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Abstract

Atrous Spatial Pyramid Pooling (ASPP) is a module that can collect se-

mantic information distributed in different scopes. However, because of the

limited number of sampling ranges of ASPP, much valuable global features and

contextual information cannot be sufficiently sampled, which degrades the rep-

resentation ability of the segmentation network. Besides, due to the sparse

distribution of the effective sampling points in the atrous convolution kernels of

ASPP, large amount of local detail characteristics are easily discarded. To over-

come the above two problems, a new Cascaded Hierarchical Atrous Pyramid

Pooling (CHASPP) module, consisting of two cascaded components, is pro-

posed. Each component is a hierarchical pyramid pooling structure containing

two layers of atrous convolutions with the aim to densify the sampling distribu-

tion. On the foundation of such a hierarchical structure, another same structure

is appended to form a cascaded module which can further enlarge the diversity

of sampling ranges. Based on this cascaded module, not only rich local de-

tail characteristics can be comprehensively presented, but also important global

contextual information can be effectively exploited to improve the prediction ac-

curacy. To demonstrate the performance of our CHASPP module, experiments
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on the benchmarks PASCAL VOC 2012 and Cityscape are conducted.

Keywords: Semantic Segmentation, Atrous Convolution, Atrous Spatial

Pyramid Pooling(ASPP), Hierarchical Pyramid Pooling, Cascaded Module.

1. Introduction

Semantic segmentation is a fundamental technique in the field of computer

vision [7], [3]. Its goal is to assign a label to each pixel in the image. The

result of it can provide a comprehensive description of the surrounding scenes,

including object categories, locations and shapes [9]. It is of broad interest for

many applications, such as autonomous vehicles, robotics, and human-machine

interaction [10], [6].

A challenge that exists in the task of semantic segmentation is how to tackle

objects at varying scales [1], [2]. Currently, there are several predominant meth-

ods that are proved to be effective for dealing with this problem. One classical

way is to rescale input images into multiple scales and put these rescaled versions

into the convolutional neural networks. Through fusion of the intermediate fea-

ture maps or final score maps, features of all the versions can complement each

other and thus form feature maps with more comprehensive semantic informa-

tion. Though this kind of method indeed gets the performance of the networks

enhanced, such improvement is achieved at the cost of dramatically lowering

the efficiency of the whole system. First, the input image needs to be resampled

multiple times before being imported into the networks. Second, each resam-

pled image needs to go through the whole network once. During this process,

the responses of each intermediate layer are repeatedly computed. Such ineffi-

ciency is not desirable in practical scenes, especially those requiring real-time

predictions. Therefore, how to fuse the multi-scale features at the same time of

not bringing about too much computation cost becomes a topic in the research

of semantic segmentation.

To remedy this situation, a method based on Fully Convolutional Networks

(FCN) [8] is developed, in which there are usually several skip connections be-
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tween different intermediate layers of the backbone classification network. As

feature maps of different intermediate layers own various semantic levels and

receptive fields, the fused feature maps through the skip connections simulta-

neously contain contextual information collected in different scopes which can

match the requirements of comprehensively describing objects with different

sizes. The effect of this amounts to the method mentioned above in which the

responses of the same layer are repeatedly computed when different resampled

images are input.

Another line of methods aims at improving the efficiency of segmentation

networks via utilizing the ASPP module. Inspired by the idea of the spatial

pyramid pooling, Chen et al. [11] designed the ASPP module to more effi-

ciently tackle this challenge. This module is composed of four parallel atrous

convolution layers with different dilated rates. Features maps of each atrous

convolution layer encode semantic information abstracted from different recep-

tive fields, and all these feature maps are merged to form a final comprehensive

representation of the semantic information of the whole image. The four parallel

atrous convolution layers in ASPP can achieve the effect which is equivalent to

probing the input image with multiple filters that own different receptive fields.

With the ASPP module, the resampling process of classical methods can be

avoided, and the efficiency of the whole system can be significantly improved.

Though ASPP can raise the system efficiency, it still causes another two

problems at the same time when applied to practical scenes. As mentioned

above, the receptive fields of the four parallel atrous convolution layers are com-

plementary to each other, which can guarantee that the information distributing

in different scopes can be sampled. With the information from different scopes,

the segmentation network can have the ability to tackle objects with sizes vary-

ing in a particular range. However, such a distribution of sampling ranges

cannot ensure that the information (e.g., global features and context priors),

which is exploited as the key clues to predict the label of target objects, can

be contained in the sampling ranges. This is caused by two reasons. One is

that the diversity of the sizes of the objects in practical scenes is much larger
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than that of the sampling ranges of ASPP. This means that only objects with

the same sizes as those of kernels of ASPP can be sampled while information of

other objects cannot be collected. The other is that distribution of objects in

the image is arbitrary. Some objects are so far from the scopes covered by the

convolution kernels of ASPP that the features they contain cannot be sampled.

In a word, such limited variety of sampling ranges of ASPP cannot sufficiently

collect information distributed in various ranges in the image.

Additionally, to avoid bringing too much extra computational load, all the

points inside of the convolution kernels except for the nine effective sampling

points are filled with zeroes. This measure would lead to that as the convolution

kernel samples the information surrounding a particular pixel, local delicate

features that correspond to the positions with zeroes in the convolution kernels

cannot be collected, which may end up with the situation that these delicate

features are disregarded in the final result.

To overcome the above drawbacks of ASPP, a new Cascaded Hierarchical

Atrous Spatial Pyramid Pooling (CHASPP) module is proposed. Compared

with the structure of the single level of the atrous convolutions in ASPP, a

hierarchical structure consisting of several levels of atrous convolution layers is

adopted. This structure can densify the sampling distribution and sufficiently

capture important local features. Apart from this, the stacked hierarchical

structures can further enlarge the diversity of the sampling ranges and expand

the scopes which our module can cover.

The contributions of our paper can be summarized as follows:

1) A new hierarchical structure consisting of multiple levels of atrous con-

volution layers is proposed. This structure can remedy the problem of the

degenerated representation of local detail features caused by the hollow kernels

of ASPP via increasing the sampling density.

2) A novel Cascaded Hierarchical Atrous Spatial Pyramid Pooling (CHASPP)

network which contains cascaded hierarchical structures is proposed. Through

such a stacked module, the variety of receptive fields can be significantly enlarged

compared with ASPP, which can guarantee that global features and contextual
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information are extensively collected to make a more reasonable and accurate

prediction.

3) Experimental conducted on PASCAL VOC 2012 [10] and Cityscape datasets

convincingly demonstrate the performance of our network in preserving local de-

tail features and collecting global contextual information distributing in various

areas of images.

2. Related work

In this section, current segmentation methods are roughly categorized into

three classes according to the measures which they adopt to diversify the sources

of semantic information

Multi-scale inputs: The motivation behind this kind of methods is to

make the segmentation network adapt to objects with varying scales by train-

ing the network with multiple rescaled input images [4], [5]. Though this kind

of methods do not explicitly increase the number of the receptive fields, the

effect of resampling input images is equivalent to simultaneously probing the

input images with several kernels with different sizes. In [13], multiple images

transformed by a Laplacian pyramid are respectively passed through a shared

network. The shared network produces a series of feature vectors for the regions

of multiple sizes centered around every pixel in the image. In [14], for encoding

rich background information, each resampled version of the input image succes-

sively goes through a convolutional network and a pooling pyramid structure,

and the produced feature maps of all the versions are concatenated to form the

final feature maps. In [15], to capture the image long range dependencies, a

recurrent network with several instances is adopted. Each instance considers as

inputs both a resized RGB image and the classification attempt of the previous

instance.

Intermediate features fusion: Fusing feature maps from different inter-

mediate layers of a classification backbone network is adopted in some current

methods to implicitly increase the diversity of the receptive fields. This measure

5



is based on the following consideration: each intermediate layer of a classifica-

tion network encodes features corresponding to a particular receptive field in the

input image. Merging the features from different layers can achieve the effect

of aggregating information from different receptive fields. In [19], features from

intermediate layers of the encoder part are combined with the features of cor-

responding layers in the decoder part. Long et al. [8] utilized skip connections

to connect the deep layers with coarse information with the shallow layers with

fine information to refine the prediction effect. Hariharan et al. [20] connected

feature maps of intermediate layers and utilized the vector of pixels across the

connected feature maps for the segmentation task.

Though the above methods can boost the fusion of information from differ-

ent receptive fields, the predicted results of these methods are unsatisfactorily

coarse. To refine the results, more sophisticated structures are placed in the

skip connections between the encoder and decoder parts of the segmentation

networks. In [21], a residual convolutional unit is attached to the end of each

block of the backbone network. To acquire the background context from a large

region, the fused feature maps undergo a chained residual pooling component

with a sequence of pooling layers. Peng et al.[22] designed a global convolutional

network for simultaneously maintaining the classification and localization abil-

ities and a boundary refinement module for refining the boundary effect of the

predicted results. In [23], a smooth network with channel attention blocks are

connected with the intermediate blocks of the backbone network to select dis-

criminative features. At the same time, the feature maps of intermediate blocks

go through a border network to make boundaries more noticeable. Ding et

al. [24] proposed a context contrasted local model to generate multi-level and

multi-scale context-aware features.

Spatial Pyramid Pooling: Another method that has been widely used

is to append more branches to the end of the backbone network and combine

the outputs of all these appended branches. As pixels from the feature maps of

a branch correspond to a particular size of receptive field, parallelizing several

branches can multiply the receptive fields that the final fused feature maps
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Backbone 

network

Figure 1: Atrous Spatial Pyramid Pooling (ASPP). ASPP extracts semantic information

through atrous convolution layers with different dilated rates. Receptive fields that atrous

convolution layers correspond to are shown in different colors.

of the pyramid pooling structures can view. In [25], three atrous layers with

different dilated rates and a global pooling layer are parallelized to capture both

the global and local semantic information. Similarly, Wang et al. [26] utilized

parallel atrous convolution layers at the end of the backbone network. In [27],

several pooling layers with different kernel sizes are utilized at the end of the

backbone network to aggregate contextual information from different receptive

fields. Reviewing the above methods, it can be noticed that the method utilizing

spatial pyramid pooling owns both advantage and disadvantage. The advantage

is that it can avoid the repeated computation of the intermediate layers of

backbone networks, while the sparse sampling distribution and limited receptive

fields are its disadvantages.

3. Review of atrous spatial pyramid pooling

As our method is based on Atrous Spatial Pyramid Pooling (ASPP), the

problems caused by its limited variety of sampling ranges and sparse distribution

of effective sampling points in ASPP will be briefly illustrated.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2: Illustrations of the problem caused by limited variety of sampling ranges of ASPP.

(a) and (e) are Original images. (b) and (f) are Zoomed images of sampling ranges of ASPP.

(c) and (g) are ground truths. (d) and (h) are predicted results of ASPP. The light blue points

in the red squares of (c) and (g) are the target pixels to be classified.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3: Illustrations of the problem caused by sparse sampling of atrous convolution kernels

in ASPP. (a) and (e) are Original images. (b) and (f) are Zoomed images of sampling ranges

of ASPP. (c) and (g) are predicted results of ASPP. (d) and (h) are ground truths. The yellow

points in (b) and (f) are the target pixels to be classified.
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3.1. Limitations of ASPP

Though ASPP can deal with objects with varying sizes to some degree, the

actual challenge posed by the practical scenes is far beyond what ASPP can

face. The sizes of all the objects that ASPP can collect information from only

vary among four particular sizes. Nevertheless, in the open scenes, arbitrary

sizes and distributions of objects bring great difficulty in sampling enough in-

formation to provide the comprehensive and accurate features. Specifically, this

difficulty can be reflected in two aspects. First, due to the arbitrary sizes of

the objects in practice, utilizing ASPP with limited sampling ranges can not

comprehensively collect the features of objects components which are discon-

nected and scattered over a large scope and form a global understanding of

target objects. For example, the horse legs in the red rectangle in Fig.2(a) are

surrouded by the background and for from the main body of the horse. Second,

the random distribution of context priors, especially those which can offer key

clues for predicting the labels of local areas, always results in the rareness or

intactness of the contextual information collected by ASPP. Without relatively

complete context priors, the target objects are very likely to be misclassified.

Such a example can be seen in Fig. 2. In Fig. 2(d), the texture of the square

area surrounding the blue point is similar to that of a plane. As the sea water,

which can offer the key prior to exclude the probability of a plane, can not be

sufficiently sampled by ASPP, the semantic network can not discriminate the

boat from the plane, which results in that the light blue point in the square of

Fig. 2(f) is misclassified as plane (the red area in Fig. 2(f)).

Apart from the above problem caused by the insufficient variety of sampling

ranges, the hollow structure of the atrous convolutions in ASPP also brings

serious problem. As is known, to effectively expand the receptive fields of the

segmentation networks at the same time of not causing too much computation

cost, the convolution kernels in ASPP only partly sample the pixel values of the

nine points in its sampling range and ignore the values of the other positions.

In fact, much valuable local detail information which play important role in

depicting the local components of objects are neglected, which results in that
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(a) (b)

Figure 4: Comparisons between densities of effective sampling points in ASPP and our hier-

archical structure. (a) Density of sampling points in ASPP. (b) Density of sampling points in

our hierarchical structure. The purple squares denote the receptive fields, and the overlapping

orange squares in (b) denote the finely divided sampling areas by our hierarchical structure.

many noticeable local features of objects except the main body of objects are

seriously weakened or buried. Such a consequence can be clearly seen in Fig. 3.

The arm of the person in Fig. 3(a) is lost in Fig. 3(c). Similarly, the passenger

in Fig. 3(d) is buried by the mask of the bus (as shown in Fig. 3(f)).

For avoiding the results caused by ASPP, the CHASPP module which con-

tains two aspects of improvements on ASPP is devised. One is to change the

single level structure of ASPP into a two level hierarchical structure to densify

the sampling distribution. On the foundation of such hierarchical module, the

variety of sampling scopes through stacking two such structure is further en-

larged. In the following section, the CHASPP will be decomposed according to

the above aspects, and the principles will be respectively elaborated.

4. Cascaded hierarchical atrous spatial pyramid pooling

4.1. Hierarchical structure with muli-level atrous convolution layers

As mentioned in Sec. 3.1, the atrous convolutions adopted in many pyra-

mid pooling structures [11], [25] is used to expand the receptive fields at the

same time of not bringing expensive computation cost. To achieve this goal,

all the points except the nine effective sampling points are filled with zeros to

reduce the computation amount (as illustrated in Fig. 4(a)). Such an intrinsic
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property determines that the atrous convolution kernel can not closely capture

the characteristics of local areas that correspond to the positions of these zero

values, which leads to the defective representation of local delicate structures.

For avoiding the destruction of local structures caused by the empty points of

the kernels of atrous convolution, we design a hierarchical structure to increase

the number of effective sampling points inside the receptive fields. In this paper,

for the simplicity of statement, the atrous convolution layers in the first level

is name root layers, and the atrous convolution layers attached to each atrous

convolution layer in the first level branch layers. At the end of each root layer,

we attach three parallel branches with different dilated rates (as shown in Fig.

10). Compared with the one-stage sampling, the sampling process is split into

two stages, which are formed by one root atrous convolution layer and three

branch convolution layers, with small convolution layers. The distribution of

the sampling points is shown in Fig. 4(b). The squares in Fig. 4 denote the

effective sampling points in the hierarchical structure. Through the sampling in

each finely divided area that the branch layers pass, the unique and discriminate

characteristics possessed in these areas can be elaborately collected, and finally

these characteristics can be presented in the predicted results.

In fact, our idea of adopting a hierarchical strucutre with multiple atrous

convolution layers is in line with those of many current semantic segmentation

methods. In [12], Chen et al. developed a variation of the sampling method

that the subsamplings after the last max-pooling layers of VGG [28] are skipped

and changed a series of convolution layers followed by pooling layers to atrous

convolutions with dilated rates 2 and 4. Besides the basic function of dense

prediction, such an arrangement of the atrous convolutions can accomplish the

tasks of extracting features from local areas, thus progressively raising the se-

mantic level. Other related works [25], [26] explore the effect of stacked atrous

convolution layers with different dilated rates in eliminating the gridding ef-

fect caused by many zeros padded between adjacent effective sampling points

in the atrous convolution kernels, and demonstrate that through adjusting the

patterns of dilated rates of serialized atrous convolution layers, the insufficient
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sampling of local delicate structures can be avoided.

Following the design principle of densifying sampling distribution through

stacked atrous convolution kernels, our architecture is built based on ASPP. In

the building process, the original atorus convolution layer in each branch is split

into a root layer and a branch layer without changing the total receptive field.

On the foundation of this already formed branch layer, two additional branch

layers are inserted. In our architecture, the difference among the dilated rates

of these three branch layers are moderately kept. One goal of controlling the

differences is to avoid that the receptive fields owned by each root layer concen-

trates in a narrow band which will limit the richness of the collected features.

The other is to avoid redundant sampling in a particular range caused by over-

lapping among receptive fields belonging to different root layers. Such measure

of arranging internals among receptive fields can ensure that the representative

features of scopes from the near to the distant can be sampled in order and the

whole collected features can form a comprehensive descriptor of the character-

istics of the target objects. In Fig. 10, an implementation of our hierarchical

structure is presented.

Through changing the single level of the atrous convolution layer into the

new version adopting the hierarchical structure, the performance of the segmen-

tation networks is significantly improved, especially in protecting the noticeable

local characteristics of the target objects. Nonetheless, the some detail com-

ponents are still coarsely represented and need to be further refined. Such a

phenomenon is resulted by the fact that the features output by the backbone

networks, which are the only information source of the prediction module, are

lack of sufficient fine-grained information that plays important role in present-

ing the detail characteristics. For further refining the prediction effect of our

hierarchical structure in the detail characteristics of the target object, we intro-

duce the features of the intermediate layers of the backbone networks. As the

low-level semantic information consists of highly discriminative local features,

introducing such information will enlarge the differences between the intrinsic

properties of two patches with the same label, which is likely to mislead the
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Figure 5: Illustrations of effects of changing ASPP to our hierarchical structure.

segmentation networks into making inconsistent classifications about the labels

of these two patches. For avoiding such a situation, the features from blocks

with high-level semantic information are utilized to ensure the consistent clas-

sification in patches with the same labels. In this paper, the features of the

16th residual unit in the third block of ResNet-101 are introduced into our hi-

erarchical structure and respectively mix them with the features of each root

layer.

The final predicted results of our hierarchical structure with introduced fea-

tures of the intermediate layers of the backbone network are shown in Fig. 5.

Through the comparisons in Fig. 5, it can be observed that the delicate struc-

tures in the rectangles that have been neglected by ASPP are restored to a

great extent. Such an improvement in preserving local inconspicuous structures

can verify that the measure of adopting the hierarchical structure can rather

effectively increase the sampling density inside the receptive fields and signifi-

cantly improve the capability of the segmentation networks in presenting these

important local features.
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Figure 6: Illustrations of changes of distribution range and density after adopting tree-shaped

structures. The light yellow band denotes the distribution range of radiuses of receptive fields

in ASPP, and the red vertical lines on the this yellow band denote the exact values of receptive

field radiuses. The orange band denotes the distribution ranges of radiuses of receptive fields

in a single hierarchical structure, and the blue vertical lines on it denote the exact values of

receptive field radiuses.

4.2. Cascaded multi-level hierarchical structures

As mentioned in the Sec. 3.1, because of the limited number of sampling

scopes, ASPP is not applicable in the following situations: The first is that

the components of the target objects distribute in a large scope, especially

those with much disconnection. For the objects of which constituent parts

are concentrated in a limited local scope without much disconnections, ASPP

can extensively cover the constituent parts of the target objects and do not

leave out key information. However, once the components of objects are split

into fragments, the function of ASPP will be largely degraded as many valuable

global information are out of the range that ASPP can reach. The second is

that the contextual information, which can play an important role in providing

auxiliary information to help discriminate local patches, is arbitrarily scattered

in the image.

Given the above situations, our single hierarchical structure, which is utilized

to achieve sufficient sampling of local features inside the receptive fields, cannot

solve the problems led by the limited variety of receptive fields. This conclusion

can be drawn from Figs. 6 and 7. In Fig. 7, from the view of expanding the
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Figure 7: Illustration of the pyramid of receptive fields of our hierarchical structure. The

orange band denotes the receptive fields of ASPP, and the blue bands denotes the newly

produced receptive fields by our hierarchical structure. The length of each band indicates the

length of the side of each receptive field, and the exact number of the side length is shown on

the right side of the band.

diversity of the receptive fields outside the original scopes of ASPP, the effect of

a single hierarchical structure can be considered as filling the large gap between

two adjacent scopes of ASPP with additional receptive fields and not essentially

increasing the variety of receptive scopes larger than the original ones of ASPP.

The same situation can be observed in Fig. 6 that the receptive fields of our

improved structure still stay in a fixed range and are not significantly diversified.

For significantly enlarging the diversity of the receptive fields, especially

those larger than the original scopes of ASPP, on the foundation of the sin-

gle hierarchical structure, a new cascade structure which contains two stacked

hierarchical structures (as shown in Fig. 10) is devised Though the compo-

nents of the newly added pyramid module do not vary from those of the first

one, the scopes that pixels in the output feature maps can view are totally

different. The primary goal of designing the first pyramid module is to avoid

missing local details. Following such principle, the emphasis is on densifying

the sampling distribution, not expanding the receptive fields, which results in
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Figure 8: Examples of new receptive fields generated by the tree-shaped structures in the

second pyramid module. The red bands denote the newly generated receptive fields. In this

figure, the results produced by the patches with the combinations of dilated rates (3,1), (3,3)

and (3,5) are respectively showed in (b), (c) and (d)

.

that the scopes pixels in the output feature maps can view are kept unchanged.

Distinct from keeping to inserting the receptive fields inside the range fixed by

ASPP, the second pyramid module achieves a breakthrough in increasing the

sampling ranges variety outside the scopes enclosed by ASPP. As shown in Fig.

7, the first pyramid module has built a hierarchical structure of the receptive

fields with uniform intervals among them. When the feature maps, containing

a composite of receptive fields shown in Fig. 7, produced by the first module

are passed through a particular path formed by a pair of the root layer and the

branch layer in the second hierarchical structure, not only the receptive fields in

the original composite will be further enlarged, but also many new ones which
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are out of the range given by ASPP will be produced. As the dilated rates of

the root layer and the branch layer increase, the number of the newly gener-

ated scopes will become larger. For instance, when the receptive field hierarchy

with the radius array of (4,6,8,10,12,14,16,18,20,22,24,26) is passed through the

path formed by the root layer and the branch layer with the combination of

dilated rates of (3,1), then the radius array of the output feature maps will be

(8,10,12,14,16,18,20,22,24,26,28,30) which contains two new radiuses 28 and 30.

If the path is changed to the one with the dilated rates combination of (3,3),

then the new update will be 28,30 and 32. Such a growing process of the number

of newly generated receptive fields can be vividly illustrated in Fig. 8.

Through amplifying and diversifying effects of each pair of the root layer

and branch layer in the second hierarchical structure, the total variety of the

receptive fields of the whole network is significantly enriched and the visual fields

of the pixels in the output feature maps become more spacious. Such changes

in the receptive fields can effectively enhance the sampling and fully exploit the

global features of objects and surrounding valuable contextual information. The

effects of this stacked structure are shown in Fig. 9. It can be observed that

relying on the key information of global features or context compensated through

our stacked pyramid modules with tree-shaped structures, the misclassified parts

in the rectangles of the results of ASPP can be restored, which verifies the

effectiveness of our method in capturing information and classifying the labels

of target objects.

4.3. Overall Framework

The overall framework of our method is shown in Fig. 10. Our segmentation

network contains two stacked hierarchical structures. In each structure, there

are four root layers of which each is composed of three branch layers with dif-

ferent dilated rates. The output features of the backbone network are passed to

the first hierarchical structure of which the function is to densify the sampling

distribution through four combinations of the root layers and appended three

parallel branch layers. For compensating the lack of fine-grained features, the
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Figure 9: Illustrations of effects of enlarging the variety of receptive fields through cascaded

hierarchical structures.

features of intermediate layers of the backbone network are introduced into the

hierarchical module and respectively merged with the features of the root lay-

ers. Through the processing of the first module, the output features are summed

and delivered to the second module to further multiply the receptive fields which

aims at extensively including key global features or contextual information. The

output features of the second pyramid module are finally combined, and the final

predicted results are produced.

5. Experiments

In this section, the performance of our method will be evaluated on two

standard benchmarks PASCAL VOC 2012 and Cityscapes.
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Figure 10: The overall framework of our method.

5.1. Implementation Details

Training: Our implementation is based on the platform Tensorflow. ResNet-

101 [29] (pretrained on ImageNet) is used as the backbone network. As [11],

learning rate poly is adopted. The learning rate is obtained by multiplying the

initial learning rate with (1 − iter
max iter )power. In our experiments, the initial

learning rate is set to 0.001 and the power is set to 0.9. the network is trained

using the mini-batch stochastic gradient descent (SGD) [30] with the batch size

of 8, weight decay 0.0001 and momentum 0.9. The mean pixel intersection-over-

union (mIoU) is used as the metric to measure the prediction accuracy.

Data augmentation: For improving the robustness of our network, in the

training process, input images are randomly flipped to augment the dataset in

both PASCAL VOC 2012 and Cityscapes. Besides, it is found that randomly

scale the input image can improve the performance. Therefore, in both PAS-

CAL VOC 2012 and Cityscapes, the input image are rescaled with five factors

{0.75, 1.0, 1.25, 1.5, 1, 75}.

5.2. PASCAL VOC 2012

In this section, the ablation studies on PASCAL VOC 2012 dataset are per-

formed to analyze the performance of each component of our network. The

PASCAL VOC 2012 benchmark contains 20 foreground classes and one back-

ground class. This dataset is composed of 1,464 images for training, 1,449 for
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Table 1: Performance analysis of ASPP and our multi-level hierarchical struc-

ture. ’Stu1’ is used to denote the single hierarchical structure. The numbers

in each bracket denote the combination of dilated rates of all the root layers

or the dilated rates of branch layers attached to each root layer. ’root1-br’,

’root2-br’, ’root3-br’, ’root4-br’ respectively correspond to the dilated rates of

branch layers attached to each root layer.

Method
Stu1

mIoU
root root1-br root2-br root3-br root4-br

Res50

(6,12,18,24) / / / / 70.9

(3,5,7,9) (1,2,4) (4,6,8) (6,8,10) (10,12,14) 73.2

(4,6,8,10) (1,3,5) (3,5,7) (5,7,9) (7,9,11) 72.8

Res101

(6,12,18,24) / / / / 75.1

(3,5,7,9) (1,2,4) (4,6,8) (6,8,10) (10,12,14) 76.8

(4,6,8,10) (1,3,5) (3,5,7) (5,7,9) (7,9,11) 76.4

validation and 1,456 images for testing. The Semantic Boundaries Dataset is

also used [31] to augment the training dataset, which results in 10,582 training

images.

Ablation study for a single hierarchical structure: As stated in Sec.

4.1, for increasing the sampling density to avoid the missing of valuable infor-

mation which is caused by the hollow kernels adopted in ASPP, the hierarchical

structure with multiple levels of atrous convolution layers is adopted. For eval-

uating the effect of our multi-level structure in presenting the local noticeable

detail feature, we compare the performances of ASPP and the single hierarchi-

cal structure. In our hierarchical structure, four root layers are adopted, and

three parallel layers are attached at the end of each root layer. Our experiment

are respectively performed on ResNet-50 and ResNet-101, and the experiment

results are shown in Tab. 1. It can be seen that utilizing the hierarchical struc-

ture can significantly improve the performance compared with ASPP. For more

intuitively demonstrate the effect of our hierarchical structure in preserving the

local detail characteristics, the prediction results are presented in Fig. 11 It

can be seen that after adopting our hierarchical structure, many important lo-
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cal features which are destroyed by ASPP can be satisfyingly represented. For

instance, the masks of the legs of the ostriches, which are intact in the red rect-

angles in the second images of column (a), are rather completely restored in the

third image of column (a).

Images

ASPP

Our

Ground

truth

(a) (b) (c)

Figure 11: Comparisons between the performances of ASPP and single hierarchical structure.

Ablation study for a cascaded hierarchical structure: For demon-

strating the merits of expanding the variety of sampling ranges, the perfor-

mances of the single hierarchical structure and the cascaded hierarchical struc-

ture are compared. The results in Tab. 2, and the predicted results are shown

in Fig. 12 It can be seen that relying on the large variety of the receptive fields

of our cascaded structure, much important global information can be effectively

sampled, which obviously improves the capability of the segmentation network

in the discriminating local patches with the similar appearances but different

labels. For example, in column (a), the properties of the legs of the cows are

similar to those of the legs of the horse, which can easily result in that the
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Figure 12: Comparisons between the performances of a single hierarchical structure and cas-

caded hierarchical structures

network mistake the cow legs for the horse legs (the pink area in the second

image of column (a)). With the global information of the cows collected by the

cascaded hierarchical structure, the network is not confused and can correctly

distinguish these two kinds of components. Besides, with the contextual infor-

mation collected by the cascaded structure with the enlarged variety of receptive

fields, many misclassifications can be avoided. For example, in the second image

of column (b), due to the lack of contextual information caused by the limited

variety of sampling ranges, the sheep is misclassified as a bird. In contrast, as

the ground information of the grass around the sheep is sufficiently collected,
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Table 2: Performance analysis of single hierarchical structure and cas-

caded hierarchical structure. In the table, the two cascaded structures

are respectively denoted as ’Stu1’ and ’Stu2’. The numbers in the brack-

ets after ’r1-r4’ respectively correspond to the dilated rates of branch

layers attached the root layers from the first to the fourth.

Method
Stu1 Stu2

mIoU
root branch root branch

Res101

(3,5,7,9)

r1:(1,2,4)

r2:(4,6,8)

r3:(6,8,10)

r4:(10,12,14)

/ / 76.8

(3,5,7,9)

r1:(1,2,4)

r2:(4,6,8)

r3:(6,8,10)

r4:(10,12,14)

(3,5,7,9)

r1:(1,2,4)

r2:(4,6,8)

r3:(6,8,10)

r4:(10,12,14)

77.8

(4,6,8,10)

r1:(1,3,5)

r2:(3,5,7)

r3:(5,7,9)

r4:(7,9,11)

(4,6,8,10)

r1:(1,3,5)

r2:(3,5,7)

r3:(5,7,9)

r4:(7,9,11)

77.5

the network can correctly judge the label of the sheep(as shown in the third

image).

Ablation study for the number of branch layers: As mentioned in

Sec. 4.1, appending branch layers to the end of root layers can increase the

number of effective sampling points and boost the sampling of local delicate

features, whether more effective sampling points can necessarily bring the gain

in performance will be analyzed. In this part, two groups of experiments are

performed. In each group, two and three branch layers are respectively added to

each root layer, and their performances will be compared in order to analyze the

impact when varying the number of branch layers. Our experiments are based

on ResNet101, and the results are listed in Tab. 3. It can be observed that

further performance gain can be achieved when the number of branch layers are

increased, which again verifies that raising the sampling density can improve
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Table 3: Performance analysis of the influence of using different num-

ber of branch layers.

Group
Stu1 Stu2

mIoU
root branch root branch

1
(2,4,6,8)

r1:(2,5)

r2:(4,8)

r3:(7,11)

r4:(10,14)

(2,4,6,8)

r1:(2,5)

r2:(4,8)

r3:(7,11)

r4:(10,14)

77.4

(2,4,6,8)

r1:(2,3,5)

r2:(4,6,8)

r3:(7,9,11)

r4:(10,12,14)

(2,4,6,8)

r1:(2,3,5)

r2:(4,6,8)

r3:(7,9,11)

r4:(10,12,14)

77.8

2
(1,3,5,7)

r1:(2,6)

r2:(4,8)

r3:(8,13)

r4:(11,15)

(1,3,5,7)

r1:(2,6)

r2:(4,8)

r3:(8,13)

r4:(11,15)

77.2

(1,3,5,7)

r1:(2,4,6)

r2:(4,6,8)

r3:(8,11,13)

r4:(11,13,15)

(1,3,5,7)

r1:(2,4,6)

r2:(4,6,8)

r3:(8,11,13)

r4:(11,13,15)

77.7

the performance

Ablation study for the number of cascaded hierarchical structures:

In the former experiment, two cascaded hierarchical structures can more com-

prehensively exploit the global or contextual information to improve the per-

formances. For exploring the impact of the number of cascaded hierarchical

structures on the performance, two group of experiments are performed. In each

group, the dilated rates of the root layers and branch layers of a hierarchical

structure are fixed, and utilize this structure as the constituent unit to form the

cascaded structure with different number of hierarchical structures. In the first

group, the dilated rates of root layers are set to (3,6,9,12) and the dilated rates of

corresponding branch layers are set to ((1,3,5),(4,6,8),(7,9,11),(10,12,14)) While

in the second group, the two combinations of dilated rates are respectively
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Table 4: Performance analysis of impact of different

numbers of hierarchical structures on the predicted re-

sults.

Group Stu1 Stu2 Stu3 Stu4 Stu5 mIoU

1

X X / / / 78.2

X X X / / 78.3

X X X X / 77.9

X X X X X 77.9

2

X X / / / 77.8

X X X / / 78.4

X X X X / 78.1

X X X X X 78.0

(1,5,9,13) and ((1,4,7),(6,9,12),(11,14,17),(16,19,22)). The results of these two

groups are listed in Tab. 4. As listed in Tab. 4, with the increasing of the

number of cascaded hierarchical structures, the performances change slightly.

This may be caused by that too many hierarchical structures make the recep-

tive fields reach out of the range of the features map, which cause many useless

samplings.

Results on PASCAL VOC 2012 test set: Finally, the performance

of our cascaded hierarchical pyramid pooling structure on the PASCAL VOC

2012 test set is evaluated. As the annotation quality of PASCAL VOC 2012

dataset is higher than the augmented dataset [31], after training our network

on the train and val sets of the augmented set, our trained network is further

finetuned on trainval set of the original PASCAL VOC dataset. The results are

listed in Tab. 5. From the results in Tab. 5, it can be seen that our method can

outperform many current semantic segmentation methods, which demonstrates

the high performance of our cascaded hierarchical structure. The comparisons

with other methods are shown in Fig. 13.

To further improve the performance of our method, we utilize the model pre-

trained on COCO dataset. The comparison results are shown in Tab. 7. It can

be seen that compared with the current methods, the performance of our method
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Table 5: Results on PASCAL VOC 2012 test set without COCO

pre-training

DeepLabv2 [11] DPN [32] Piecewise [14] Our

aeroplane 84.4 87.7 90.6 89.6

bicycle 54.5 59.4 37.6 42.7

bird 81.5 78.4 80.0 93.3

boat 63.6 64.9 67.8 71.5

bottle 65.9 70.3 70.4 80.3

bus 85.1 89.3 92.0 92.4

car 79.1 83.5 85.2 92.5

cat 83.4 86.1 86.2 93.5

chair 30.7 31.7 39.1 33.9

cow 74.1 79.9 81.2 91.8

diningtable 59.8 62.6 58.9 69.3

dog 79.0 81.9 83.8 91.8

horse 76.1 80.0 83.9 91.8

motorbike 83.2 83.5 84.3 89.8

person 80.8 82.3 84.8 86.9

pottedplant 59.7 60.5 62.1 73.8

sheep 82,2 83.2 83.2 91.3

sofa 50.4 53.4 58.2 58.1

train 73.1 77.9 80.8 86.3

tvmonitor 63.7 65.0 72.3 77.0

mIoU 71.6 74.1 75.3 81.0

is higher, which further demonstrates the superiority of our method. Besides,

we replace the pyramid pooling module of DeeplabV3+ with our prediction

module at the end of the backbone network. It can be observed that on top of

the architecture utilized in DeeplabV3+, the performance of our method can be

further improved, which proves the effectiveness of our method.

Apart from comparing the performances with current methods, we also eval-

uate the parameter size of our method, and summarize the parameter sizes and

mIoU of different methods in Tab. 8. It can be seen that as our network utilizing
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Figure 13: Comparisons between the performances of different methods on PASCAL VOC

2012 val set.

more parallel branches and cascaded structures, the parameters are apparently

more than those of ASPP

5.3. Cityscapes

For further evaluating the performance of our method, our cascaded hier-

archical structure is tested on the Cityscape dataset, which is a widely used

benchmark for evaluating the capabilities of segmentation networks in under-

standing the street scene. This dataset is composed of 5,000 finely annotated

street scene images of which 2,975 images are for training, 500 images for val-

idation and 1,525 images for testing. Apart from these 5,000 finely annotated

images, this dataset also contain another about 20,000 coarsely annotated im-
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Table 6: Results on PASCAL VOC 2012 test set. Our model is trained

on 8 Tesla V100 GPUs

Method PSPnet [27] DFN [23] EncNet [36] AAF [44] Our

mIoU(%) 82.6 82.7 82.7 82.2 83.0

Table 7: Results on PASCAL VOC 2012 test set. Methods pre-trained on

MS-COCO are marked with +. Our model is trained on 8 Tesla V100 GPUs

Method DLC+ [39] DUC+ [26] GCN+ [22] PSPnet+ [27]

Mean IoU(%) 82.7 83.1 83.6 85.4

Method DeeplabV3+ [25] Our

Mean IoU(%) 85.7 85.7

ages. The performance our method in this dataset is listed in Tab. 9, and

the segmented results are shown in Fig. 14. It can be seen that our method

outperforms the current segmentation methods. Furthermore, the whole archi-

tecture of Deeplabv3+ is utilized, and the pyramid module of DeeplabV3+ is

replaced by our prediction module. Such a architecture on top of DeeplabV3+

can further enhance the performance of our method.

6. Conclusion

In this paper, we propose a new cascaded hierarchical atrous spatial pyramid

pooling module for semantic segmentation. This module contains two aspects

of improvements over ASPP: One is the single hierarchical structure which in-

creases the sampling density through multi-level atrous convolution layers. The

other one is that we cascade multiple hierarchical structures to significantly

enlarge the variety of sampling ranges via extensively collecting the global and

contextual information. However, the downside of our method is that the added

parallel branches and the cascaded structure inevitably increase the computa-

tional costs, thus hindering our method from being applied to real-time appli-

cations.
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Figure 14: Comparisons between the performances of different methods on PASCAL VOC

2012 val set.
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Table 8: Comparisons of parameter amounts between our method and current methods

Method RefineNet [46] DeepLab [11] PSPNet [27] Dilation-8 [34] FCN-8s [8] Our

# Params(M) 42.6 44.04 65.7 141.13 134.5 184.2

mIoU 82.4 79.7 85.4 75.3 67.2 85.7

Table 9: Results on Cityscapes set

Method FCN [8] DeepLab [11] Piecewise [14] AAF [44] PSANet [42]

Mean IoU(%) 65.3 70.4 71.6 79.1 80.1

Method DFN [23] PSPnet [27] DenseASPP [41] Our

Mean IoU(%) 80.3 80.2 80.2 80.9

Our method is particularly suitable for tackling scenes in which there exist

large variance among the sizes of objects, such as street scenes and road scenes.

Besides, due to the dense sampling distribution, our method shows the supe-

riority in segmenting objects which own many delicate details. Applications

related to these two kinds of scenes can fully benefit from the advantages of our

method.

The future work will be concentrated on two points. One is to simplify our

CHASPP module in order to reach a high segmentation speed on the premise

of not sacrificing too much prediction precision. The second is to develop a new

segmentation network in which our simplified module can be attached to the

end of each block of the backbone network and there are connections between

each pair of these simplified modules. Such a network architecture can not only

fully exploit the features of each block, but also realize the effective fusion of

features of different blocks.
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