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Abstract

Phenomenological models are frequently used to analyze experimental signals in thermally

and optically stimulated luminescence experiments. Typically, these models consist of sys-

tems of differential equations describing various electronic transitions. An alternative to the

differential equation approach is the use of Monte Carlo (MC) methods, which also allow

an estimation of the theoretical stochastic uncertainty of the intensity of the luminescence

signal. By running and averaging several MC variants, these stochastic uncertainties are

estimated in this paper for various luminescence models.

In the case of first-order kinetics processes, the MC results compare well with previously

published analytical results for the coefficient of variation (CV) in stochastic linear pure

death processes. By contrast, no analytical results are available for the more general one

trap one recombination center model (OTOR), and MC is the only method available for

estimating the stochastic uncertainties.

In this paper the CV coefficients are simulated for three commonly used experimental

stimulation modes, namely thermally stimulated luminescence (TL), continuous wave op-

tically stimulated luminescence (CW-OSL) and linearly modulated OSL (LM-OSL). The

results of the simulations show that CW-OSL signals have the smallest CV values among

the three stimulation modes, and therefore these signals are least likely to exhibit stochastic

variations. The stochastic uncertainties in these phenomenological models are discussed in

the context of single grain luminescence experiments and nanodosimetric materials, in which

one deals with small numbers of charge carriers.
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1. Introduction

Phenomenological models are frequently used to analyze experimental signals in stim-

ulated luminescence experiments. Within these phenomenological models, various exper-

imental stimulation methods are commonly used in the laboratory. Specifically thermal

stimulation produces thermoluminescence (TL) signals , while optical stimulation with vis-

ible light produces optically stimulated luminescence (OSL). For a review of the models

commonly used to describe these signals, the readers are referred to several available excel-

lent textbooks and review articles on luminescence dosimetry and its applications (Chen and

McKeever [1], McKeever and Chen [2], Bøtter-Jensen et al. [3], Pagonis et al. [4], Chen

and Pagonis [5], Yukihara and McKeever [6], Kitis et al. [7]).

Typically, phenomenological luminescence models consist of systems of differential equa-

tions describing various electronic transitions. In most cases, these equations must be solved

numerically using appropriate initial conditions, while analytical solutions have been devel-

oped for some of the simpler models.

An alternative to the differential equations approach in these phenomenological models,

is the use of Monte Carlo (MC) methods. One of the main advantages of the MC approach

is that it can be applied to systems consisting of a very small number of charge carriers,

in which the luminescence signals may be different from the corresponding signals in bulk

materials. An additional advantage is that MC can also produce estimates of the stochastic

uncertainties in luminescence signals, by running and averaging several MC variants. These

stochastic uncertainties can only be obtained with the MC approach, and can become im-

portant for nanodosimetric materials, in which one deals with small clusters of spatially

correlated defects (traps and centers). Monte-Carlo methods for the study of TL were pre-

sented for example in the papers by Mandowski and Światek [8], Mandowski [9, 10, 11],

Kulkarni [12], Pagonis et al. [13]. The stochastic nature of TL phenomena was the sub-

ject of two papers by Swandic [14, 15], who examined the so called master equations in a

luminescence model of simultaneous irradiation and heating of a sample.

However, these previous MC simulation studies did not address in any detail the stochas-

tic uncertainties in the phenomenological models used to describe thermally and optically

stimulated luminescence signals.

Our motivation for the present MC study stems from recently published experimental

and modeling results on luminescence signals from nanodosimetric materials (Polymeris et

al., [16]), and also from single grain luminescence modeling and experiments (Autzen et

al. [17]. The relevance of the MC simulations in this paper for these two research areas is

considered in the Discussion and Conclusions.

This paper presents simulations of several phenomenological luminescence models, by
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using the MC method recently used in Pagonis et al. [13]. Specifically, the MC method is

used to estimate the stochastic theoretical uncertainty of the population of trapped electrons,

and of the luminescence intensity in the various models.

The overall purpose of the paper is to obtain estimates of these stochastic uncertainties,

which are introduced by the randomness of the luminescence processes in small clusters of

traps and centers.

The specific goals of the paper are:

� To apply the MC method of Pagonis et al. [13] to several well-known luminescence

models, and to simulate various types of TL and OSL experiments within these lumi-

nescence models.

� To obtain a quantitative estimate of the stochastic uncertainties for both the popula-

tions of trapped electrons, and for the intensity of the luminescence signal.

� To compare the stochastic uncertainties of various types of TL and OSL experiments.

� Where possible, to compare the stochastic uncertainties from the MC method, with

available analytical expressions previously derived for stochastic birth and death pro-

cesses (Novozhilov et al. [18]).

This paper is organized as follows. Section 2 is a general overview of various luminescence

signals measured in the laboratory, and their basic mathematical foundation. Section 3 pro-

vides a general discussion and summarizes previously published equations for the stochastic

uncertainties in linear birth and death stochastic processes.

Section 4 describes the general MC method used in this paper, and is followed in Section

5.1 by simulations of first-order TL, linear modulated OSL (LM-OSL) and isothermal TL

(ITL) kinetic processes. In Section 5.2 we present results for the GOT/OTOR model, which

is the simplest delocalized phenomenological model in luminescence studies. The paper con-

cludes with a general discussion of the results, within the context of single grain luminescence

experiments and nanodosimetric materials.

2. Experimental stimulation modes and phenomenological models for stimulated

luminescence phenomena

In this section we present an overview of several phenomenological models used to describe

stimulated luminescence phenomena. In addition, this section also summarizes three thermal

and optical stimulation modes which are commonly used in luminescence experiments. Both

the models and the various stimulation modes are simulated in this paper.
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The models summarized here are collectively described as first-order luminescence kinet-

ics models. In addition, we also summarize the simplest luminescence model of one trap

and one recombination center model (OTOR). As discussed for example recently in the re-

view paper by Kitis et al. [7], the differential equations describing thermally and optically

stimulated phenomena contain the function p(t) which represents the stimulation rate.

When the sample is thermally stimulated, the stimulated luminescence signal is called

Thermoluminescence (TL), and the function p(t) is given by:

p(t) = s e−
E

kT (t) (1)

where E (eV ) is the thermal activation energy of the trap, and s (s−1) is the associated

frequency factor, k (eV/K) is the Boltzmann constant and T (t) (K) is the temperature of

the sample at time t(s). The differential equation for first-order TL kinetics is the well-known

Randall-Wilkins equation [19]:
dn

dt
= −s e−

E
kT (t) n (2)

where n (m−3) is the concentration of trapped electrons at time t. The function T (t) describes

the variation of the temperature T with time t, during the TL experiment. In most TL

experiments, one uses a constant heating rate β (K/s), such that T (t) = T0 + βt , where To

is the initial temperature of the heating process.

When the thermal stimulation takes place at a constant temperature TISO, the stimulated

luminescence signal is called isothermal luminescence (ITL), and the function p(t) is given

by:

p(t) = s e
− E

kTISO (3)

and the corresponding differential equation for first-order processes is:

dn

dt
= −s e−

E
kTISO n (4)

When the stimulation is optical in nature using visible light of constant intensity, the stimu-

lated luminescence is termed continuous wave optically stimulated luminescence (CW-OSL).

In this case the function p(t) is given by:

p(t) = σ I (5)

where σ (cm2) represents the optical cross section for the CW-OSL process, and I (photons cm−2 s−1)

represents the photon flux. The corresponding differential equation for first-order CW-OSL
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processes is:
dn

dt
= −ACW n (6)

where ACW = σ I. When the optical stimulation takes place using a source with a linearly

varying intensity, the stimulated luminescence is called linearly modulated optically stimulated

luminescence (LM-OSL) and the function p(t) is given by Bulur [20]:

p(t) =
σ I

P
t =

ALM
P

t (7)

where σ, I have the same meaning as in Eq.5, P (s) is the total illumination time, and

ALM = σ I . The corresponding differential equation for first-order LM-OSL processes is:

dn

dt
= −ALM

P
t n (8)

The most common and simplest phenomenological energy band model is the OTOR model,

shown as a schematic energy diagram in Fig.1. The arrows indicate the delocalized transitions

in the model, which can also describe retrapping of the electrons during the thermal/optical

excitation of the sample. By using the quasi-equilibrium (QE) assumption in which the free

electron concentration in the conduction band is quasi-stationary (Chen and McKeever [1]),

the OTOR model leads to the following general one trap (GOT) differential equation:

I(t) = −dn
dt

= p(t)
n2

(N − n)R + n
. (9)

Here n(m−3 ) is the concentration of electrons in traps, and N is the total concentration of

trapping states. The dimensionless quantity R is called the retrapping ratio, and is defined

as:

R = An/Am (10)

where An(cm3 s−1 ) is the retrapping coefficient of electrons, and Am(cm3 s−1 ) the recombi-

nation coefficient of electrons. The GOT equation was first introduced by Adirovitch [21]

and Halperin and Braner [22], and its analytical solution was obtained close to 50 years later

by Kitis and Vlachos [23] by using the Lambert W-function. This model leads to first and

second order kinetics for certain values of the parameters in the model, as discussed in the

recent review paper by Kitis et al. [7]. For example, when retrapping processes can be ne-

glected the OTOR model leads to first order kinetics, while the case of second order kinetics

is obtained when the coefficients of retrapping and recombination are equal (An = Am).
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3. Stimulated luminescence as a stochastic process

3.1. Stochastic uncertainties for the population of electrons

The deterministic differential equations for TL, ITL, CW-OSL and LM-OSL processes

described in the previous section, can be written in the general form:

dn

dt
= −µ(t)n. (11)

where the rate parameter µ(t) is either a constant µ independent of the time t (as in the

cases of ITL and CW-OSL experiments), or an explicit function of time µ(t) (as in the cases

of TL and LM-OSL experiments).

This type of differential equation is closely associated with stochastic processes, known

as birth and death processes (see for example Krishnan [24]). Birth-death processes have

been studied within the context of continuous-time Markov processes, and they have been

applied to diverse areas of science. For example, they have been used widely in the study

of epidemics, in the description of biological/physiological systems , in queuing theory etc.

Novozhilov et al. [18]. However, to the best of our knowledge, there have been no previous

studies of birth and death processes within the context of TL and OSL phenomena.

A stochastic birth and death process is such that only two types of state transitions are

present, births and deaths. In a birth transition, the state variable of the system increases

by one, while in a death process the state decreases by one. In very general terms, in a

stochastic birth-death process one considers an appropriately small time ∆t, in which only

three types of transitions can take place: one death, or one birth, or no birth/death. The

probabilities of these three transitions are λ∆t, µ∆t and 1− (λ+ µ)∆t where λ (s−1) is the

rate of birth events and µ (s−1) is the rate of death events (λ, µ > 0). When λ = 0 and

µ 6= 0, one is dealing with pure death processes, which are the subject of this section.

When the death rate is µ =constant (as in the ITL and CW-OSL phenomena), the mean

< n > and the variance σ2
n of the population of remaining electrons are given by the following

equations (see for example Allen [25], p.254, Table 6.1):

< n >= nop = noe
−µ t , (12)

σ2
n =< n2 > − < n >2= nopq = noe

−µ t (1− e−µ t) (13)

where no is the initial number of trapped electrons at time t = 0. By combining Eqts.(12)
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and (13), we find the dimensionless coefficient of variation (CV), expressed in %:

CV [%] = 100
σn

< n >
= 100

√
noe−µ t (1− e−µ t)

noe−µ t
= 100

√
eµ t − 1

no
(14)

When the death rate parameter µ(t) is an explicit function of time (as in the cases of TL

and LM-OSL stimulation modes), the mean < n > and the variance σ2
n of the population of

trapped electrons is given by the following equations (see Kendall [26], Eqts.13,14):

< n >= no exp(−
tˆ

0

µ(t′)dt′) (15)

σ2
n = no

exp(−
tˆ

0

µ(t′)dt′)− exp(−2

tˆ

0

µ(t′)dt′)

 (16)

and the CV [%] in this more general case of µ(t) 6= constant, is given by:

CV [%] = 100
σn

< n >
= 100

√
e
´ t
0 µ(t

′)dt′ − 1

no
(17)

When µ(t) = µ = constant, the last three equations revert to the previous three simpler

equations (12) , (13) and (14). In the case of TL, the death rate is µ(t) = s exp [−E/(kT )] and

the integral is
´ t
0
µ(t′)dt′ is evaluated numerically during the simulations in this paper. In the

case of LM-OSL, the death rate is µ(t) = σ I t/P , and the integral is
´ t
0
µ(t′)dt′ = σ I t2/(2P ).

3.2. Calculation of the variance σ2
L of the luminescence intensity

The equations discussed in Section 3.1, describe the mean < n > and the variance σ2
n

of the population of trapped electrons. From an experimental point of view, we are also

interested in the variance σ2
L of the luminescence intensity L.

This quantity σ2
L can be evaluated from:

σ2
L =<

(
dn

dt

)2

> − <
dn

dt
>2 (18)

By using Eqt.(11):

σ2
L =< (µ(t)n)2 > − < µ(t)n >2= µ(t)2

(
< n2 > − < n >2

)
= µ(t)2 σ2

n (19)

σL = µ(t)σn (20)
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In the case of TL,

σTL =
(
s e−

E
kT (t)

)
σn (21)

In the case of LM-OSL,

σLMOSL =

(
σ I

P
t

)
σn (22)

In the cases of ITL and CW-OSL,

σISO =
(
s e
− E

kTISO

)
σn and σCWOSL=(σI) σn (23)

respectively. It is clear that in ITL and CW-OSL experiments, the variance of the lumines-

cence signal σ2
L is directly proportional to the variance σ2

n of the population of filled traps.

However, in the case of TL and LM-OSL experiments we can expect that the two variances

σ2
L, σ

2
n will have a different dependence on time (or temperature).

4. General description of the MC method

The basic Monte Carlo technique of solving differential equations is found in many stan-

dard textbooks of simulations in Statistical Physics (see for example [27];[28] and references

therein). The prototype application of these so-called “brute force” Monte Carlo methods

is radioactive decay, in which one assumes that all radioactive nuclei are identical, and that

during any time interval ∆t each nucleus has the same decay probability µ (in s−1) per unit

time. The well-known differential equation for this radioactivity process is:

dn

dt
= −µn , (24)

where n represents a continuous variable.

In the case of the Monte Carlo simulations, the differential equation 24 becomes a differ-

ence equation for the discrete variable n:

∆n = −µn∆t. (25)

In this paper, we will apply Monte Carlo methods to the more general equation of the form:

dn

dt
= −f(n, t)n , (26)

where f(n, t) is a function of the concentration n(t) of trapped electrons at time t. This
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differential equation becomes a difference equation during the MC simulations:

∆n = −f(n, t)n∆t , (27)

and the luminescence intensity is evaluated using:

I(t) =
∆n

∆t
. (28)

The details of implementing the algorithm have been given recently in Pagonis et al. [13],

and only a brief description is provided here. The dimensionless probability P for one trapped

electron to recombine within a time interval ∆t is P = f(n) ∆t, and one chooses a suitable

value of ∆t so that P << 1. In general terms, this simple algorithm proceeds as follows:

choose a trapped electron, and a random number r uniformly distributed in the unit interval

0 ≤ r≤1 is generated. If r ≤ P the trapped electron recombines, otherwise it does not.

In practical terms, a software implementation of equations 27 and 28 proceeds as follows.

At time t = 0 the initial values are initialized, and the evolution of the system is followed

during an appropriate time interval ∆t. If the random number r ≤ f(n, t) ∆t the electron

recombines radiatively, otherwise it does not; all non-recombined remaining electrons in the

cluster are tested during each time interval ∆t, and several recombination events could take

place during each time interval ∆t. The value of the remaining electrons in the cluster is

updated at the end of each time interval, and the process is continued until there are no

electrons left in the cluster. This process is repeated for a large number of MC runs, resulting

in the total luminescence intensity given by equation (28).

In order to estimate the stochastic uncertainties in the MC method, the average and

variance of a large number of Monte Carlo runs is evaluated. For the simulations presented

below, we used the programming environments MathematicaTM and R (R Core Team [29]).

The technical details of the implementation in R are beyond the scope of this manuscript

and will be presented elsewhere.

5. Results from the MC simulations of stochastic uncertainties

In this section we present the MC results for the stochastic uncertainties in TL, CW-

OSL and LM-OSL signals. Subsection 5.1 discusses the results for luminescence models with

first-order kinetics, and subsection 5.2 discusses results from the more general OTOR model.

5.1. First-order kinetics: Stochastic uncertainties in TL, CW-OSL and LM-OSL signals

Figure 2 shows a simulation of a TL glow curve consisting of M = 200 MC runs for a

system of n0 = N = 100 trapped electrons, following the Randall-Wilkins [19] first-order
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kinetics equation (2). The thermal parameters of the electron trap are E = 1 eV and

s = 1012 s−1, and the heating rate β = 1K/s.

Panels (a) and (b) in Fig.2 show the results for the electron population n(T ) and the TL

intensity from 200 MC runs, by using the algorithm described in the previous section. The

shaded areas in these two panels indicate the range of the 200 MC runs (i.e. minima and

maxima).

Panels (b) and (e) show the standard deviations σn and σTL, which are calculated from

the simulations shown in Figs.2ab. The solid lines in panels (b) and (e) are plots of the

analytical equations (13) and (21).

Similarly, panels (c) and (f) show the coefficients of variance CVn and CVTL , and the

solid lines in these panels are plots of the analytical equations (14) and (17).

These simulations show good agreement between the stochastic MC runs and the ana-

lytical equations previously discussed in Section 3 for pure death stochastic problems.

Figure 3 shows a simulation of a CW-OSL curve consisting of M = 1000 MC runs for a

system of N = no = 1000 trapped electrons, following the first-order kinetics equation (4).

The optical excitation rate ACW = 0.04 s−1. Panels (b) and (e) show σn and σTL of the

CW-OSL process. The solid lines in panels (b) and (e) are plots of the analytical equations

(13) and (23). Similarly, panels (c) and (f) show the CVn and CVTL, and the solid lines in

these panels are plots of the analytical equations (14) and (17).

Figure 4 shows a simulation of a LM-OSL curve consisting of M = 2000 MC runs for a

system of N = no = 1000 trapped electrons, following the first-order kinetics equation (8).

The optical excitation rate ALM = 0.08 s−1 and the maximum excitation time is P = 220 s.

Once more, the solid lines in panels (b) through (f) represent the analytical equations given

in Sections 2 and 3.

Overall the simulations in Figs. 2, 3 and 4 show good agreement between the stochas-

tic MC runs and the analytical equations, which were previously published for pure death

stochastic problems (Allen [25] , Kendall [26]). In all three figures the CV [%] is a mono-

tonically increasing function of time (or temperature).

In a typical CW-OSL experiment involving quartz, researchers employ the initial portion

of the signal (e.g., the first second) in the CW-OSL intensity. By contrast, in typical TL

or LM-OSL experiments researchers measure the maximum TL or LM-OSL signal. This

difference between experimental protocols means that stochastic uncertainties in CW-OSL

signals will be much smaller than the corresponding uncertainties in a TL or LM-OSL signal.

This important result from the simulations is verified in the next subsection, when the

simulations are repeated within the more complex OTOR model of luminescence.
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5.2. Stochastic uncertainties within the OTOR model

In this section we study the stochastic uncertainties within the OTOR model, which

includes the possibility of electrons being retrapped (instead of recombining) during the

thermal/optical excitation of the sample. It is important to note that the OTOR model

involves nonlinear equations, and therefore there are no analytical solutions available for the

coefficients of variation CV [%].

The two parameters which are varied within the OTOR model are the trap filling ratio

no/N , and the retrapping ratio R .

Figure 5a shows three different TL glow curves calculated with R = 10−7, 0.5, 1 by using

equation (9) for the OTOR model. The two curves for R = 10−7 and R = 1 correspond to

first and second order kinetic processes, while the middle curve for R = 0.5 can be described

empirically as a general order kinetics curve with intermediate order kinetics.

Figure 5b shows simulations of the coefficient of variation CV for TL processes, as a

function of the retrapping ratio R which is varied over many orders of magnitude between

R = 10−7 and R = 1. The three curves are evaluated for different values of the total number

of particles no = N = 50, 100, 300. This figure shows that the CV [%] is practically constant

between R = 10−7 and R = 0.1, and increases slightly for R values between 0.1 and 1, as

the kinetics approaches second order.

Figure 6 shows the simulations of a CW-OSL signal in the OTOR model, as a function

of the total number of electrons 50 ≤ no, N ≤ 104. The retrapping ratio is kept fixed at

R = 10−7. As expected in a MC simulation, the stochastic CW-OSL uncertainty decreases as

N increases. This makes physical sense, since we expect that the stochastic uncertainties will

become negligible as N increases and the behavior of the system approaches the deterministic

behavior described by the differential equations approach. Furthermore, the solid line in this

figure represents the value CV = 100/
√
N , which one expects for a Poisson distribution.

For example, when N = 104 particles, the CV [%] value is close to 100/
√

104 = 1%. Good

agreement is once more found with stochastic variation of CV [%] in the MC simulations and

the general expected behavior of a stochastic system.

Figure 7abc shows the simulations of TL, CW-OSL and LM-OSL signals, for different

values of the of the total number of particles no = N = 50, 100, 200, 500. The retrapping

ratio is kept fixed at R = 10−7.

Figures 8abc show the CV [%] which are calculated from similar simulations as Figure

7abc, and as functions of the trap filling ratio no/N . By comparing the panels in Figure 8,

it is clear that the stochastic uncertainty of the maximum TL signal is much larger than the

uncertainty of the initial CW-OSL signal. In terms of experimental work, this indicates that

the initial CW-OSL signal is much less likely to be affected by the stochastic uncertainties
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considered in this paper. The CV [%] for LM-OSL signals is in-between those for TL and

CW-OSL.

This difference between the behavior of the initial CW-OSL signal and the maximum TL

signal, is due to the different time dependence of these two stimulation modes. During a

CW-OSL experiment the optical excitation rate A is constant and does not depend on the

time elapsed from the beginning of the experiment. By contrast, during a TL experiment

the thermal excitation rate s exp(−E/kT ) increases drastically with the time elapsed from

the beginning of the experiment.

Figures 5-7 show only the results for cases no = N in the OTOR model. However,

additional simulations were also considered, in which no andN are not equal. The conclusions

from these additional simulations are the same as in the case no = N , so these results are

not shown here.

6. Discussion and conclusions

The simulation results in this paper are relevant to two research areas, namely the study

of luminescence signals from nanodosimetric luminescent materials, and also in the more

specific area of single grain CW-OSL experiments (Wintle and Adamiec [30]).

One of the fundamental questions that this paper attempts to answer by simulation, is

under what kind of conditions one can expect stochastic uncertainties to become important

during a luminescence dosimetry experiment? The simulations in this paper show that the

stochastic uncertainties could become statistically significant when the number of particles

participating in the luminescence process is N = 1000, or smaller.

Luminescence dosimetry researchers have to take into account several sources of uncer-

tainty, during determination of radiation doses received by a sample (e.g. Anechitei-Deacu

et al., [31], Bo Li et al. [32], Bluszcz et al. [33], Adamiec et al. [34], Duller [35], Jacobs

et al. [36], Galbraith et al. [37]). The stochastic uncertainties examined in this paper are

due to the randomness introduced by the luminescence process itself, and are expected to

become important when a small number of particles participates in the production of the

luminescence signal. As a numerical example, when one is dealing with a large number of

bright luminescent grains larger than 100 μm, these stochastic uncertainties are not expected

to influence the precision and accuracy of experimental work, since they vary as the inverse

square root of the number of particles participating in the luminescence process. However,

recent experimental and modeling work has indicated that these stochastic uncertainties can

become important when one is dealing with grain sizes in the range of 1 μm. We now discuss

these recently published results.
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Polymeris et al., [16] studied the well-known phenomenon of anomalous fading (AF) of

luminescence signals in grains of natural Durango apatite. Anomalous fading was found to

be ubiquitous for all luminescence signals in this material, and for all grain size fractions.

The AF rate for some of these luminescence signals was found to depend on three experi-

mental factors, namely the grain size, the temperature along the glow curve, and on the ball

milling time that the samples underwent. On the modeling side, Pagonis and Truong [38]

examined possible correlations between the nanocrystal size and the shape and magnitude

of TL signals, by using Monte Carlo simulations. These authors showed that in materials

for which quantum mechanical tunneling is the dominant recombination mechanism, the TL

signals depend on the physical size of the crystal, on the quantum tunneling length, and

on the relative concentrations of electrons and positive charges. They also presented new

experimental data for Durango apatite samples which underwent ball milling process for

different amounts of time. The magnitude and shape of these TL signals depended on the

size of the grains in the samples.

Autzen et al. [17] investigated the possibility of charge imbalance in grains of quartz,

by using high dose experiments and also by modeling the irradiations using GEANT4 sim-

ulations. For a typical TL/OSL reader and commonly used irradiation dose rates in the

laboratory they estimated by simulation that the electron-hole production rate in a single

grain disk is of the order of (81.3± 0.4) × 103 pairs/Gy. According to this numerical esti-

mate, a sample irradiated with a beta dose of 1 mGy will correspond approximately to N

=80 electron-hole pairs. When such a small number of electron-hole pairs is involved in the

luminescence process, one would expect that the stochastic uncertainties will become impor-

tant, and that they will be of similar order of magnitude as other sources of experimental

error. This is especially important during single grain quartz experiments.

The second important conclusion from the simulations is that for monotonic luminescence

signals (like CW-OSL), one would expect smaller stochastic uncertainties than peak-shaped

luminescence signals (like TL and LM-OSL). This is because during CW-OSL experiments

researchers typically use only the initial part of the luminescence signal (first 1 second),

rather than the complete CW-OSL curve. By contrast, the stochastic error in TL or LM-

OSL experiments is much larger, because it would be usually estimated near the peak of the

luminescence signal.

The simulations also show that retrapping phenomena most likely have a small effect on

the magnitude of the stochastic uncertainty, although they will influence the magnitude of

the corresponding luminescence signals. The simulations show that the magnitude of the

stochastic uncertainties depends strongly on the degree of trap filling, and that stochastic

uncertainties become smaller as one approaches saturation of the dosimetric traps.
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The MC method presented in this paper is easily generalized to other types of lumines-

cence signals, and provides a method of estimating the stochastic uncertainties inherent in

the luminescence process. Future work in progress is to study these stochastic uncertainties

for more complex delocalized transition models like the non-interactive and interactive mul-

titrap models (NMTS and IMTS), and also for localized transitions and quantum tunneling

models (Kitis et al. [7]).
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FIGURE CAPTIONS

Figure 1 Energy level diagram for the OTOR model. The transition p indicates ther-

mal/optical excitation process, An and Am are the retrapping and recombination rates,

nc is the concentration of electrons in the conduction band, and m is the concentration

of holes in the recombination center.

Figure 2 Simulation of a first-order TL glow curve consisting of M = 200 MC runs for

N = 100 trapped electrons. The parameters of the electron trap are E = 1 eV and

s = 1012 s−1, and the heating rate β = 1 K/s. (a) The electron population n(T ) (b)

The variance σn (c) The coefficient of variation CVn. Panels (d),(e),(f) show the same

quantities for the TL intensity. The shaded areas in the top two panels indicate the

minimum and maximum range of the MC runs. The solid lines in the bottom four

panels are plots of analytical equations in the text.

Figure 3 Simulation of a CW-OSL curve consisting of M = 1000 MC runs and for N =

no = 1000 trapped electrons, following first-order kinetics. The optical excitation rate

ACW = 0.04 s−1. The panels correspond to the same quantities shown in Figure 2.

Figure 4 Simulation of a LM-OSL curve using M = 2000 MC runs for N = no = 1000

trapped electrons, following first-order kinetics. The optical excitation rate ALM =

0.08 s−1 and the maximum excitation time is P = 220 s. The panels correspond to the

same quantities shown in Figures 1 and 2.

Figure 5 (a) shows three different TL glow curves calculated with R = 10−7, 0.5, 1 in the

OTOR model. (b) The CV [%] for TL processes, as a function of the retrapping ratio

R between R = 10−7 and R = 1. The three curves are evaluated for different values of

the total number of particles no = N = 50, 100, 300.

Figure 6 Simulations of a CW-OSL signal in the OTOR model, as a function of the total

number of electrons no = N and for a fixed retrapping ratio R = 10−7. The solid line

in this figure represents the curve CV = 100/
√
N for a Poisson distribution.

Figure 7 Simulations of (a) TL, (b) CW-OSL and (c) LM-OSL signals, as a function of the

trap filling ratio no/N . The retrapping ratio is kept fixed at R = 10−7. The four curves

correspond to different values of the total number of particles N = 50, 100, 200, 500.

Figure 8 The CV [%] calculated from the corresponding simulations of Figs. 7abc, shown in

the same scale. The stochastic uncertainty of the maximum TL signal in (a) is much
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larger than the uncertainty of the initial CW-OSL signal in panel (b), and the CV [%]

for LM-OSL signals is panel (c) lies in-between those for TL and CW-OSL.
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Figure 1: Energy band diagram for the OTOR model. The transition p indicates thermal/optical excitation
process, An and Am are the retrapping and recombination rates, ncis the concentration of electrons in the
conduction band, and m is the concentration of holes in the recombination center.
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Figure 2: Simulation of a first-order TL glow curve consisting of M = 200 MC runs for N = 100 trapped
electrons. The parameters of the electron trap are E = 1 eV and s = 1012 s−1, and the heating rate
β = 1 K/s. (a) The electron population n(T ) (b) The variance σn (c) The coefficient of variance CVn.
Panels (d),(e),(f) show the same quantities for the TL intensity. The shaded areas in the top two panels
indicate the minimum and maximum range of the MC runs. The solid lines in the bottom four panels are
plots of analytical equations in the text.
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Figure 3: Simulation of a CW-OSL curve consisting of M = 1000 MC runs and for N = no = 1000 trapped
electrons, following first-order kinetics. The optical excitation rate ACW = 0.04 s−1. The panels correspond
to the same quantities shown in Figure 2.
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Figure 4: Simulation of a LM-OSL curve using M = 2000 MC runs for N = no = 1000 trapped electrons,
following first-order kinetics. The optical excitation rate ALM = 0.08 s−1 and the maximum excitation time
is P = 220 s. The panels correspond to the same quantities shown in Figures 1 and 2.
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(a)

(b)

Figure 5: (a) shows three different TL glow curves calculated with R = 10−7, 0.5, 1 in the OTOR model.
(b) The coefficient of variation CV [%] for TL processes, as a function of the retrapping ratio R in the
range R = 10−7 − 1. The three curves are evaluated for different values of the total number of particles
no = N = 50, 100, 300.
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Figure 6: Simulations of a CW-OSL signal in the OTOR model, as a function of the total number of electrons
no = N = 50 − 104 and for a fixed retrapping ratio R = 10−7. The solid line in this figure represents the
curve CV = 100/

√
N for a Poisson distribution.
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(a)

(b)

(c)

Figure 7: Simulations of (a) TL, (b) CW-OSL and (c) LM-OSL signals, as a function of the number of
electrons no = N . The retrapping ratio is kept fixed at R = 10−7. The four curves correspond to different
values of the total number of particles N = 50, 100, 200, 500.
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(a)

(b)

(c)

Figure 8: The CV [%] coefficients calculated from the corresponding simulations of Figure 7abc, shown
in the same scale. The stochastic uncertainty of the maximum TL signal in (a) is much larger than the
uncertainty of the initial CW-OSL signal in panel (b), and the CV [%] value for LM-OSL signals is panel (c)
lies in-between those for TL and CW-OSL.

29


