states416

are integrated. Note that the group convolution is employed417

to release the restriction over the input image size produced418

by the Hadamard product of the original ConvLSTM. The419

elimination of this restriction enables the block effect in the420

fused image to be addressed. In addition, the ConvLSTM in421

this paper is constructed with 3D convolutions instead of 2D422

convolutions in the original ConvLSTM. This procedure is423

summarised in the following equations:424

8; = f(,8 ∗ �; +,ℎ8 ∗ �;−1 +,28 ∗ �;−1 + 18) (5)
425

5 ; = f(, 5 ∗ �; +,ℎ 5 ∗ �;−1 +,2 5 ∗ �;−1 + 1 5 ) (6)
426

�; = 5 ; ◦ �;−1 + 8; ◦ tanh(,2 ∗ �; +,ℎ2 ∗ �;−1 + 12) (7)
427

>; = f(,>∗) �; +,ℎ,> ∗ �; +,2> ∗ �; + 1>) (8)
428

�; = >; ◦ tanh(�;) (9)

where �;−1 indicates the hidden state of previous level; ,429

and 1 are learnable parameters; ∗ stands for the convolution430

operation; C0=ℎ represents the tanh activation function; 8;431

denotes the input gate at level ;; ◦ represents the element-432

wise multiplication; >; is the output gate; the notation ∗ in433

,28∗�;−1, ,ℎ 5 ∗�;−1, and ,ℎ,>∗�; is a grouped convolution,434

where the number of groups is the same as the channel435

dimensionality.436

3) Information Exchange: Inspired by [47] in which in-437

formation exchange between different channels can enhance438

overall information content, the information exchange is also439

incorporated in our method. The hidden states, as the output440

information, are obtained by the output gate, and are fed back441

to the FEPs.442

The information ��,2� and ��,3� fed back the PAN and443

MS FEPs is shown as at the right part of Fig. 5, respectively.444

Since the ConvLSTM operates on 3D data, the output features445

�;
�,2� for the PAN FEP need to be transformed to 2D format.446

These are obtained through the following computation:447

�;� ,3� = �
; (10)

448

�;� ,2� (8, 9) = 5�×1×1 (�;) (11)

FL
2D

3D de-conv

FL
3D

HL

concat
bottleneck layer CSSA ResBlock 3D conv

HR-MS

Fig. 6. Architecture of reconstruction module.

where �;
�,3� denotes the information fed back to the spectral 449

FEP; 5�×1×1 (�;) is a � × 1 × 1 convolution layer. 450

D. Reconstruction Module 451

The responsibility of the reconstruction module is to recover 452

the desired HR-MS images from the fused feature �! . Inspired 453

by the work of [18], �!2� and �!3� are also fed to the 454

reconstruction module. The redundant information of these 455

three items is reduced with a bottleneck layer. CSSAResBlock 456

is also employed to obtain further informative representations, 457

improving the non-linearity and alleviating the gradient van- 458

ishing problem. Finally, the HR-MS image is recovered by a 459

convolutional layer from the feature space. 460

Fig. 6 illustrates the reconstruction module, which can be 461

divided into four components: a 3D de-convolution layer, a 462

bottleneck layer, a CSSAResBlock, and a 3D convolution layer 463

without activation. First, �!2� is projected into 'V�×�×�×, by 464

a de-convolution layer. Next, it is concatenated with �!
"

and 465

�! . Then, the bottleneck layer is added to weight the three 466

3D features by V� filters of size 1 × 1 × 1. After that, the 467

output of this layer is fed into the 3D residual block '3� , in 468

an effort to transform the weighted features into the recovery 469

domain. Finally, a filter of size 3 × 3 × 3 recovers the ideal 470

HR-MS image. 471

E. Objective Function 472

In the training phase, given the MPNet denoted as Φ(·), 473

which is parameterized by \, the objective is to determine the 474

optimum \. Accordingly, the object function can be formulated 475

as: 476

\ = arg min
\

1
#

∑
H",=∈-C08=

!
(
Ĥ",=, H",=

�� \) (12)

477

! ( Ĥ" , H" | \) = ‖Φ (G% , G" |\) − H" ‖1 + _‖\‖22 (13)

where ! (·) is a loss function; -CA08= indicates the training 478

data set, which has # pairs of G% (PAN image), G" (MS 479

image), and H" (ground truth); Ĥ" represents a fused MS 480

image. The first part of this loss function is the L1 norm, 481

which is computationally efficient and can obtain relatively 482

sharp edges [16], [18], [48]. To prevent over-fitting, the loss 483

function is regularized with the L2 penalty ‖\‖22 [49]; _ is a 484

balancing parameter that balances the importance of the L1- 485

loss and the regularization term, which is empirically set to 486

10−5 after trial and error in the present implementation. Upon 487

convergence, the parameter \ is fixed and used for tests with 488

both full-resolution and reduced-resolution. 489
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IV. EXPERIMENTAL INVESTIGATION490

This section presents systematic performance evaluation of491

the proposed approach. The open-available large-scale data492

sets and experimental setup are first outlined, followed by493

discussions about the results.494

A. Data Sets495

Three publicly available large-scale data sets [50] are496

adopted to compare the performance of MPNet with SOTA497

methods. The original date are acquired by three satellites:498

IKONOS, QuickBird, and WorldView-4. Each satellite carries499

a PAN sensor and an MS sensor. As the electromagnetic500

spectrum of IKONOS, QuickBird, and WorldView-4 differs501

from each other, it does not make practical sense attempting502

to merge these three data sets, be it for training or testing.503

This is why there are separately treated. The remote sensing504

images are cut into patches. The PAN and MS images have a505

dimension of 1024×1024 and that of 256×256×4, respectively.506

The images are gathered in 11-bit radiometric resolution.507

Following the common practice in the literature [51], origi-508

nal images with 4 bands are used as the ground truth, and they509

are down-sampled to obtain the simulated MS and PAN images510

with low spatial resolution according to Wald protocol [52].511

The parameters about Modulation Transfer Function (MTF)512

are set the same as [53]. The specification of patch numbers513

used during these experimental evaluations, per data set, is514

given in the newly added Table I.515

TABLE I
DISTRIBUTION OF PATCHES FOR TRAINING, VALIDATION, AND TESTING.

Data set Train set Validation set Test set
IKONOS 120 (256×256) 20 (256×256) 60 (256×256)
QuickBird 300 (256×256) 50 (256×256) 150 (256×256)

WorldView-4 300 (256×256) 50 (256×256) 150 (256×256)

B. Experimental Setting516

MPNet is implemented within the PyTorch framework [54].517

For each data set, Adam [55] is selected to train the proposed518

network, and the number of epochs for loss converge is set to519

600. The experiments are carried out on a GPU server. Two520

NVIDIA GeForce TITAN Xp GPUs (12GB memory per GPU)521

are used for training. The batch size is set to 10 with limited522

size of GPU memory. The learning rate is initially set to 0.001523

and reduced 20% per 150 epochs. The other hyper-parameters524

of MPNet in this paper are shown in Table II. The kernel525

dimensionalities of the PAN FEP are denoted by ,2 × �/(526

for width, channel, and stride sizes. In the MS FEP, the kernels527

and strides are represented as ,3×�×�/(, where � indicates528

the number of bands. The representation of features takes the529

form of ,2 × � and ,2 × � × �, respectively.530

C. Reduced-Resolution Experiments531

For both qualitative and quantitative performance evalu-532

ation, the proposed MPNet is compared with seven SOTA533

methods including: PNN+ [16], Pan-GAN [19], ResTFNet534

TABLE II
HYPER-PARAMETERS OF FEPS.

FEP Stem Level 1, 2, and 3 Level 4

PAN FEP

Kernel/Stride 32 × 64/1 32 × 64/1 32 × 64/1
Input 2562 2562 × 64 2562 × 64
�2� 2562 × 64 2562 × 64 2562 × 64

MS FEP

Kernel/Stride 33 × 32/1 33 × 32/1 33 × 32/1
Input 2562 × 4 2562 × 4 × 32 2562 × 4 × 32
�3� 2562 × 4 × 32 2562 × 4 × 32 2562 × 4 × 32

[18], SRPPNN [20], BDSD-PC [10], MTFGLPFS [11], and 535

FE-HPM [14]. All these compared methods are implemented 536

with the publicly available codes, where the parameters of 537

these methods are set according to their original specifications 538

in the corresponding references. 539

For qualitative evaluation, the fused images are visualized 540

to check spatial and spectral distortions. First, consider the 541

IKONOS data set. Fig. 7 shows an example of the experimen- 542

tal results performed on an IKONOS image. Since the MS 543

images have more than three bands, only red, green, and blue 544

bands are extracted to synthesize the TrueColor images in this 545

illustration. The ground truth is shown in Fig. 7a, with Fig. 7c- 546

(h) displaying the pan-sharpened images by different methods. 547

The proposed MPNet produces the pan-sharpened image with 548

the best visual quality in terms of spatial preservation, e.g., 549

the shape of the white building of MPNet is the closest to the 550

ground truth. The residual maps in Fig. 8 also show that the 551

MPNet produces the least distortion. 552

Fig. 9 shows the visualized results of an experiment per- 553

formed on the QuickBird data set. BDSD-PC, MTFGLPFS, 554

and FE-HPM generate more details than the ground truth, 555

which indicates over-sharpening, one kind of spatial distortion. 556

PNN+, Pan-GAN, ResTFNet, and SRPPNN produce blurred 557

results. MPNet can obtain the most similar pan-sharpened im- 558

age compared with other methods. Besides, MPNet produces 559

the lest error according to the residual maps in Fig. 10. 560

Fig. 11 shows the results on the WorldView-4 data set. 561

Although it fails to identify the apparent distortion, the quality 562

of fused images can be identified in some details. For example, 563

the left boundary of the white building in the enlarged area 564

is recovered by MPNet, which shows it is better than other 565

methods. In addition, the residual maps in Fig. 12 demonstrate 566

the superior performance of MPNet over the rest. 567

For quantitative evaluation, MPNet and SOTA methods 568

are compared using five popular performance indices, namely: 569

Q4 [56], Universal Image Quality Index (UIQI) [57], Spectral 570

Angle Mapper (SAM) [58], relative dimensionless global error 571

in synthesis (ERGAS) [59] and Spatial Correlation Coefficient 572

(SCC) [60]. The indices Q4, UIQI, and ERGAS are exploited 573

to comprehensively assess the spectral and spatial quality of 574

fused images. SCC is another widely used index to measure the 575

spatial quality of a fused image. In addition, SAM is employed 576

to effectively measure any spectral distortion in a fused image 577

in comparison with the ground truth. 578

The quantitative evaluation results are shown in Tables III- 579

V. The optimal results are highlighted in bold font. For the 580

spectral metric SAM, the spatial metric SCC, and indeed 581

for other global metrics, MPNet significantly outperforms the 582
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(a) Ground truth (b) MS (c) MPNet (d) SRPPNN (e) ResTFNet

(f) Pan-GAN (g) PNN+ (h) BDSD-PC (i) MTFGLPFS (j) FE-HPM
Fig. 7. Pan-sharpened images by different methods on the IKONOS data set.

(a) MPNet (b) SRPPNN (c) ResTFNet (d) Pan-GAN

(e) PNN+ (f) BDSD-PC (g) MTFGLPFS (h) FE-HPM
Fig. 8. Residual maps between pan-sharpened images of different methods and the reference image (IKONOS images).

TABLE III
QUANTITATIVE EVALUATION OF DIFFERENT METHODS ON IKONOS DATA

SET. OPTIMAL RESULTS ARE INDICATED IN BOLD FONT.

Method Q4 UIQI SAM ERGAS SCC D_ D( QNR
FE-HPM [14] .7324 .7319 2.4053 1.8557 .9336 .0553 .0627 .8853

MTFGLPFS [11] .7290 .7246 2.5450 1.9798 .9168 .0533 .0584 .8909
BDSD-PC [10] .6973 .7213 2.6005 1.9368 .9272 .0391 .0502 .9132

PNN+ [16] .7472 .7932 2.0571 1.8185 .9459 .0639 .1219 .8219
Pan-GAN [19] .7452 .7951 2.0450 2.1358 .9276 .1191 .0709 .8186
ResTFNet [18] .8852 .8895 1.7461 1.3612 .9722 .0858 .0492 .8692
SRPPNN [20] .9017 .9011 1.6187 1.2644 .9749 .0647 .0516 .8873

MPNet .9071 .9078 1.5359 1.2237 .9763 .0329 .0473 .9223
Ideal value 1 1 0 0 1 0 0 1

existing SOTA methods. This demonstrates that the proposed583

MPNet significantly beats the compared SOTA methods, and584

the pan-sharpened images obtained with MPNet have the least585

TABLE IV
QUANTITATIVE EVALUATION OF DIFFERENT METHODS ON QUICKBIRD

DATA SET. OPTIMAL RESULTS ARE INDICATED IN BOLD FONT.

Method Q4 UIQI SAM ERGAS SCC D_ D( QNR
FE-HPM [14] .8602 .8558 1.1161 .8616 .9763 .0558 .0773 .8705

MTFGLPFS [11] .8752 .8631 .9473 .7902 .9827 .0415 .0710 .8898
BDSD-PC [10] .8722 .8711 .9399 .7800 .9832 .0232 .0592 .9195

PNN+ [16] .8996 .9006 1.2617 1.0662 .9653 .0265 .0351 .9392
Pan-GAN [19] .8031 .8228 1.1480 1.0168 .9612 .0531 .0617 .8887
ResTFNet [18] .8807 .8848 .9323 .7284 .9839 .0619 .0452 .8953
SRPPNN [20] .8512 .8485 1.2437 .9639 .9679 .0578 .1002 .8478

MPNet .8899 .8901 .8326 .6160 .9898 .0347 .0684 .9002
Ideal value 1 1 0 0 1 0 0 1

spatial and spectral distortions. 586
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(a) Ground truth (b) MS (c) MPNet (d) SRPPNN (e) ResTFNet

(f) Pan-GAN (g) PNN+ (h) BDSD-PC (i) MTFGLPFS (j) FE-HPM
Fig. 9. Pan-sharpened images by different methods on the QuickBird data set.

(a) MPNet (b) SRPPNN (c) ResTFNet (d) Pan-GAN

(e) PNN+ (f) BDSD-PC (g) MTFGLPFS (h) FE-HPM
Fig. 10. Residual maps between pan-sharpened images of different methods and the reference image (QuickBird images).

TABLE V
QUANTITATIVE EVALUATION OF DIFFERENT METHODS ON WORLDVIEW-4

DATA SET. OPTIMAL RESULTS ARE INDICATED IN BOLD FONT.

Method Q4 UIQI SAM ERGAS SCC D_ D( QNR
FE-HPM [14] .7790 .7852 1.9789 2.0279 .8962 .0436 .1538 .8093

MTFGLPFS [11] .7760 .7816 2.0738 2.2135 .8958 .0402 .1528 .8132
BDSD-PC [10] .7778 .7835 1.9693 2.0211 .8913 .0285 .0387 .9331

PNN+ [16] .8540 .8615 1.8973 1.6915 .9267 .0231 .0787 .9001
Pan-GAN [19] .7819 .8243 2.2899 2.0106 .9397 .0903 .0802 .8379
ResTFNet [18] .8677 .8766 1.5273 1.3310 .9762 .0699 .0552 .8794
SRPPNN [20] .8678 .8743 1.6525 1.5756 .9647 .0638 .0647 .8766

MPNet .8912 .8891 1.4119 1.2078 .9790 .0364 .0600 .9067
Ideal value 1 1 0 0 1 0 0 1

D. Full-Resolution Experiments587

Further to the experimental results at reduced resolution588

level, the proposed MPNet is herein compared with the other589

methods at full-resolution, where the PAN and MS images of 590

the original spatial resolutions are fused. Again, the experi- 591

mental investigations are carried out via both qualitative and 592

quantitative evaluations. 593

For qualitative evaluation on full-resolution images, the 594

results of different methods are visualised. In particular, PAN 595

images are shown in Fig. 13a, 15a, and 17a to inspect spatial 596

distortion. Fig. 13b, 15b, and 17b are the corresponding MS 597

images reflecting the spectral information. For fair and more 598

effective comparison, a small region of all sub-images is scaled 599

up. In addition, as shown in Figs. 18, 14, and 16, we also give 600

a visual inspection of the detail injected into the up-sampled 601

MS, as the quality of each pansharpening technique depends 602

on its ability to inject high-frequency detail. From careful 603

comparison, we can find the proposed MPNet can make full 604

use of the spatial information embedded in the PAN image, 605



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

(a) Ground truth (b) MS (c) MPNet (d) SRPPNN (e) ResTFNet

(f) Pan-GAN (g) PNN+ (h) BDSD-PC (i) MTFGLPFS (j) FE-HPM
Fig. 11. Pan-sharpened images by different methods on the WorldView-4 data set.

(a) MPNet (b) SRPPNN (c) ResTFNet (d) Pan-GAN

(e) PNN+ (f) BDSD-PC (g) MTFGLPFS (h) FE-HPM
Fig. 12. Residual maps between pan-sharpened images of different methods and the reference image (WorldView-4 images).

but also prevents the spectral distortion.606

In terms of quantitative evaluation, the indices used in607

the previous section are not employed here since no ground608

truth exists. The reference-free measurement QNR [61] is used609

here to assess the pan-sharpened images. The QNR index is610

composed of two components: the spectral distortion index611

�_ and the spatial distortion index �B . Tables III-V present612

the comparative results, which are obtained by calculating the613

mean over all images on each data set. The optimal results614

are in highlighted bold font. It can be seen that compared615

with other SOTA methods, MPNet achieves competitive per-616

formance with respect to the performance indices examined.617

Some other methods, i.e., BDSD-PC, PNN+, outperform the618

proposed approach on the full-resolution data since they adapt619

their models on the images of the test data set. It should be620

noted that without experiencing the test data, our method still621

achieves the best full-resolution performance on the IKONOS 622

data set, showing its effectiveness. 623

E. Further Evaluations 624

To investigate the potential of the proposed approach in 625

more detail, a number of important further experimental stud- 626

ies are carried out, as discussed below. We select the results 627

of MPNet as the benchmark in Table VI. 628

1) Effect of FEP: There are two FEPs, i.e., the PAN FEP 629

and the MS FEP, used in MPNet. The MS FEP leverages 630

3D convolutions and CSSA mechanism, while the PAN FEP 631

equips 2D convolutions and CSA mechanism. 2D convolu- 632

tions are wildly used in MS pan-sharpening and the CSA 633

mechanism have investigated in hyperspectral pan-sharpening. 634

It is, therefore, interesting to examine the effectiveness of 635

the heterogeneous architecture, 3D convolutions, and CSSA 636
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(a) PAN (b) MS (c) MPNet (d) SRPPNN (e) ResTFNet

(f) Pan-GAN (g) PNN+ (h) BDSD-PC (i) MTFGLPFS (j) FE-HPM
Fig. 13. Pan-sharpened images by different methods at full-resolution on the IKONOS data set.

(a) MPNet (b) SRPPNN (c) ResTFNet (d) Pan-GAN

(e) PNN+ (f) BDSD-PC (g) MTFGLPFS (h) FE-HPM
Fig. 14. The residuals to the LRMS image from Figure 13.

mechanism. Thus, we conducted three experiments to evalu-637

ate their effects. First, we conduct the experiment with the638

homogeneous architecture, where 32 and CSA are utilized in639

the MS FEP. The results show in Table VI, which incurs640

performance drops indicating the heterogeneous architecture641

is more suitable in our case. To illustrate the effect of 3D642

convolutions, we conduct another experiment here, where643

3D 32 × 1 convolutions and CSA are incorporated. For fair644

comparison, an equal amount of parameters are used as with645

the previous experiments, with the same hyper-parameters646

employed in each setting. The results are reported in Table647

VI. As can be seen, the use of 2D 32 convolutions leads648

to performance drops, compared to the use of 3D 32 × 1649

convolutions. For the sake of investigating the effect of CSSA650

in the proposed MPNet, we compared it with CSA. The results651

of this variant are listed in VI. As can be seen, adopting CSA652

in the FEP for MS images causes performance drops. 653

2) Effect of Hierarchical Features: To illustrate the effec- 654

tiveness of hierarchical features, four additional experiments 655

are conducted. In each experiment, a different number of levels 656

is adopted for fusion. The results of all settings are listed in 657

Table VI. Particularly, the level set {1, 2, 3, 4} indicates that 658

MPNet employs four levels of features for fusion; the set {4} 659

represents that ConvLSTM only utilizes those level-4 features; 660

and {3,4}, {2,3,4} indicate that ConvLSTM merge the two 661

FEPs at two levels 3,4 and at three levels 2,3,4, respectively. 662

For each setting, the same hyper-parameters are used; for 663

instance, when employing Adam optimizer, the learning rate, 664

the number of epochs, and so on are each assigned the same 665

values for different methods run. The results show that with 666

more levels involved for fusion, the model can achieve better 667

results. 668



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

(a) PAN (b) MS (c) MPNet (d) SRPPNN (e) ResTFNet

(f) Pan-GAN (g) PNN+ (h) BDSD-PC (i) MTFGLPFS (j) FE-HPM
Fig. 15. Pan-sharpened images by different methods at full-resolution on the QuickBird data set.

(a) MPNet (b) SRPPNN (c) ResTFNet (d) Pan-GAN

(e) PNN+ (f) BDSD-PC (g) MTFGLPFS (h) FE-HPM
Fig. 16. The residuals to the LRMS image from Figure 15.

3) Effect of ConvLSTM: To evaluate the effect of the669

employed ConvLSTM, we compare it with several standard670

fusion methods, e.g., sum fusion [62], max fusion [62], prod671

fusion [63], and Conv fusion [62]. At the same time, ResBlock672

and CSSAResBlock are both investigated for fusion, where673

the concatenation operation is attached before these blocks.674

Similar to the ConvLSTM, for each of the replaced fusion675

operations, the fused features at the previous levels, except676

the last level, are fed back into the two FEPs, and the677

fused feature at the last level is directly injected into the678

reconstruction network. The results are shown in Table VI,679

which demonstrates the significantly superior performance of680

ConvLSTM.681

4) Effect of Attention Modules: To demonstrate the effect682

of attention modules in the building block of MPNet, further683

experiments with "ResBlock" are conducted. The results are684

given as the entries for the item of "ResBlock" in the "building 685

block" section of Table VI. Compared with the MPNet, their 686

performance declines obviously, which shows the effectiveness 687

of the attention modules. In addition, "DenseBlock" is also 688

utilized for comparison. The results are given as the entries 689

for the item of "DenseBlock" in Table VI. As can be seen, 690

this variant causes a drop in performance, which demonstrates 691

the effect of proposed CSAResBlock and CSSAResBlock. 692

5) Impact of Hyper-Parameters: One of the most critical 693

hyper-parameters in MPNet is the number of levels. It is 694

common knowledge that the nonlinearity of CNNs can be im- 695

proved by increasing the depth of a network [64]. Indeed, the 696

concept of residual learning has been introduced to construct 697

a very deep CNN for performance enhancement, by making 698

full use of the high nonlinearity of deep CNN models [22]. 699

However, a too deep CNN may lead to over-fitting with the 700
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(a) PAN (b) MS (c) MPNet (d) SRPPNN (e) ResTFNet

(f) Pan-GAN (g) PNN+ (h) BDSD-PC (i) MTFGLPFS (j) FE-HPM
Fig. 17. Pan-sharpened images by different methods at full-resolution on the WorldView-4 data set.

(a) MPNet (b) SRPPNN (c) ResTFNet (d) Pan-GAN

(e) PNN+ (f) BDSD-PC (g) MTFGLPFS (h) FE-HPM
Fig. 18. The residuals to the LRMS image from Figure 17.

limited data and a heavy computational burden. Thus, it is also701

interesting to investigate the impact of the network depth (i.e.,702

number of levels) upon the effectiveness of MPNet. For this703

purpose, further comparative experiments have been conducted704

concerning MPNets with different depths on the IKONOS data705

set. The results are summarised in Table VI. The proposed706

MPNet with 4 levels achieves superior performance when707

compared to the other three networks consisting of 2, 3, or708

5 levels, respectively. Apart from the number of levels, the709

kernel size and the number of channels are important hyper-710

parameters. The results of models with � = 32, � = 128, and711

the kernel size of 5 are demonstrated, as also given in Table712

VI. It can be seen that the variants with � = 32 or � = 128713

lead to performance drops. Although the model with the kernel714

size of 5 performs better, the marginal computational cost for715

such a small gain is unacceptable.716

6) Impact of Regularization Term: In order to prevent the 717

over-fitting problem, the regularization term is employed in 718

this work. We present the experiments on the IKONOS data 719

set using different _. The test losses on the IKONOS data 720

set are exhibited in Fig. 19. Obviously, with _ = 10−5 the 721

loss converges better than the others. In addition, the average 722

quantitative assessments of different _ are listed in Table VI. 723

As can be seen from Table VI, the model with _ = 10−5
724

obtains better results than the others in terms of all objective 725

evaluation metrics. 726

F. Model Complexity 727

We list the execution time , the training time, and the 728

number of the trainable parameters of fusion methods, includ- 729

ing CNN-based ones in Table VII. FE-HPM, MTFGLPFS, 730

and BDSD-PC are performed on an Inter(R) Xeon(R) E5- 731
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TABLE VI
EFFECT OF EACH COMPONENT IN MPNET.

Q4 UIQI SAM ERGAS SCC QNR

MS FEP
32 + CSA .8660 .8765 1.9450 1.4983 .9638 .8886
32 × 1 + CSA .8902 .8942 1.6933 1.3445 .9705 .9068
33 + CSA .8972 .9004 1.6377 1.2906 .9732 .9123

Hierarchical
features

{4} .8129 .8465 2.3431 1.7583 .9536 .8435
{3,4} .8457 .8682 2.4762 1.6411 .9622 .8895
{2,3,4} .8503 .8645 2.0206 1.5690 .9607 .8805
{1,2,3,4} .8911 .8947 1.6938 1.3252 .9712 .9075

Fusion
opeartion

Sum .8691 .8815 1.8650 1.4522 .9660 .8707
Max .8811 .8881 1.7826 1.3956 .9678 .8992
Product .8886 .8925 1.7223 1.3584 .9696 .8916
Conv .8906 .8940 1.7082 1.3491 .9703 .8976
ResBlock .8864 .8930 1.7454 1.3530 .9701 .9014
CSSAResBlock .8985 .8998 1.6255 1.2934 .9729 .9129

Building ResBlock .9027 .9040 1.5894 1.2621 .9745 .9139
block DenseBlock .9059 .9069 1.5577 1.2340 .9756 .9066

Regularization
term

10−6 .9050 .9060 1.5692 1.2466 .9753 .9141
10−4 .8943 .8957 1.6667 1.3227 .9712 .9130
10−3 .8703 .8787 1.9048 1.4857 .9643 .9026

Number
of levels

1 .8594 .8695 1.9830 1.5407 .9617 .8754
2 .8630 .8737 1.9564 1.5188 .9627 .8967
3 .8783 .8875 1.8389 1.4038 .9685 .8973

Kernel size 5 .9089 .9098 1.5303 1.2149 .9771 .9284

Channels
32 .8597 .8753 1.9830 1.4898 .9641 .8969
128 .8977 .9000 1.6236 1.2868 .9730 .9102
MPNet .9071 .9078 1.5359 1.2237 .9763 .9223

Ideal value 1 1 0 0 1 1

0 100 200 300 400 500 600
Number of epoches

0.010

0.015

0.020

0.025

0.030

L1
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ss

1e-3
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1e-6

Fig. 19. Test losses of MPNet on IKONOS data set.

2620@2.10GHz via Matlab R2020b. CNN-based methods732

are implemented on the GPU (NVIDIA GeForce TITAN733

Xp) through their publicly available codes. In general, the734

processing speed of CNN-based methods is not slower than735

traditional methods because the GPU used for implementation736

helps improve the efficiency of CNN-based methods. MPNet737

requires more computational time due to 3D convolutions.738

V. CONCLUSION739

This paper has presented a novel MPNet for MS pan-740

sharpening. In stead of employing 2D CNNs for processing741

both PAN and MS images, a heterogeneous pair of FEPs742

are developed for the extraction of 2D feature maps and743

3D representations from PAN and MS images, respectively.744

Equipped with CSA or CSSA, the FEPs can learn more in-745

formative hierarchical features. The ConvLSTM-based HFFM746

TABLE VII
EXECUTION TIME, TRAINING TIME, AND NUMBER OF TRAINABLE

PARAMETERS WITH OPTIMAL RESULTS INDICATED IN BOLD.

Method Execution time Training time Parameters
FE-HPM [14] 0.36s(CPU) - -

MTFGLPFS [11] 0.12s(CPU) - -
BDSD-PC [10] 0.19(CPU) - -

PNN+ [16] 0.01(GPU) 22 hours 48K
Pan-GAN [19] 0.02(GPU) 10 hours 887K
ResTFNet [18] 0.15S(GPU) 4 hours 355K
SRPPNN [20] 0.09s(GPU) 3 hours 343K

MPNet 0.39s(GPU) 27 hours 952K

is developed to merge the resulting hierarchical feature ex- 747

traction. Compared with SOTA methods in the literature, the 748

proposed approach offers superior or competitive performance. 749

For future work, it would be interesting to consider how 750

the loss functions, e.g., perceptual loss and SSIM, employed 751

within the current method may be optimized. Also, it would be 752

worth investigating to improve the performance of CNN-based 753

fusion models on real-world data via unsupervised adaptation 754

learning. 755
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