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Abstract 29 

With warming climate many species are predicted to shift their distributions toward the poles. However, climate change models developed to 30 

predict species distributions do not always incorporate interactions between them. The northerly shift of the boreal forest and associated dwarf 31 

shrub communities will be directly affected by warming. But warming will also indirectly affect plant communities via impacts on the intensity 32 

and frequency of associated insect outbreaks. We present a general model exploring plant host herbivory in response to the balance between 33 

insect crowding, host consumption and climate. We examined how these factors dictate the feeding preference of Epirrita autumnata larvae 34 

during an outbreak on dwarf shrub vegetation in Sub-arctic Fennoscandia. Data were collected from an outdoor experiment investigating future 35 

climate change scenarios (elevated CO2 and temperature) on the dwarf shrub community that included deciduous (Vaccinium myrtillus) and 36 

evergreen species (V. vitis-idaea and Empetrum nigrum). We observed that larval crowding was independent of treatment under outbreak 37 

conditions. We also tested and confirmed model predictions that larvae would prefer monospecific stands of either deciduous shrubs or its 38 

evergreen competitors. For current climate conditions, larvae had a preference to consume more deciduous shrubs in mixed stands. However, at 39 

elevated temperature bilberry consumption and herbivore pressure was lower, particularly in mixed stands. Our results show that during future 40 

warming, E. autumnata herbivory could promote the success of thermophile deciduous species and possible northward migration. Insect 41 

behaviour and preferences should therefore be considered when predicting future vegetation movements responding to warming. 42 

 43 

1. Keywords: Climate change; Gompertz; herbivore pressure; host 44 

plant preference; insect outbreaks; Sub-arctic.Introduction 45 

 46 
Spatial bioclimatic models predict and some studies already demonstrate range expansion towards the poles and higher elevations of thermophile 47 

vegetation under climate change scenarios (Lewis, 2006; Post et al., 2009; Callaghan et al., 2013). However, this depends on whether the ability 48 

of species to disperse matches the displacement of corresponding climate envelopes. At the same time these models are constrained by the 49 

absence of attention to ecological interactions (Araújo & Luoto, 2007; Berg et al., 2010; Van der Putten et al., 2010. In northern latitude forests, 50 

the success of a plant species may be strongly coupled to herbivory, particularly during outbreaks of forest defoliating insects and bark beetles 51 

(Karlsen et al., 2013). These, together with the direct effects of climate on plants will be highly relevant to consider when predicting effects of a 52 

changing climate on boreal forest ecosystems (Niemelä et al., 2001; Hicke et al., 2012). Responses to herbivory and climate may include changes 53 

in plant community structure and biomass (Olofsson et al., 2009) and range (Van Bogaert et al., 2009).  54 

 55 

Host plant preference by herbivores is particularly important at vegetation boundaries (Janz & Nylin, 1997). Climate change factors (including 56 

temperature and CO2) and herbivory itself directly influence plant chemistry and defences, dictating subsequent host preference of the herbivore 57 

(Wilf et al., 2001; Haukioja, 2005).  A host plant species targeted by a particular herbivore can be competitively disadvantaged and must balance 58 

resources between herbivore and plant competition (Agrawal et al., 2006). However, this balance will be influenced by the intensity of herbivory, 59 

which will also be modulated by climate (Andrew & Hughes, 2007; Post et al., 2009).  60 

 61 

It is generally predicted that the rate of herbivory may intensify with future warming (Tylianakis et al., 2008). However, Barrio et al. (2016) 62 

investigated how future warming could influence herbivores and herbivory of tundra plants by the Arctic moth (Gynaephora groenlandica) in the 63 

Yukon, Canada. They showed that the performance of insects themselves was compromised by warming and that the insects also shifted to 64 

consuming faster growing plants high in nitrogen. Further, the insect’s typically preferred host plant species (Salix arctica) also responded 65 
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negatively to warming. Hence predicting the effects of warming is in many cases a complex, far from trivial task.  66 

 67 

During outbreak events in forested areas, it is hypothesized that herbivore-plant interactions and impacts will intensify with ongoing climate 68 

changes, leading in some cases to more or less permanent shifts in understory communities (Tenow, 1972; Jepsen et al., 2013; Karlsen et al., 69 

2013). This study addresses two central questions that will help us understand how the impacts of current herbivore outbreaks and outbreaks of 70 

the future will affect plant communities and vegetation boundaries during climate warming and at elevated CO2. We ask firstly, how does host 71 

choice affect herbivory during an outbreak? Secondly, will future climatic changes affect herbivore pressure (i.e., as in density of larvae per 72 

percent cover of a species)? To examine these questions, we investigated how future global climate change factors will affect consumption rates 73 

during an outbreak of the autumnal moth Epirrita autumnata (Borkhausen, Lepidoptera: Geometridae) by using a general model of larval 74 

herbivory validated from experimental simulations of expected future changes in temperature and atmospheric CO2 concentrations. In Sub-arctic 75 

Fennoscandia, populations of such forest defoliating insect species sometimes grow to outbreak densities and when their host trees are defoliated 76 

they search for food at ground level on dwarf shrubs communities (Tenow, 1972). Here we introduce a simple and general mechanistic mixed 77 

model combining climate-dependent host plant choice and consumption. This model can be applied to any insect that shows outbreak dynamics 78 

with larval herbivory and limited larval dispersal. Using unique field collected data we are able to test its validity and predict shifts in herbivory 79 

among species. Data were collected on E. autumnata larval densities during an outbreak, and by assessing the impacts on plants in experimental 80 

plots subjected to ambient and expected future elevated CO2 and temperature treatments in Sub-arctic Sweden. The host preference model would 81 

predict shifts in feeding choice in mixed shrub plots. The herbivory (consumption) component defines a nonlinear decreasing function defining a 82 

balance between individual consumption and larval crowding. 83 

 84 

2. Material and methods 85 

We developed a model based on the hypothesis that future climate change scenarios (including elevated CO2 and temperature) will influence host 86 

preference of an insect herbivore at high densities through intraspecific competition (i.e., larval crowding and consumption). 87 

2.1. Host preference in relation to larval crowding rates 88 

57% of Lepidoptera, among them E. autumnata, are polyphagous (Zalucki et al., 2002) and hence, potentially able to feed on different plant 89 

species. Late instar larvae of many forest Lepidoptera have been shown to demonstrate host preference of an insect herbivore to be strongly 90 

linked to limited, free-moving late instar larval dispersal, as opposed to passive ballooning in neonate larvae (Ward et al., 1990; Carrière, 1992; 91 

Robinson & Raffa, 1997). For E. autumnata, there is evidence of limited dispersal in late instars (Tanhuanpää et al., 2000). Here our definition of 92 

limited dispersal is of the order of 5 meters given the small temporal and spatial scales associated with starving late instar larval movement in the 93 

experimental system. Hence, in the model, larvae aggregate within or avoid patches with a certain cover of a plant species. Preference for a host 94 

plant is defined as the rate at which larvae move to forage (i.e., crowd) or away from a specific location with a certain host plant composition. 95 

We surveyed vegetation at two consecutive survey times.  L1 and L2 represent counts of larvae at times 1 (initial time) and 2 respectively 96 

(immediately before pupation, see below for data collection). As larval population movement takes place in continuous time, larvae at the site 97 

were expected to crowd (i.e., aggregate in a patch) according to an exponential expression with an intrinsic growth rate (Lombaert et al., 2006) 98 

r=a+bR. 99 

        100 

Accordingly, λ=er=L2/L1 is the finite crowding rate of larvae at the site. R is the host percent cover in the site. a is a parameter describing natural 101 

crowding rate in the absence of the host, and b is the rate at which crowding changes with host cover, although other coefficients can be added to 102 
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account for the dependence on environmental variables (see Statistical analysis below). Thus, r>0 and r<0 denote crowding or avoidance of 103 

other larvae, respectively, while b>0 and b<0 point towards preference for, or rejection of the host, respectively.  104 

 105 

If two plant host species x and y coexist, the crowding rates of their consumers will be rx=ax+bxRx and ry=ay+byRy, respectively. If their 106 

percentage covers are complementary (that is, Ry=100-Rx), several preference responses are possible: 107 

1. If there is preference towards one plant species and rejection towards the other (bx<0<by or bx>0>by), preference is given to the host 108 

providing the higher r, independently of its cover. In an illustration depicting crowding rate r as a function of the resource Rx, the crowding rates 109 

for both hosts will not cross. 110 

2. If any of the two scenarios, bx,by>0 or bx,by<0, is true, then host preference is defined by the point where both crowding rate responses 111 

cross in that graph. Crowding will avoid mixed stands and overall preference will be described by a v-shaped relationship. In the first scenario, 112 

host preference will shift from y to x as x cover increases (Fig. 1a). In the second scenario preference will shift from x to y.  Equating both 113 

crowding rates, we obtain the critical breakpoint defining shifting preference between species x and y:  114 

𝑝𝑝𝑥𝑥𝑥𝑥 = 𝑎𝑎𝑦𝑦+100𝑏𝑏𝑦𝑦−𝑎𝑎𝑥𝑥
𝑏𝑏𝑥𝑥+𝑏𝑏𝑦𝑦

  115 

However, if r<0 at any range of host densities, larvae will move towards other sites which present a cover that satisfies crowding conditions. 116 

If bx,by>0, the constraint r>0 will determine that susceptible sites will be those with Rx>-ax/bx and Rx>-ay/by-100. 117 

 118 

2.2. A Gompertz model of herbivory 119 

Many biological interactions have been described by density-dependent, Gompertz growth dynamics. In population ecology, studies with a 120 

mechanistic basis are rare (Geritz & Kisdy, 2004), but Gompertz growth has also been used to describe the dynamics of insect outbreaks (Dennis 121 

& Taper, 1994; Karban & de Valpine, 2010), and only once as a model of resource depletion in insect outbreak systems (Økland & Bjørnstad, 122 

2006). In both cases Gompertz dynamics are derived and tested from statistical rather than mechanistic assumptions. 123 

 124 

Gompertz growth is generally defined by a double-exponential equation. Specifically, for Gompertz decay, the equation takes the form 125 

𝑋𝑋𝑡𝑡 = 𝑋𝑋1𝑒𝑒𝑒𝑒𝑝𝑝�𝑔𝑔(1 − 𝑒𝑒ℎ𝑡𝑡)�       (1) 126 

where Xi is a state variable at time i, t is the time lapse starting from time 1, and g<0; h>0 or g>0;h<0 are parameters of the equation. 127 

 128 

In this section, to discern the role of consumption versus larval crowding on the defoliation of host plants during an outbreak, we derive a 129 

mechanistic model of herbivory for Gompertz decay in resources that accounts for the observed patterns in resource consumption by E. 130 

autumnata larvae, but can be generalized to other herbivorous insects. The model is a 2D (resource and larvae) differential equation autonomous 131 

system: 132 

𝑑𝑑𝑑𝑑𝑡𝑡
𝑑𝑑𝑡𝑡

= −𝑘𝑘𝑘𝑘𝑡𝑡𝑅𝑅𝑡𝑡;
𝑑𝑑𝑑𝑑𝑡𝑡
𝑑𝑑𝑡𝑡

= 𝑟𝑟𝑘𝑘𝑡𝑡       (2) 133 

where k>0 represents the consumption rate per larva (see Calculating consumption rates for further development). R and L are resource and 134 

larval abundance (as defined in the previous subsection), r stands for the crowding rate which indicates host preference and depends on the initial 135 

plant cover, as calculated in the previous section, and environmental factors (see Statistical analysis below). Integrating the second equation in 136 

system (2) and separating variables, the system is integrated into: 137 

𝑅𝑅𝑡𝑡 = 𝑅𝑅1𝑒𝑒𝑒𝑒𝑝𝑝(−𝑘𝑘(𝑒𝑒𝑟𝑟𝑡𝑡 − 1) 𝑘𝑘1 𝑟𝑟⁄ )      (3) 138 

Therefore, we recover Eq. 1 (aka the Gompertz equation) for the resource dynamics.  139 
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 140 

2.3. Calculating consumption rates 141 

To calculate consumption rates, we first consider herbivore pressure at a certain time as Pt=Lt/Rt, measured in this study as insects per percent 142 

host cover at time t. Using Eqs. 1 and 3, and taking logarithms, the resulting growth rate in herbivore pressure over the sampling interval time is: 143 

𝑙𝑙𝑙𝑙(𝑃𝑃𝑡𝑡 𝑃𝑃1⁄ ) = 𝑘𝑘(𝑒𝑒𝑟𝑟𝑡𝑡 − 1) 𝑘𝑘1 𝑟𝑟⁄ − 𝑟𝑟𝑟𝑟     (4) 144 

Using an arbitrary time scale corresponding to the sampling lapse, t=1, the realized consumption rates are calculated as: 145 

𝑘𝑘 = 𝑟𝑟(𝑙𝑙𝑙𝑙(𝑃𝑃2 𝑃𝑃1⁄ )+𝑟𝑟)
𝑑𝑑1(𝑒𝑒𝑟𝑟−1)         (5) 146 

Three specific scenarios arise from these equations: 147 

(1) In the absence of larval movement, r=0, limr→0 k = ln(P2/P1)/L1, and Eq. 4 becomes ln(P2/P1) =kL1. 148 

(2) In the absence of consumption, k=0, therefore Eq. 4 becomes ln(P2/P1) = -r. 149 

(3) In conditions of optimal behaviour, larval populations migrate to minimize competition and maximize resource availability (A=1/P) along 150 

time. In that case, no resource reduction takes place (i.e. ln(P2/P1) =0).  Hence, optimal consumption is given by: 151 

𝑘𝑘𝑥𝑥 = 𝑟𝑟2

𝑑𝑑1(𝑒𝑒𝑟𝑟−1)        (6) 152 

where kc
 
is an optimal consumption rate in that migration and consumption balance each other and resource availability is kept constant through 153 

time (Fig. 1b). Negative differences between the realized consumption rates and optimal ones due to crowding or feeding preference indicate 154 

whether overall larval consumption in the patch is suboptimal (i.e., below that necessary to balance crowding, so k-kc<0) or superoptimal (k-155 

kc>0), pointing towards reductions, and increases in herbivore pressure, respectively. Therefore, Eq. 5 shows that variations in herbivore pressure 156 

can be ascribed to crowding, which in turn reflects differences in host composition and environmental factors, such as temperature and CO2. 157 

 158 

The Gompertz model can be used to calculate consumption and immigration (crowding) rates based on the host preference r by herbivore larval 159 

populations derived from the previous model. In communities composed of different potential hosts, the combined host preference-Gompertz 160 

model predicts: 1) shifts in crowding rates according to the relative cover of each host, and 2) calculation of realized consumption rates following 161 

Eq. 5. However, the model itself can encompass situations in all the three specific scenarios above (i.e., no preference and/or no consumption). 162 

Hence, its generality makes it suitable for any situation in which a short-dispersal herbivore can feed on one or two competing species, including 163 

lack of interaction between the plants and the insect or lack of limited larval dispersal. 164 

 165 

2.4. Study site and data collection 166 

 Data were collected during an outbreak of Epirrita autumnata in 2004 at Abisko, Sweden (68.35° N, 18.82° E, 360 m a.s.l., well below the 167 

treeline of 500-600 m a.s.l.). The larvae hatch in spring at the time of Betula pubescens var. pumila (L.) Govaerts (mountain birch, their main 168 

host) bud burst and forage for approximately one month on the mountain birch (Tenow, 1972). When the birch leaves have been depleted in 169 

outbreak years, larvae search for other food sources by descending to the ground to feed on shrub vegetation before pupating (Tenow et al., 170 

2004). The site, with a Sub-arctic montane climate, was based in a mountain birch forest with a ground layer dominated by a dwarf shrub 171 

community composed mostly by the deciduous Vaccinium myrtillus (bilberry) and two evergreen shrubs, Vaccinium vitis-idaea (lingonberry) and 172 

Empetrum nigrum (black crowberry) plus other deciduous shrubs (Betula nana), grasses and herbs (e.g. Deschampsia flexuosa, Cornus suecica). 173 

Both Vaccinium species and E. nigrum compete for space in the regeneration process after disturbance (Phoenix et al., 2000). We investigated 174 

larval numbers and percentage (%) cover of vegetation in an experimental system (established in June 2000) that was entering its fifth growing 175 

season of treatment during the insect outbreak of June 2004. The experimental system employed 1.5m2 Open Top Chambers (OTCs) to elevate 176 
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CO2 to 730± 25 ppm (versus 377 ppm ambient) using a fan sourced air supply injected with pure CO2. Warming was controlled with soil heating 177 

cables and above canopy infrared lamps that elevated temperature by 5oC (see Olsrud et al., 2004, Svensson et al., 2018). In this study we used 178 

six replicate plots per treatment, based around fully randomized experimental setup where the response of the dwarf shrub plant community was 179 

investigated to the following treatments i) Ambient conditions; ii) Elevated CO2; iii) Elevated temperature; iv) Elevated CO2 in combination with 180 

elevated temperature.   181 

 182 

Larval numbers and vegetation cover of plant species were assessed within a 0.34 m2 area within each chamber. Larvae were free to move 183 

between plots via the space between the chamber and ground or they could climb the chamber walls. They entered the plots post birch defoliation 184 

in surrounding areas and were counted (22nd June and 1st July 2004) from three 15 × 15 cm quadrats per plot (total plot size investigated 0.34 m 185 

with chamber footprint of 1.5 m2). All larvae were returned to their respective collection areas upon completion of counts. For each quadrat, we 186 

also estimated reductions in the percentage cover of dwarf shrubs (bilberry, lingonberry and black crowberry). This was done visually to the 187 

nearest 5% on both dates as a surrogate of biomass removal for all treatments. 188 

 189 

In this study, we focused on herbivory and food preference related to the three dominant shrub species with all other vegetation types including 190 

grass, herbs, lichens and mosses classified as “Other species”. The mountain birch trees in the experimental area had almost totally been 191 

defoliated (95-100 %) both above and around the sites by the time measurements began with larvae searching for food in the understorey shrub 192 

area.  193 

 194 
2.5. Statistical analysis 195 

To detect shifts in host preference, segmented linear regression models (Toms & Lesperance 2003) were performed. The models relate host cover 196 

and the environmental variables temperature and CO2 to intrinsic crowding rates with the use of the R statistical package (R Development Core 197 

Team 2011).  Since the cover abundances of all species suffer from multicollinearity, we performed a “detection of breakpoints” test on host 198 

preference by reducing the dimensionality of the system into two groups: evergreen shrubs and a group with the rest of the species, which include 199 

both bilberry and "other species". Due to the presence of some plots with zero larvae, we used the crowding rate of larval abundance as 200 

r=(L2+1)/(L1+1). This modification did not significantly alter the assumptions of normality and homoscedasticity, and allowed us to use the 201 

linear model with a full factorial design. Crowding rates may, however, depend not only on host cover, but may also be related to the initial 202 

number of larvae L1 due to density-dependence, in which case our assumption for the exponential model for crowding, which depends only on 203 

host cover, would be invalidated. Post-hoc analysis on all 72 sampled quadrats (from 24 plots) showed similar initial larval densities (ln(L1+1)) 204 

and density variability at the beginning of the survey (Tables S1 and S2 and Fig. S1) in all plots regardless of treatment or species cover. There 205 

was also an absence of collinearity between initial evergreen species cover at the beginning of sampling in 2004 and either temperature 206 

(polyserial correlation Ω=0.39, P=0.37) or CO2 (Ω=0.22, P=0.66) treatments, indicating, again, that initial host densities had not been affected by 207 

previous history in the environmental signature of the plots. 208 

 209 

Thus, the full factorial segmented linear model, dependent on host composition (Kuussaari et al., 2000), and environmental factors, takes the 210 

form (Toms & Lesperance, 2003): 211 

𝑟𝑟 = 𝑏𝑏0+𝑏𝑏11𝑅𝑅𝑥𝑥+𝑏𝑏2𝑇𝑇 + 𝑏𝑏3𝐶𝐶 + 𝑏𝑏4𝑇𝑇𝐶𝐶 + 𝜀𝜀 ∀𝑅𝑅𝑥𝑥 ≤ 𝑝𝑝𝑥𝑥𝑥𝑥
𝑟𝑟 = 𝑏𝑏0+𝑏𝑏11𝑅𝑅𝑥𝑥+𝑏𝑏12(𝑅𝑅𝑥𝑥 − 𝑅𝑅𝑥𝑥𝑥𝑥)+𝑏𝑏2𝑇𝑇 + 𝑏𝑏3𝐶𝐶 + 𝑏𝑏4𝑇𝑇𝐶𝐶 + 𝜀𝜀 ∀𝑅𝑅𝑥𝑥 > 𝑝𝑝𝑥𝑥𝑥𝑥

 (7) 212 

where r is the response variable (crowding rate), and Rx, T, and C define the covariates evergreen cover, temperature and CO2, respectively. b11 213 

describes the first and b11+b12 the second slope (in the v-shaped relationship) for the evergreen cover. 𝑏𝑏𝑖𝑖∀𝑖𝑖 ≥ 2 represent the coefficients for the 214 
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environmental main effects and second and third order interactions, and ε stands for the independent, additive error with zero mean and constant 215 

variance. Model fits were developed using the package “segmented” (Muggeo, 2009). We performed stepwise model selection to select the most 216 

parsimonious model through AIC values.   217 

 218 

We tested the accuracy of the previous segmented regressions by implementing thin plate splines for the crowding rates using the package “fields” 219 

(Nychka et al., 2014) over two selected groups: evergreen shrubs and bilberry. They were performed over a Cartesian coordinate system with the 220 

two shrub groups (bilberry versus evergreen) as covariates to test for potential multicollinearity, and converted back into a barycentric coordinate 221 

system with bilberry, evergreen and other species as covariates. 222 

 223 

Consumption rates were calculated following Eq. 5 for bilberry and evergreen species. Since consumption rates followed quasi-Poisson 224 

distributions (Fig. S2), we used generalized linear models with quasi-Poisson error structure to determine the effect of crowding rate, temperature 225 

and CO2 on the consumption rates of both shrub groups and the logarithmic growth rates of herbivore pressure (insects per % species cover). The 226 

initial larval densities were pooled for each significant treatment scenario using their geometric mean. 227 

 228 

When resource saturation takes place, larval populations following Gompertz dynamics are expected to balance movement with consumption, 229 

defined by the optimal consumption kc in Eq. 6. We tested deviations from optimal behaviour, and hence, realized reductions in herbivore 230 

pressure, by calculation of k-kc (see Calculating consumption rates).  Finally, thin plate splines were also used to map those scenarios of host 231 

cover and treatment where consumption was lower than expected under an optimal, balanced model of herbivory (i.e., k-kc<0). All thin plate 232 

splines were performed over polynomials of degree 3. 233 

 234 

4. Results 235 

As opposed to a case when non-dominant crowding rate responses exist and crowding is independent of plant cover (c Fig. 1a), plant cover did 236 

dictate larval crowding rate, which determined host choice. Our results show a strong larval affinity towards mono-specific stands, especially 237 

towards those covered by bilberry, and avoidance of mixed stands (i.e., those where bilberry and evergreen shrubs coexist in similar proportions), 238 

following a v-shaped pattern for host preference (i.e., dominant crowding rate response, bold line in Fig. 1a). Evergreen species were preferred 239 

when their cover represented >40% of the community (Fig. S3, F=7.07, P<0.001) and, against our initial hypothesis, this was independent of the 240 

climate change factors tested (temperature (F=0.72, P=0.40) and CO2 (F=1.10, P=0.30), Table S1-S2). Larval crowding manifested when 241 

evergreen cover was less than 26% or more than 70%. In between, larvae left the plots (Figs. 2a, S3). The presence of a critical shifting 242 

breakpoint in larval preference at 40% of evergreen species cover was confirmed by the thin-plate smoothing spline, indicating that species other 243 

than evergreen shrubs or bilberry play no perceptible role in larval preference (Figs. 2a, S3) 244 

 245 

Temperature was the only significant environmental variable tested that had any effects on consumption: there was lower consumption of the 246 

deciduous species V. myrtillus (bilberries, P<0.05) at elevated temperature (Table 1). The consumption level under this treatment reached values 247 

similar to those found for evergreen species under ambient temperature (Fig. 2b, Table 1). However, for evergreen species, temperature 248 

interacted with CO2: the consumption of evergreen species was reduced when the community was exposed to future temperature and CO2 alone 249 

but there was no effect when both these factors were applied together (Fig. 2b).  250 

 251 

Under current ambient climatic conditions, higher V. myrtillus consumption rates were linked to a preference towards mono-specific stands, 252 
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which was reflected in an increased herbivore pressure on pure bilberry stands. However, in a warmer climate scenario herbivore pressure was 253 

partially eased (Figs. 3, 4, Table 1). The importance of both crowding and consumption mechanisms is reflected by the statistical fit of our 254 

Gompertz model (Fig 3, Table 1). The Gompertz model predicts that the balance between crowding and consumption will determine herbivore 255 

pressure, and follows a log-log linear relationship with crowding rates in the absence of consumption (see Calculating consumption rates). Our 256 

statistical fit validates both mechanisms as contributors to herbivore pressure, providing a faster than linear increase for herbivore pressure in 257 

log-log axes (Fig. 3). A future warmer climate scenario clearly shows suboptimal consumption, and thus, released herbivory pressure on bilberry 258 

in mixed vegetation areas (Fig. 4), 259 

 260 

5. Discussion 261 

Overall, the statistical fit of the data based on the mixed model predicts that: 1. shifts (i.e., increases and decreases) in herbivore pressure on the 262 

potential hosts in monocultures following increasing temperatures; 2. decreased herbivore pressure on the host in mixed stands is most likely to 263 

occur as a result of climate warming. 264 

 265 

We initiated this study to assess the importance of host preference during an outbreak of E. autumnata and whether future climatic changes 266 

(elevated CO2 and temperature) will affect herbivore pressure. Regarding CO2 the only observed effect was that consumption of evergreen 267 

species was reduced when the community was exposed to elevated CO2 alone but there was no significant effect when in combination with 268 

elevated temperature. 269 

 270 

Pooling all plots together, our study found that consumption rates on bilberry were not significantly affected either by warming or CO2, agreeing 271 

with recently reported results during the 2003-2004 outbreak in Abisko (Svensson et al., 2018). CO2 has been previously hypothesized to alter 272 

palatability on a per-species basis by changing foliar C:N ratios or its production of consumption-inhibiting secondary compounds (Lindroth, 273 

1996) Our analysis, showing that CO2 effects on consumption rates in different shrubs are present, but not significantly different, hence, we can 274 

not confirm this hypothesis. A possible balance between both increases in carbon storage compounds and secondary metabolites (the well-known 275 

carbon nutrient balance hypothesis, sensu Bryant et al., 1983) precludes a clear response, added to further complexities due to interactions with 276 

temperature, as reflected in the apparent distinctive consumption patterns of evergreen shrub consumptions in regard to both CO2 and 277 

temperature.  278 

 279 

Regarding temperature, we detected significant reductions of bilberry consumption in mixed evergreen-deciduous shrub plots under warming 280 

(Fig. 4), but not significant increases in bilberry-dominated plots. This result does explain the overall reduction in bilberry consumption when all 281 

plots are pooled in the analysis. Yet, in ambient conditions, herbivory on bilberry was higher than on the evergreen shrubs, confirming previous 282 

observations regarding the higher palatability of the first (Svensson et al., 2018). 283 

 284 

Our study also differs from that of Barrio et al. (2016) who studied the effects of elevated temperature on non-outbreak insect activity, yet some 285 

common findings were observed. In both studies, larvae shift their food preference, described by the v-shaped host choice function. For Barrio et 286 

al., herbivory shifted towards higher consumption of more nutritious hosts with warming. In contrast, in the current study and under outbreak 287 

conditions the opposite effect was observed. The v-shaped function indicates that, during an outbreak, larvae choose food according to quantity, 288 

rather than tissue quality (Ruohomäki et al., 2000), and the effect can be dependent on larval densities and the herbivore species (Birkemoe et al., 289 

2016). Although larvae preferred to feed on bilberry in current temperature conditions (as in Svensson et al., 2018), there were substantial 290 
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crowding levels also observed on plots largely dominated by evergreen shrubs. However, mixed vegetation stands were generally avoided. 291 

Although not measured in this study, switching between host plants has been previously shown to indicate a capacity to overcome host-induced 292 

resistance (Kaitaniemi et al., 1999).  293 

 294 

Hence, our model also shows that herbivore pressure during outbreaks depends both on the host-dependent larval movement (or preference 295 

towards a host) and the actual temperature-driven consumption. The Gompertz model confirms that preference translates into higher 296 

consumption per larva in bilberry for the current climate scenario. Although larvae are still attracted to bilberry under warmer temperatures, their 297 

individual consumption rates are halved to suboptimal levels, reducing overall herbivore pressure on this host in mixed deciduous-evergreen 298 

areas. This result partly contradicts previous findings that warmer temperatures accelerate insect growth and consumption (Bale et al., 2002, 299 

Birkemoe et al., 2016), but agrees with Barrio et al.’s (2016) findings that the performance of invertebrate herbivores is reduced under warmer 300 

conditions. The difference here in the current study is that measurements were undertaken during an insect outbreak. 301 

 302 

Two main assumptions govern our model: first, crowding is affected by environmental conditions (temperature and CO2) and resource 303 

availability; two, this dependence on resource availability is general in that it does not need to be either linear or monotonic (which would in 304 

fact be two extra specific assumptions) and can shift preference between different host species. As shown in Fig. 3, failure to comply with 305 

these assumptions (either lack of larval crowding, or zero consumption) would have generated herbivore pressure models unable to fit the 306 

field data. These assumptions entail that consumption is mostly dependent on the local awareness or information that larvae have on their 307 

surrounding resources (Gamarra, 2005). Consequently, the model resource and herbivore dynamics are limited at the small spatial and within-308 

seasonal temporal scales, where birth and death processes of both resource and herbivore, typically used for among-year population dynamics, 309 

are not considered. 310 

 311 

Several studies have observed vegetation changes in the north (e.g. Callaghan et al., 2013; Post et al., 2009; Tömmervik et al., 2004) and others 312 

suggest increased dwarf shrub growth and success in response to future warming in the Arctic (Van Wijk et al., 2003; Elmendorf et al., 2012), 313 

including bilberry growth (Richardson et al., 2002). Furthermore, envelope bioclimatic models confirm that more thermophile plant species 314 

including bilberry will expand their ranges as the climate warms (Tømmervik et al., 2004; Milbau et al., 2009). Although, contrary to Barrio et 315 

al’s (2016) study, we found a release of herbivory on the preferred shrub host plant V. myrtillus in mixed stands under predicted future climate 316 

conditions. However, for the first time, we show that under warming herbivory could potentially promote expansion of this plant species via a 317 

reduction in its selection by the autumnal moth in areas with mixed deciduous/evergreen shrub composition. This of course depends on the 318 

severity and the distribution of outbreaks as during very intensive outbreaks the insects can consume all available vegetation within a given area. 319 

At the landscape level, effects will likely operate most strongly where evergreen and deciduous plant species are mixed, such as range boundaries. 320 

Thus, any realistic attempt to predict changes in these locations will require the inclusion of these effects in large-scale envelope models of 321 

species distributions. At smaller scales, if Gompertz trends in resource depletion occur in evenly mixed plant communities, billberries will be 322 

exposed to less herbivory. Consequently, as stated by Lindroth (1996) as a general CO2 influence on host plants, and Haukioja (2005) for the 323 

mountain birch community, bilberry may reduce allocation to defensive secondary compounds in favour of growth. This will likely favour the 324 

establishment and faster expansion of the bilberry in those areas that currently have mixed vegetation. In turn, larvae will increasingly shift back 325 

towards more consumption as it becomes dominant and exposed to further outbreaks. Yet, competitive processes between shrubs may distort this 326 

patterns during the time lapse between successive outbreaks. In the end, inferring community-level projections from such experiments is 327 

challenging and larger-scale studies are required (Lindroth, 1996; Birkemoe et al., 2016).  328 
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 329 

The parameterization of our model is based on the specific scenarios under which E. autumnata herbivory occurs in the field, and is founded on a 330 

small set of plots. Validation of the model parameters for this particular system can be challenging, due to the 9-10 year typical frequency of E. 331 

autumnata outbreaks in Fennoscandia (Tenow, 1972) and the complexity of factors and logistics regarding the use of OTCs for environmental 332 

manipulation. A practical approach will depend on the long-term continuation of the Abisko research station and objectives, combined with 333 

emergency protocols to sample larval herbivory when the outbreak arrives, and possibly an increase in the sampling size (including additional 334 

OTCs).  335 

 336 

Notwithstanding the challenges of validation, the model is general in its formulation. First, it can be applied to the forest-tundra transition in 337 

Fennoscandia, where E. autumnata outbreaks show dramatic effects. Second, it includes situations where larval switching preferences are absent, 338 

in which case Gompertz decay would be absent. Thus, the generality of the model allows its application to other herbivore insects undergoing 339 

large population fluctuations, either with limited mature larval movement driven by host preference, like Lymantria dispar (Mauffette & 340 

Lechowicz, 1984), Chroristoneura rosaceana (Carrière, 1992), Thyridopteryx ephemeraeformis (Ward et al., 1990) and Malacosoma disstria 341 

(Robison & Raffa, 1997) – or without it. Although the model needs to be tested in other areas, it is a warning against the lack of both movement 342 

and consumption dynamics in any large-scale species composition modelling study, particularly ecosystems exposed to insect outbreaks or any 343 

other significant biotic interactions. 344 
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Figures 485 

 486 

Fig. 1. Model for host preference and herbivory. (a) Host preference model, describing the relationship between host plant cover and larval 487 

crowding rates when two potential hosts attract larvae (bx, by> 0) and coexist. Bold solid lines: Dominant crowding rate response. Thin solid line: 488 

Non-dominant response. Dashed lines: theoretical position of the zero crowding rate isoline. The breakpoint pxc indicates a shift in host 489 

preference. The position of the zero crowding isoline conditions the attraction towards hosts: 1. Avoidance of both hosts. 2. Host x is avoided, 490 

and crowding only occurs at high y covers. 3. Avoidance of plots where both hosts coexist. 4. No avoidance in any combination of host covers. (b) 491 

Optimal herbivory. Curves represent optimal consumption rate kc (Eq. 6) balancing crowding for different initial numbers of larvae L1. 492 

Superoptimal (k>kc) and suboptimal (k<kc) regions above and below the curves show areas where overall herbivore pressure in the patch 493 

increases or decreases, respectively. 494 

 495 
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 496 
Fig. 2: Crowding and consumption rates in E. autumnata. (a) Triangular thin plate spline of crowding rates over the relative cover of three plant 497 

groups considered. Black dots represent the plots surveyed. The solid blue line is the position of the breakpoint in the segmented regression of 498 

crowding rate vs. evergreen cover (Fig. S3). Dashed blue lines are the confidence intervals of the breakpoint in the segmented regression. (b) 499 

Calculated consumption rates resulting from the quasi-Poisson generalized linear model in Eq. 5 for different temperature and CO2 scenarios. 500 

Boxes and solid vertical lines depict 50% and 95% confidence intervals. Grey boxes depict elevated CO2
 
scenarios. +T =Elevated future 501 

temperature; +CO2 = Elevated CO2; +T +CO2 = Elevated temperature plus elevated CO2.  502 

  503 



16  
 

 504 

Fig. 3: Herbivore pressure depends both on crowding and consumption.  Quasi-Poisson model regressions show the dependence of the growth 505 

rate of herbivore pressure on the crowding rate (Eq. 4) for both host species. A=Ambient conditions; +T =Elevated future temperature; +CO2 = 506 

Elevated CO2; +T +CO2 = Elevated temperature plus elevated CO2. Initial number of larvae is included in the equation as the geometric mean. 507 

Gray line: Expected herbivore pressure in the absence of larval movement. Horizontal coloured lines: Expected herbivore pressure in the absence 508 

of consumption (see Calculating consumption rates). 509 

  510 
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 511 

Fig. 4. Consumption on bilberry under climate change is reduced in mixed stands (coexistence of the three host species). Reduction of herbivory 512 

on bilberry under current and future environmental conditions: coloured areas show suboptimal bilberry consumption (i.e., negative differences 513 

between realized and optimal consumption rates, k-kc<0) (see Calculating consumption rates). White areas depict superoptimal consumption. 514 

Under ambient conditions, suboptimal consumption only scarcely occurs in marginal areas like some stands with large dominance of bilberry. 515 

However, under future warmer scenarios, strongly suboptimal consumption of bilberry is more prevalent in mixed stands.  A=Ambient 516 

conditions; +T =Elevated future temperature.  517 
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Table 1. Summary of the quasipoisson generalized linear model (with a logarithmic link function) used to calculate consumption rates in bilberry 518 

and evergreen species. Higher-order non-significant interactions were discarded. The three last columns show average deviations from optimal 519 

conditions (k-kc) where consumption balances crowding. A=Ambient conditions; +T=Elevated future temperature; +CO2 = Elevated CO2; +T 520 

+CO2 = Elevated temperature plus elevated CO2. Consumption rates are shown in percentage cover per larva during a 10 days interval. 521 

 522 

Species Source Df Estimate Std Error P(>|t|)  Scenario k-kc  P(>|t|) 
 
Bilberry Intercept  -2.152 0.173 <2e-16 ***  A 0.098 0.0001*** 
 T effect 1 -0.718 0.302 0.02*  +T 0.021 0.036* 
 Error 70        
          
Evergreen Intercept  -2.842 0.228 <2e-16 ***  A 0.037 0.21 
 T effect 1 -0.84 0.415 0.047*  +CO2 0.011 0.812 
 CO2

 
effect 1 -0.93 0.429 0.034*  +T 0.031 0.36 

 Interaction  1 1.567 0.606 0.012*  +T +CO2 0.021 0.464 

 Error 68        

 523 


	Abstract
	1. Keywords: Climate change; Gompertz; herbivore pressure; host plant preference; insect outbreaks; Sub-arctic.Introduction
	During outbreak events in forested areas, it is hypothesized that herbivore-plant interactions and impacts will intensify with ongoing climate changes, leading in some cases to more or less permanent shifts in understory communities (Tenow, 1972; Jeps...

	2. Material and methods
	We developed a model based on the hypothesis that future climate change scenarios (including elevated CO2 and temperature) will influence host preference of an insect herbivore at high densities through intraspecific competition (i.e., larval crowding...
	1.
	2.
	2.1. Host preference in relation to larval crowding rates
	1.
	2.
	2.1.
	2.2. A Gompertz model of herbivory
	1.
	2.
	2.1.
	2.2.
	2.3. Calculating consumption rates
	2.4. Study site and data collection
	1.
	2.
	3.
	3.1.
	2.5. Statistical analysis

	4. Results
	5. Discussion
	Acknowledgments
	Conflict of interest
	References
	Supporting Information Legends
	Figures

