The responding and ecological contribution of biofilm-leaves of submerged macrophytes on phenanthrene dissipation in sediments

Zhenhua Zhao¹,²*, Zhirui Qin¹, liling Xia³, Dan Zhang¹, Sara Margaret Mela⁴, Yong Li¹

¹ Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P.R. China.
² Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA.
³ Nanjing Institute of Industry Technology, Nanjing 210016, P.R. China
⁴ Department of Geography and Earth Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3DB, UK

*Corresponding author: E-mail: zzh4000@126.com (Zhenhua Zhao)
Tel.: +86 25 83786696; Fax: +86 25 83786696
Abstract

The bacterial communities and ecological contribution of biofilm-leaves of the *Vallisneria natans* (VN), *Hydrilla verticillata* (HV) and artificial plant (AP) settled in sediments with different polluted levels of phenanthrene were investigated by high-throughput sequencing in different growth periods. There was no significant difference among the detected Alpha diversity indices based on three classification, attached surface, spiking concentration and incubation time. While Beta diversity analysis assessed by PCoA on operational taxonomic units (OTU) indicated that bacterial community structures were significantly influenced in order of attached surface > incubation time > spiking concentration of phenanthrene in sediment. Moreover, the results of hierarchical dendrograms and heat maps at genus level were consistent with PCoA analysis. We speculated that the weak influence of phenanthrene spiking concentration in sediment might be related to lower concentration and smaller concentration gradient of phenanthrene in leaves. Meanwhile, difference analysis suggested that attached surface was inclined to influence the rare genera up to significant level than incubation time. In general, the results proved that phenanthrene concentrations, submerged macrophytes categories and incubation time did influence the bacterial community of biofilm-leaves. In turn, results also showed a non-negligible ecological contribution of biofilm-leaves in dissipating the phenanthrene in sediments (>13.2%-17.1%) in contrast with rhizosphere remediation (2.5%-3.2% for HV and 9.9%-10.6% for VN).
Capsule: The bacterial community structures were influenced in order of attached surface > incubation time > spiking concentration of phenanthrene in sediment.

Key words: phenanthrene bioremediation; submerged macrophyte; biofilm-leaf; bacterial community; high-throughput sequencing
1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are widely distributed environmental pollutants (Chen et al., 2015; Li et al., 2014), which result from incomplete combustion of fossil fuels and organic materials, and are often associated with industrial and human activities (Bamforth and Singleton, 2010). PAHs are highly carcinogenic, teratogenic and mutagenic compounds and can pose a great threat to human health through food-chain bioaccumulation (Moscoso et al., 2012). As demonstrated by studies on occurring, transporting, adsorbing and biodegrading, the concentrations of PAHs in natural environments can be detected in a wide scope from 1 ng/g to 300 mg/kg (Lu et al., 2012). PAHs typically precipitate and accumulate in sediments due to their hydrophobic properties in aquatic environment (Liang et al., 2007; Wang et al., 2003), which result in the sediment being the major sink of PAHs. Meanwhile, several studies indicate that sediments may be the second-most concentrated source of PAHs (Jérôme Cachot et al., 2007; Yang et al., 2008). PAHs observed in sediments mainly consist of 3-rings PAHs (e.g. phenanthrene) and 4-rings PAHs (e.g. pyrene) (Hassan et al., 2018; Lin et al., 2016).

Dredging contaminated sediments is a common but disruptive practice which can lead to the re-suspension of pollutants (Agarwal et al., 2007). Therefore, exploring cost-effective, in situ approaches for sediment remediation has become increasingly important (Perelo, 2010).

Phytoremediation is a prospective alternative means because of its affordability, effectiveness and low environmental impact (Cheema et al., 2010; Gomes et al., 2013). A considerable amount of work has been done investigating the rhizosphere, which could
improve microbial population and diversity of soil surrounding plant roots (Ma et al., 2010). Such studies mainly focus on the rhizosphere of terrestrial plants, while submerged plants are the key and widespread species in coastal shallow water. Diverse microbiomes were often associated with submerged rhizoplanes, due to the unique environment that persists compared to their terrestrial counterparts (Srivastava et al., 2016; Zhao et al., 2017). This plant-microbes ecosystem could be manipulated to alleviate the condition of polluted sediments naturally. The high root oxygen loss (ROL) capacity of submerged macrophytes could contribute to nitrogen cycling in sediments: higher abundance of ammonia oxidizers increased denitrification, while nitrifies and denitrifying communities may associate more closely in these environments (Vila-Costa et al., 2016).

Recently, the remediation strategy of using submerged macrophytes to deal with sediments polluted by PAHs has attracted widespread attention. Meng et al. (2015) showed that microbial degradation, rather than plant uptake, played a major role in the plant-promoted the dissipation of PAHs in sediments, and microbial degradation was not controlled by the amount of bioavailable PAHs - even if these were readily bioavailable. Dissipation ratio of PAHs was correlated with PAH-degrading bacteria population which in turn, linked positively with sediment redox potential, and low plant density of Vallisneria spiralis should be a better selection for phytoremediation (Liu et al., 2014). In addition, Potamogeton crispus greatly improved the bioavailability (73.9%) and biodegradation activity (277%) of pyrene in aged sediments in contrast with unaged sediments (13.1% and 150%, respectively) (Meng and Chi, 2016).
Diverse substances such as organic matter, silt, zoogloea, algae and other microorganisms often accumulate on the leaf surface of submerged plants. A micro-interface is therefore established which varies in its composition, structure and thickness depending on the actual environmental properties. This impacts the gas exchange between water and plants and induces specific heterogeneous oxidation–reduction environments. Numerous investigations have focused on the micro-interface of submerged macrophytes. Sand-Jensen et al. (1985) reported that dissolved oxygen (DO) on the micro-interfaces of leaves of Potamogeton crispus, Littorella uniflora, Zostera marina and Scytosiphon lomentaria increased with shorter distance from the leaf surfaces, and with increasing illumination intensity. In the daytime, the leaf surfaces of submerged macrophytes produced an oxygen-enriched environment, while a highly anaerobic environment appeared in night. Meanwhile, the pH in the micro-interfaces was greater than surrounding water (Jones et al., 2000; Sandjensen et al., 1985), and the difference value increased with the thickness of biofilm (Jones et al., 2000). Recently, high throughput sequencing, and next generation sequencing technology has provided gene sequence outputs that could be further analyzed to provide in-depth bacterial taxonomic assignments (Kim and Isaacson, 2015). Thus, some researchers studied the response and role of functional bacteria on biofilm-leaves for eutrophication, especially for nitrogen in aquatic environments through high throughput sequencing technology (Pang et al., 2016; Yan et al., 2017; Zhang et al., 2016). Little is known about the cumulative capacity of PAHs in the leaves of submerged macrophytes and their impact on the biofilm-leaves.
when they release from sediments to water due to the characterization of hydrophobicity normally. However, Lipotropy of leaves of submerged plants makes them enrich PAHs from water (Diepens et al., 2014). PAHs may be mediated by microorganisms in microinterfaces, especially bacteria. Thus, we hypothesized that the bacterial community in biofilm attached on leaves of submerged macrophytes suffering from PAHs might be altered and biofilm-leaves might contribute to the dissipation of PAHs in turn.

In our present study, phenanthrene was chosen as one of representative low molecular weight (LMW) PAHs because it is commonly found in sediments. The bacterial community and ecological contribution of biofilm-leaves were identified by high throughput sequencing, compared between an artificial plant and two submerged macrophytes in different growth periods, settled in sediments spiked with different phenanthrene concentrations. The objective of this study is to explore and identify the key driving factor influencing the bacterial community of biofilm-leaves and the ecological contribution of different dissipation mechanism (e.g. biofilm, submerged macrophytes, and background degradation) on phenanthrene dissipation in water and sediment.

2. Materials and methods

2.1 Materials

Vallisneria natans (VN) and *Hydrilla verticillata* (HV) (Nanjing Sam Creek aquatic breeding research base) were selected as the tested aquatic plants. A control group (CG) and artificial plants group (bio-racks with organic glass, AP) with similar surface area to submerged macrophytes were also tested. Sediments (pH=7.32, organic matter=2.14%,...
background phenanthrene level=0.056 mg/kg) were collected from a suburb river of Nanjing (not in the main industrial area), air-dried, manually crushed, and then sieved with 2-mm mesh to remove plant residues and stone. Organic glass containers (40 × 50 cm) were chosen to cultivate submerged plants, to avoid loss of phenanthrene via adsorption. The experiment was carried out in the ecological greenhouse with three replicates for 35 d.

2.2 Experimental setup

The 0.6 g phenanthrene dissolved in acetone (1600 mL) was spiked into 6 kg sediment. After acetone evaporating, the polluted sediment was mixed with unpolluted sediment with their respective proportion, and laid in each container smoothly. The final contents of phenanthrene in sediment (dry weight) were 20 mg/kg and 10 mg/kg, respectively.

0.01 g norfloxacin and 0.015 g roxithromycin / L water) were added into water to domesticate for 3 – 5 d, which could remove or destroy the original biofilm-leaves. After the completion of plant domestication, the robust and uniform plants were transplanted into the containers. 50 L water was added to the container and the water-line was marked clearly to replenish water to a uniform level throughout cultivation.

Water, leaf and sediment samples were collected for phenanthrene analysis at 14, 28 and 35 d. The samples were stored at -20°C for PAHs analysis. The biofilm-leaves of submerged plants and biofilm-surface of AP were extracted in 14 and 28 d, respectively.

2.3 The separation of biofilm attached on the plants leaves

The method of biofilm separation from leaf surfaces was modified from He et al. (2012).
With precool ethanol-PBS buffer as eluent, appropriate amount of leaves were put in the polyethylene test tube, then Triton solution and several 3 mm glass beads were added. All the sample tubes were placed in reciprocating oscillator with constant temperature and were shaken for 10 min (225 r/min), then underwent ultrasounds (150 W, 40 kHz) for 1 min. After filtrating elution liquor, the filtrate was centrifuged for 10 min (10000 rpm), and the centrifugal precipitate was collected. Artificial plant biofilms could be scraped directly with a sterile scalpel.

2.4 Analysis methods

2.4.1 Extracting and purifying of samples (Hussain et al., 2016; Zhao et al., 2014)

Sediment samples: 5.0 g of lyophilization sediment samples and 2.0 g anhydrous sodium sulfates were mixed and soaked in 15 mL extractant agent (hexane / acetone = 2/1, v/v) for 1 h in 50 mL glass centrifuge tube, and processed 10 min ultrasonic extraction. The above-mentioned process was repeated twice, and the supernatants were moved to the pear-shaped bottle and concentrated to 1 mL with vacuum rotary evaporator for purifying. After the Solid Phase Purification Column (SPPC, 0.5 g copper powder + 1 g anhydrous sodium sulfate + 1 g silica gel + 1 g alumina pretreated) was rinsed and activated with 5 mL n-hexane, the concentrated extracting liquor was transferred to the SPPC and eluted by 15 mL n-hexane and 10 mL dichloromethane. The obtained eluent was concentrated and adjusted to 1 mL with n-hexane.

Water samples (Zhao et al., 2018): After each water sample (1 L) was filtrated through glass fiber membrane of 0.45 μm and extracted with C18 SPE column, the column was
washed by HPLC water, and pumped for 30 minutes to remove redundant moisture. The PAHs in the SPE column was eluted with 10 mL of acetone/n-hexane (v/v = 1/2) and 12 mL of dichloromethane/n-hexane (v/v = 3/2). The eluent was concentrated and adjusted to 1 mL with n-hexane.

Plant samples (Tao et al., 2006; Zhao et al., 2018): 5.0 g plant samples and 5.0 g anhydrous sodium sulfates were packed in a filter paper parcel and extracted in Soxhlet Extractor for 10 h with 100 mL 10% of acetone/n-hexane (v/v) mixed solvent, and the extracted liquid was washed twice in separating funnel by 5% sodium sulfate solution for removing acetone. The extract of n-hexane was concentrated to about 1 mL and dealt with 20 mL concentrated sulfuric acid to get rid of the fat in plant samples twice. Finally, the extract was put into SPPC, the purification and elution steps were same as sediments.

2.4.2 Determination of phenanthrene (Jiao et al., 2007).

The phenanthrene was analyzed by Agilent1100 HPLC with fluorescence and UV - adsorption detector. A 250 mm × 4.6 mm × 5 μm reversed phase C18 column (Agilent ZORBAX Eclipse XDB-C18) was used as the stationary phase. A solution of acetonitrile and ultrapure water was delivered as the mobile phase in a gradient programme at 1 mL/min. The volume ratio of acetonitrile and water was 75: 25. Phenanthrene was quantified by using external standard solutions sourced from Ehrenstorfer (Augsburg, Germany). Detective wavelength with FLD signals: Exλ=257 nm, Emλ=380 nm.

2.4.3 DNA extraction, PCR amplification, sequencing and data analysis

Weighing 0.5 g biofilm-leaves/surface samples in 2 mL centrifuge tube, the bacterial
DNA were extracted by Soil DNA Kit (Omega E.Z.N.A.™, Omega Bio-Tech) according to manufacturer’s protocol. The PCR primers were V3-V4 universal primers 341F/805R (341F: CCTACGGGNGGCWGCAG; 805R: GACTACHVGGGTATCTAATCC) provided by Sangon Biotech Co., Ltd., Shanghai, China. The PCR reaction mixture contained 5 μL 10×PCR buffer, 0.5 μL dNTPs (10 mM each), 0.5 μL Bar-PCR primer F (50 μM), 0.5 μL Primer R (50 μM), 0.5 μL Plantium Taq (5 U/μL), 10 ng DNA template, with sterile water added to make the final volume to 50 μL. The following PCR cycle was performed: initial denaturation at 94 °C for 3 min, denaturation at 94 °C for 30 s, renaturation at 94 °C for 30 s, annealing at 45°C for 20 s, extension at 65 °C for 30 s with a total of 30 cycles, and the final extension at 72 °C for 5 min. Amplification products were detected by 1% agarose gel electrophoresis, and then recycled using DNA Recycle Kit, SK8131 (Sangon Biotech Co., Ltd, Shanghai, China), and finally quantified using Qubit 2.0 DNA Assay Kit (Sangon Biotech Co., Ltd, Shanghai, China). Paired-end sequencing was performed using Illumina MiSeq platform (Illumina, San Diego, CA, USA).

Sequencing analysis was executed by using QIIME (Yu et al., 2017). The Uclust method was used to pick the representative sequences for each operational taxonomic units (OTUs). Then the taxonomic information was annotated with the SILVA database after subsampling based on the lowest number of reads. The number of reads ranged from 35410 to 46153. Alpha diversity refers to the diversity of microorganism in a special region or ecosystem. A number of Alpha diversity measures were evaluated using the
Mothur software including the abundance based coverage estimator (ACE), terminal richness estimation (Chao1), the Shannon index, Simpson index and the Good’s coverage estimation. Statistical analyses were performed using R software, including rank-abundance curves, microbial community composition at phylum and genus level, PCoA and hierarchical cluster analysis using Bray-Curtis algorithm. Among them, PCoA and hierarchical cluster analysis were usually used to research the similarity or difference of microbial community composition of different samples group. Heat maps generated by HemI can reflect visually the difference in abundance distribution of species between different groups. The difference of microbial communities at genus level was analyzed by Kruskal-wallis H test and Wilcoxon rank-sum test using STAMP software, which is used to assess the difference of Alpha diversity indices based on three classifications. In addition, one-way ANOVA was applied to check the difference of ECI between four systems.

The raw DNA sequence data was uploaded to NCBI Short Read Archive (SRA) with the accession number of SRP125077.

3. Results and discussion

3.1 Phenanthrene dissipation and ecological contribution of submerged macrophytes and their biofilm-leaves

3.1.1 Dissipation of phenanthrene in water, sediment and leaves

During the experiment, phenanthrene concentration in sediments declined with the time in all the treatments (Fig. 1a). The dissipated efficiencies were in the order of VN
(62.7% for 20 mg/kg and 64.1% for 10 mg/kg) > HV (51.1% and 58.4%) ≧ AP (51.6% and 53.5%) > CG (35.8% and 42.4%). The results indicated that submerged macrophytes settled in sediments could contribute to the removal of phenanthrene, with dissipation rates dependent on the type of submerged macrophytes. This may relate to the capabilities of oxygenation and microbiological degradation of root tissue (He and Chi, 2016) and the biofilm-leaves.

The phenanthrene concentrations in water were rather low because of its hydrophobicity and low solubility (Fig. 1b); most phenanthrene was adsorbed in sediments (Fig. 1a) or on the surface of submerged macrophytes (Fig. 1c). The phenanthrene concentrations in water showed an initial increase followed by a gradual decrease slowly (Fig. 1b), while the phenanthrene concentrations in leaves always kept a relatively stable level in two kinds of hydrophyte leaves and were approximately 200 times greater than in water (Fig. 1b, Fig. 1c). The concentrations of phenanthrene in leaves were lower by an order of magnitude than in sediments (Fig. 1a, Fig. 1c), due to the mutual exchange balance of PAHs among overlying water, leaves and sediment (Diepens et al., 2014) and low level of phenanthrene in water naturally.

3.1.2 Ecological contribution of submerged macrophytes and their biofilm-leaves

Actually, the dissipation mechanisms of phenanthrene in different treatments system are very complicated and include many dissipated processes, which may contain synergies and antagonisms and be difficult to identify the sole dissipated contribution. In order to understand the combined dissipation ecological contribution of different
treatments (e.g. background dissipation, volatilization, photolysis) well, we regarded the
dissipation of phenanthrene as the sum of dissipated contribution of different dissipation
mechanism and ignored the synergies and antagonisms among them probably.
Considering the giant area of leaves and its ability of releasing oxygen of submerged
macrophytes at the same time, we should give weight to the contribution of biofilm-leaves
in remediating PAHs polluted sediments. So, we set an ecological contribution index (ECI)
to evaluate the contribution of each system in remediating Phe-polluted sediments (Fig.
1d).

\[
ECI = \frac{\text{spiked conc.} - \text{residual conc.}}{\text{spiked conc.}} \times 100\%
\]

(1)
ECI was in order of VN (36.8%-62.7%) > HV (30.2%-51.10%) > AP (27.6%-51.6%) >
CG (7.1%-35.8%) in 20 mg/kg phenanthrene system, and VN (40.3%-64.1%) > HV
(33.2%-58.4%) > AP (30.3%-53.5%) > CG (14.6%-42.4%) in 10 mg/kg phenanthrene
system from 14 d to 35 d, respectively. One-way ANOVA followed by DUNCAN post
hoc test was performed to check the difference of ECI among these four systems. And
results showed that there were no significant difference appeared regarding the PAHs
concentration \((p=0.078 \text{ for } 20 \text{ mg/kg}; \ p=0.233 \text{ for } 10 \text{ mg/kg})\); however, the ECI of
VN/HV system, especially for VN system was higher than AP/GC system spiked by 20
mg/kg phenanthrene rather than 10 mg/kg phenanthrene. Actually, the dissipation of
phenanthrene in CG system comes from the background dissipating ability, which
includes the volatilization, photolysis, release from sediment to water, microbiological
degradation in water and sediment. The dissipation of phenanthrene in AP system comes
from the background dissipating ability and the adsorption of artificial plant and the
degradation by the biofilm attached on the artificial plant surface. In the submerged
macrophytes system, phenanthrene dissipation can be explained by the action of
rhizosphere microbes, in addition to the factors acting in the AP. The difference of
dissipation between the AP and CG systems can represent the ecological contribution of
artificial plant biofilm (15.0%-20.5% for 20 mg/kg phenanthrene and 11.1%-15.6% for
10 mg/kg phenanthrene, and the averages were 17.1% and 13.2%, respectively), and the
ecological contribution of rhizosphere microbes can be represented by the difference of
dissipation between submerged macrophytes system and AP system (9.2%-11.7% in 20
mg/kg phenanthrene and 9.1%-10.6% in 10 mg/kg phenanthrene system for VN, the
average was 9.9%-10.6%; and 0%-5.4% in 20 mg/kg phenanthrene system and 1.6%-4.9%
in 10 mg/kg phenanthrene system for HV, the average was 2.5%-3.2%).

Our research confirmed phenanthrene released from sediments to water then
accumulated on the leaves surface of submerged macrophytes. We also noticed the
dissipation of phenanthrene in water and sediments during the cultivation process (Fig.
1a and Fig. 1b). It may be related to the dissipation induced by physical and chemical
process (e.g. photodecomposition), the enrichment and dissipation of hydrophyte (Li et
al., 2009), and the degradation of microorganisms. In addition, the added organic matters
could improve the adsorption capacity of sediment on phenanthrene because the dead
leaves sank into sediments later (Ying-Heng et al., 2014). However, the steady
phenanthrene concentration in the leaves of submerged macrophytes might be related to
the length of incubation time (Liu et al., 2014).

3.2 Bacterial diversity analysis based on attached surface, spiking concentration and incubation time

3.2.1 Alpha diversity

Alpha diversity can show the diversity of microorganism in a special region or ecosystem. In this study, the alpha diversities of biofilm microbial indices for leaf surface were shown in Table 1. ACE and Chao 1 are designed to estimate the community richness of biofilm samples based on the OTU numbers. The values of ACE and Chao 1 showed that the community richness of microbes in artificial plant samples (1C and 2C) were far higher than those submerged plant samples (1A, 2A, 3A, 4A and 1B, 2B, 3B, 4B), and the community richness of VN were slightly higher than those of HV. The Shannon and Simpson indices reflect community diversity. In our present study, the community diversity was consistent with community richness. The incubation time significantly affected the community diversity of biofilm samples, and those of 14 d samples were higher than those of 28 d samples. However, the effect of phenanthrene concentration was indistinctive. The coverage index represents the sequencing depth. In the study, the coverage was approximately equal to 0.99 except for 1C (0.97) and 2C (0.97) after subsampling based on the lowest number of reads, and indicating all the samples reflected
the actual situation. Meanwhile, the difference was analyzed among Alpha indices based on three classifications (attached surface, spiking concentration of phenanthrene and incubation time) using Wilcoxon rank-sum test (Table S1). However, there was not statistically significant difference regretfully ($p < 0.05$, see the Table S1).

Table 1

3.2.2 Taxon richness and distribution evenness analysis: Rank-abundance distribution curves, Shannon-Wiener curves and Rarefaction curves of the OTUs

Applying the rank-abundance curve to analyze species distribution was an imperative manner. On account of computing the sequencing numbers which each OTU contained, researchers sorted by OTUs in descending order and depicted the relevant relations in accordance with abundance. The curves can reflect both species abundance and distribution evenness (Cheng et al., 2016). Fig. 2 showed that the distribution ranges of AP were wider than SM, which demonstrated that the species in the biofilm-surface of AP were more abundant. The curve graph of SM was smaller than that of AP, which meant that the species distribution was more even in AP. The rank-abundance distribution corresponded to the analysis of community diversity using Alpha diversity indices.

The Shannon-Wiener curves takes richness and evenness of samples into account. Sample 10B had the highest diversity (6.64) and followed by sample 9B (6.53), while the sample 3B had the lowest diversity (4.00) (Fig S1a). The reads of each sample were large
enough (>25,000 tags per sample) to reflect huge diversity of microbial community because they reached the plateau since less than 5,000 tags for each sample. Rarefaction analysis was applied to standardize and compare taxon richness observed among samples (Fig. S1b). The rarefaction curves based on OTUs (97% similarity) presented a generally consistent tendency for SM rather than AP. These results showed that recovered sequences reflected the diversity of microbial community well, and further sampling could reveal the diversity of microbial community in AP to some extent.

3.2.3 Beta diversity

The Beta diversity is good at comparing the microbial community composition among different sample groups. Here, it was assessed by PCoA based on OTU level, and the results were illustrated in Fig. 3a. Principal components 1 (PC1) and PC2 explained 42.5% and 18.79% of variation of microbial community composition, respectively. Generally, the samples were divided into three groups (group A, group B and group C). The different attached surface (AP: group C vs. SM: group A and group B) had a dominant influence on the microbial community structure, but the difference among submerged macrophytes was small. The separation of group A and group B indicated that incubation time also influenced the bacterial community composition. However, the spiking concentration of phenanthrene just presented marked effect on the community structure in VN only.

Figure 2

3.3 Comparison and difference analysis based on attached surface, spiking concentration
and incubation time at genus level

The bacterial community structures of AP and SM samples at phylum level are shown in Fig. S3. The results reflected that the diversity and evenness of bacterial community on the surface of artificial plant were higher than those on the leaves of submerged macrophytes again. In order to identify and understand the key impact factors (e.g. submerged plants, spiking concentration of and incubation time) on the microorganism composition of biofilm-leaves, Hierarchical clustering analysis, heat map, Kruskal-wallis H test and Wilcoxon rank-sum test were used to analysis and visually show the difference significant of different impact factors.

3.3.1 Hierarchical clustering analysis

Hierarchical clustering dendrograms were usually used to research the similarity or difference of microbial community composition of different samples. And in our study, they were generated at genus level based on attached surface, spiking concentration and incubation time, respectively. From Fig. 3b, all the samples were separated into two distinct groups: AP and SM. And compared to HV, VN had a stronger influence on bacterial community composition at genus level except for sample 1A. While different spiking concentration of phenanthrene had a weak impact on the bacterial community structures at genus level (Fig. 3c). Moreover, bacterial community structures changed along with incubation time at genus level except for 3A (Fig. 3d). These results were consistent with PCoA.

3.3.2 Visual display of difference: Heat maps of bacterial communities
Attached surface, spiking concentration of phenanthrene and incubation time affected bacterial community in one way or another. Heat maps of bacterial communities in top 50 genera based on attached surface, spiking concentration and incubation time were drawn to highlight distinctly different specific genera (Fig. 5). Fig. 5a showed that 8 genera were abundant in the bacterial community of samples AP, but were rarely identified and appeared in samples SM, including *Pseudomonas*, *norank_c__Acidobacteria*, *norank_f__Anaerolineaceae*, RB1, *Geobacter*, *Nitrospira*, *unclassified_f__Micrococcaceae* and *Sphingomonas*. Previous studies showed that *Pseudomonas* and *Sphingomonas* were PAH-degrading bacteria, and *nitrospira sp.* was associated with nitrogen cycling. *Norank_c__Cyanobacteria*, *unclassified_f__Comamonadaceae* and *Pirellua* were abundant in samples SM. A few genera were abundant in samples VN, such as *unclassified_c__Cyanobacteria*, *Limnothrix* and *unclassified_f__Family1_o__Subsection1*.

Fig. 5b presented *unclassified_f__Family1_o__Subsection1*, *unclassified_f__Comamonadaceae*, *unclassified_c__Cyanobacteria*, *Limnothrix* and *Pseudorhodoferax* were observed to be abundant in the lower concentration groups (10 mg/kg), while only one genus, *norank_c__Cyanobacteria*, was found in abundance among the higher concentration groups (20 mg/kg).

Only two genera, *Limnothrix* and *Ideonella*, were detected to be abundant in 14 d (Fig. 5c), while *unclassified_c__Cyanobacteria*, *Pseudorhodoferax*, *norank_f__Family1*, *unclassified_f__Family1_o__Subsection1* and *norank_o__Caenarcaniphilales* were
abundant in 28 d.

3.3.3 Difference significance level analysis: Kruskal-wallis H test and Wilcoxon rank-sum test

In order to assess the significance level of abundance difference of species and obtain the significantly different species, Kruskal-wallis H test and Wilcoxon rank-sum test were used to identify the difference between the top 60 genera based on attached surface (Fig. 6a), and top 15 genera based on spiking concentration of phenanthrene (Fig. 6b) and incubation time (Fig. 6c), respectively. Only five genera including *norank_c__Cyanobacteria* (*p*=0.04227), *Limnothrix* (*p*=0.04973), *norank_f__MNG7* (*p*=0.0197), *norank_f__Gemmatimonadaceae* (*p*=0.0379) and *unclassified_f__Family1_o__SubsectionIII* (*p*=0.01927) presented a significant difference from top 40 genera in Fig. 4a. We observed that *norank_c__Cyanobacteria*, *Limnothrix* and *unclassified_f__Family1_o__SubsectionIII* belonged to the phylum of Cyanobacteria, *norank_f__MNG7* belonged to the phylum of Proteobacteria, and *norank_f__Gemmatimonadaceae* belonged to the phylum of Gemmatimonadetes. However, there were 9 genera presented significant difference from the last 15 rare genera in top 60 genera. There was no significant difference between the top 15 genera (Fig 4b). Seen in Fig. 4c, four genera in top 15 genera presented significant difference consisting of *Ideonella* (*p*=0.03038), *Bryobacter* (*p*=0.03038), *Gemmata* (*p*=0.03038) and...
Planctomyces \((p=0.03038)\). Ideonella belonged to the phylum of Proteobacteria, Gemmata and Planctomyces belonged to the phylum of Planctomycetes. These results indicated that attached surface dominating in bacterial community tended to influence the genera with lower relative abundance more than incubation time, while spiking concentration of phenanthrene did not tend to affect the genera significantly.

Figure 4

3.4 The influence mechanism of attached surface, spiking concentration and incubation time on microbial community

In our present study, SM had a more important role in biofilm establishment than AP. This was most likely related to allelochemicals secreted by submerged macrophytes (e.g. phenolic acids, fatty acids, alkaloids, terpenes and flavonoids) (Weston and Mathesius, 2013; Zi et al., 2014), which could restrict the growth of algae, cyanobacteria and heterotrophic bacteria, and affected biofilm composition. In addition, submerged macrophytes not only secreted organic substances to provide carbon source for the microorganisms of the biofilm, but also released oxygen by photosynthesis, which led to the change of micro-interfaces environment (e.g. DO, ORP and pH) day and night. These activities also influenced the composition of bacterial communities attached on leaves of submerged plants (Hempel et al., 2009). Of course, the morphological and physiological complexity of submerged macrophytes could provide a diversity of
microhabitats for organisms to live in (Goldsborough et al., 2005). Several researchers had insisted that periphyton communities correlated with macrophytes were highly host-specific (Kahlert and Pettersson, 2002; Wetzel, 1983).

The bacterial community was not obviously affected by the phenanthrene spiked in surficial sediments in different concentrations. This might be related to the lower concentration and smaller concentration gradient of phenanthrene on the leaves surface by different migration routine (Fig. 1c). Phenanthrene can transfer in the macrophytes tissues from root to leaves after it is absorbed from sediment; however, this may not be a reliable pathway as phenanthrene translocation from roots to shoots can be limited (Liu et al., 2014), let alone to leaves. An alternative explanation is that phenanthrene is released from sediments into water and then to leaves. Recent studies suggested that phenanthrene could be dissipated by rhizospheric microorganisms or fixed by sediments (He and Chi, 2016; He et al., 2016; Liu et al., 2014), and small amounts of phenanthrene were released from sediments due to low solubility in water (1.18 mg/L). In addition, leaves of submerged macrophytes could absorb from or release to overlying water for phenanthrene (Diepens et al., 2014). Thus the contents of phenanthrene accumulated in leaves of submerged macrophytes were rather limited (Fig. 1c and Fig. 1d), making it difficult to change the composition of biofilm. If phenanthrene was directly accumulated by leaves from water, results would be other cases which needed our future study.

Incubation time had a marked effect on the bacterial community of biofilm attached on leaves of submerged macrophytes. We attributed this phenomenon to the growth status of
biofilm possibly (Cai et al., 2013). Several researches suggested that epiphytic microbes were difficult to attach on the healthy leaves (Jennings and Steinberg, 1997; Peterson et al., 2007). And the self-destruction of aged leaves produced plenty of dissolved substances to facilitate the development of epiphytic microbes. Meanwhile, the phenanthrene accumulated in leaves of submerged macrophytes was stable from 14 d to 35 d. We did not find out the PAH-degrading bacteria presented significant difference (Fig. 6c), which might be related to the reality that these bacteria did not occupy the dominating positions in nature. In our future study, we will put more emphasis on the ascertaining response of the functional bacteria in the biofilm attached on leaves of submerged macrophytes to organic and high-toxic pollutants like PAHs.

4. Conclusions

Our study suggested that biofilm-leaves could contribute to remediation of sediment polluted by phenanthrene. Attached surface had an important effect on bacterial community composition of biofilm-leaves/-surface due to the active interface influence of submerged macrophytes. Incubation time changed the bacterial community, which might explain differences in growth and mature state of the biofilm. Phenanthrene spiking concentration in sediment did not appear to markedly influence bacterial community – which may be due to the lower concentration and smaller concentration gradient of phenanthrene on the leaf surfaces. On the whole, phenanthrene concentration spiked in sediment, aquatic plant categories and incubation time affected the bacterial community on biofilm-leaves with varying degrees.
Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants No. 51879080, 51509129 and 41371307), Natural Science Foundation of Jiangsu Province, China (BK20171435), National Key Research & Development Program of China (No. 2018YFC0407906), the Open Foundation of State Key Laboratory of Pollution Control and Resource Reuse (Grant No. PCRRF12010), the State Key Laboratory of Soil and Sustainable Agriculture (Institute of Soil Science, Chinese Academy of Sciences) foundation (Grant No. 0812201228), a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the Top-notch Academic Programs Project (TAPP) of Jiangsu Higher Education Institutions.

References

Cheema, S.A., Imran, K.M., Shen, C., Tang, X., Farooq, M., Chen, L., Zhang, C., Chen,

He, Y., Chi, J., Qi, Y., 2016. Response of bacterial community structure to disappearance of phenanthrene and pyrene from sediment with different submerged macrophytes. Ecological Engineering 91, 207-211.

Jennings, J.G., Steinberg, P.D., 1997. Phlorotannins versus Other Factors Affecting

Lin, Y., Deng, W., Li, S., Li, J., Wang, G., Zhang, D., Li, X., 2016. Congener profiles,

wetlands dominated by aquatic macrophytes. Ecological Engineering 97, 242-250.

Table 1. Microbial diversity indices in all ten samples

<table>
<thead>
<tr>
<th>Samples</th>
<th>Phe Conc.</th>
<th>Sampling Time</th>
<th>Submerged plants</th>
<th>ACE</th>
<th>Chao 1</th>
<th>Shannon</th>
<th>Simpson</th>
<th>Coverage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>20</td>
<td>14d</td>
<td>VN</td>
<td>1535</td>
<td>1526</td>
<td>5.24</td>
<td>0.0156</td>
<td>98.8</td>
</tr>
<tr>
<td>2A</td>
<td>20</td>
<td>HV</td>
<td>1561 1593</td>
<td>5.08</td>
<td>0.0254</td>
<td>98.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3A</td>
<td>10</td>
<td>VN</td>
<td>1551 1617</td>
<td>5.11</td>
<td>0.0240</td>
<td>98.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4A</td>
<td>10</td>
<td>HV</td>
<td>1591 1621</td>
<td>5.39</td>
<td>0.0129</td>
<td>98.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1B</td>
<td>20</td>
<td>28d</td>
<td>VN</td>
<td>1568</td>
<td>1590</td>
<td>5.11</td>
<td>0.0236</td>
<td>98.8</td>
</tr>
<tr>
<td>2B</td>
<td>20</td>
<td>HV</td>
<td>1451 1550</td>
<td>4.90</td>
<td>0.0407</td>
<td>98.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3B</td>
<td>10</td>
<td>VN</td>
<td>1894 1694</td>
<td>4.00</td>
<td>0.0761</td>
<td>98.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4B</td>
<td>10</td>
<td>HV</td>
<td>1262 1265</td>
<td>4.94</td>
<td>0.0213</td>
<td>99.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1C</td>
<td>20</td>
<td>28d</td>
<td>AP</td>
<td>3916</td>
<td>3823</td>
<td>6.53</td>
<td>0.0053</td>
<td>96.7</td>
</tr>
<tr>
<td>2C</td>
<td>10</td>
<td>AP</td>
<td>4070 4036</td>
<td>6.63</td>
<td>0.0061</td>
<td>96.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: VN: Vallisneria natans; HV: Hydrilla verticillata; AP: artificial plants
Fig. 1. The residual characteristics of phenanthrene in sediment (a), in water (b), in leaves of VN and HV (c). The dissipation percentage in sediment of VN, HV, AP and CG system, ecological contribution index (ECI) of VN, HV-rhizosphere and AP-biofilm (d). The 20 mg/kg and 10 mg/kg of phenanthrene concentrations were spiked in sediment initially, respectively. (CG: control group; AP: artificial plant; HV: *Hydrilla verticillata*; VN: *Vallisneria natans*. 14A: 14 d-20 ppm; 14B: 14 d-10 ppm; 28A: 28 d-20 ppm; 28 B: 28 d-10 ppm; 35A: 35 d-20 ppm; 35B: 35 d-10 ppm.)
Fig. 2. a: Principal coordinates analysis (PCoA) using Bray-Curtis distances for all the samples on OTU level; b, c and d: Hierarchical clustering tree using average linkage between samples at genus level based on attached surface (b), spiking concentration of phenanthrene in sediment (c, 10 mg/kg and 20 mg/kg) and incubation time (d, 14 d and 28 d: the time of collected samples), respectively. (VN for Vallisneria natans; HV for Hydrilla verticillata; SM means submerged macrophytes for VN+ HV; AP for artificial plants)
Fig. 3. Heat maps of the bacterial community in top 50 genera based on attached surface
(a, AP for artificial plant; HV for *Hydrilla verticillata*; VN for *Vallisneria natans*), spiking concentration (b, the sediments were spiked by 10 mg/kg and 20 mg/kg phenanthrene) and incubation time (c, 14 d and 28 d: the time of collected samples). The red corresponds to higher relative abundance and the green to lower relative abundance.
Fig. 4. Difference test between genera based on attached surface (a, AP for artificial plant; HV for *Hydrilla verticillata*; VN for *Vallisneria natans*; N(RHA) means the number of species with relative high abundance; N(RLA) means the number of species with relative low abundance), spiking concentration (b, the sediments were spiked by 10 mg/kg and 20 mg/kg phenanthrene) and incubation time (c, 14 d and 28 d: the time of collected samples).

Notes: "*" denotes differences were statistically significant (*p* < 0.05)