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Abstract   
 
Application of organic amendments to the arid land soils is a sustainable tool to improve soil 

fertility. A greenhouse experiment was conducted to find the effect of humic acid (HA), 

alfalfa residues (AR) (Medicago sativa L.) and sheep manure (SM) on soil respiration, soil 

organic carbon content, soil structure, total bacteria, total fungi, and growth of corn plant Zea 

mays.L.  Results showed that the highest aggregate stability was 44.2 % for the HA + SM 

treatment whereas it was 9 % for the HA treatment. The higher stability was associated with 

higher organic carbon 4.60%,  and higher bacterial and fungal densities of 190 × 106 g-1 dry 

soil and 101× 106 g-1 respectively. The HA + AR treatment did not increase aggregate 

stability significantly (27.7%), nor did the AR treatment (25.9%). Soil respiration over 70 

days was significantly (P < 0.05) higher in the SM (42.9 CO2-C mg g-1) compared to the AR 

treatment (33.3 CO2-C mg g-1). In contrast, the HA + SM treatment had lower soil respiration 
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(27.4 CO2-C mg g-1) compared to the SM treatment (42.9 CO2-C mg g-1). The HA + AR 

treatment recorded higher plant weight (20.6 g) compared to HA (10.2 g) and control 

treatments (8.11 g). This study proved that humic acid did not enhance soil structure or the  

microbial community, whereas the combination of HA with SM or AR is more effective at 

promoting the soil microbial community, soil aggregation, organic carbon content and plant 

growth in the saline, arid land.  

  

Keywords: humic acid, crop residues, sheep manure, soil respiration, total bacteria and 
fungi, organic carbon, soil structure, maize. 
 
Introduction 

 Soil organic matter is an important contributor to soil quality and productivity. Soil organic 

matter storage has a role in mitigating greenhouse gas emission effects on climate change 

(Garcia-Franco et al. 2018). Arid soils have low levels of organic carbon (Kneller et al. 2018) 

and offer limited physical protection to this organic matter due to lack of soil structure, 

vegetation and high temperature (AL-Maliki 2016). Sustainable agricultural practices are 

encouraged in the Arid, hot regions which in addition to low soil organic matter suffer from 

erosion, desertification, and salinity. The most common approach to enhancing soil fertility in 

these regions is to incorporate organic residues (e.g. green manures, farmyard manures, 

humic acid and crop residues) into the soil to increase the organic matter (OM) status 

(Metzger and Yaron 1987). There are considerable amounts of animal manures available for 

this purpose and these residues range in composition with 15-60% hemicellulose, 10-30% 

water cellulose, soluble fraction (5-30%), alcohol-soluble fractions (fats, oil, waxes, resins 

and pigments) and protein (Akhtar et al. 2014). The application of organic residues and sheep 

manure to soil increases microbial biomass, aggregate stability, soil microbial activity 

(Arocena et al. 2012; Al-Maliki 2012; AL-Maliki et al. 2017). Abiven et al. (2007) measured 

the microbial biomass carbon in the soil after adding cauliflower residues, wheat straw, cattle 
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manure and poultry woody compost and found marked increases in microbial biomass and 

aggregate stability compared to the control treatment. Likewise, Miao and Marrs (2000) 

found that the addition of farmyard manure to a soil in China led to increased organic matter 

content, total nitrogen and abundance of soil microorganisms (fungi and bacteria), as well as 

increased crop yield. Moreover, farmyard manure application can promote granular structure 

by increasing soil organic matter and biological activities (Arocena et al. 2012). Amendments 

of farmyard manure and poultry manure promoted the bacterial density and microbial activity 

in soils (Mishra et al. 2011).    

 There is a general agreement that the application of humic acids (HA) to the soil is beneficial 

to soil biological properties and growth of plants. Humic acids can increase the uptake of 

mineral elements, promoting root length and improving fresh and dry weights of crops 

(Mackowiak et al. 2001; Canellas et al. 2002; Chen et al. 2004). Furthermore, humic 

substances constitute a relatively stable fraction of carbon and improve water retention, pH 

buffering and thermal insulation (McDonnell et al. 2001). Similarly, humic acid may enhance 

soil structure. Piccolo et al. (1997) found that amending three soils with humic substances 

(equivalent to 100–200 kg ha-1) improved aggregate stability and reduced substantially the 

disaggregating effects of water and drying cycles. Indeed, HA amendments markedly 

enhance plant growth under saline conditions. Türkmen et al. (2004) found the application of 

humic acid at 1000 mg kg−1 concentrations on saline soil increased seedling growth and 

nutrient contents of plants. Nevertheless, Türkmen et al. (2004) claimed that high levels of 

humic acid 2000 mg kg−1 limited plant growth and decreased nutrient contents. Likewise, 

Pukalchik et al. (2017) found the combination of humic substances with wood ash or wood 

biochar reduced microbial biomass carbon whereas the addition of humic substances (HS) 

alone increased microbial biomass in soil. Similarly, Gu and Doner (1993) recorded negative 

effects of humic acid on soil structure due to increased clay dispersability.  Consequently, it 



4 
 

seems that the effect of humic acid on soil structure and microbial activity is not fully 

understood.  

The proposed hypothesis of the current study is that the humic acid and the organic 

amendments enhance soil respiration, aggregate stability, organic carbon, soil bulk density, 

soil porosity, bacterial and fungal abundance, and the growth of corn. There have been no 

previous studies in the Arid - hot regions focusing on the combined use of humic acid, crop 

residues and sheep manure and their effect on these soil indices. So the present research was 

designed to study the combined effect of the addition of humic acid, crop residues and sheep 

manure on microbial activity, soil aggregation, and the corn plant yield.   

 

Materials and Methods  

Experimental site  

A greenhouse experiment was carried out at the College of agriculture, AL-Qasim Green 

University, Iraq (32°23'34.3"N, 44°24'07.8"E). The average annual rainfall is 101 mm, the 

average annual temperature 30.1 oC with an average relative humidity is 49.4 %. The region 

is classed as an Arid –Desert-hot region (BWh) (Koppen and Geiger 1928).  Some physical 

and chemical properties of the soil were determined: the texture was sandy loam (sand 60 %, 

clay 15 % and silt 25 %), pH 7.75, electrical conductivity 10.40 (dS/m) and the bulk density 

of the soil was 1.40 g/cm3. Soil samples were taken from the top 30 cm depth of an adjacent 

field soil, then sieved to < 4 mm and 5 kg were placed in mesocosms.  
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Soil amendments and their composition 
 
Alfalfa residues (Medicago sativa L.) were chopped to less than 1 cm and mixed thoroughly 

with 5 kg dry soil. Alfalfa residues and sheep manure were mixed into soils at a rate of 1 % 

(7 ton ha-1) of the dry soil. The chemical compositions of sheep manure and alfalfa residues 

are shown in Table 1. Humic acid (1.1 g 142 kg ha-1) was added to each 5 kg of soil in the 

irrigation water on three occasions during the growth of the plant. The first dose (0.3 g) was 

added before sowing, the second similar dose three weeks after planting. The third dose (0.4 

g) was added five weeks after germination.  DISPER Humic 85 % GS was used, a product 

containing humic and fulvic acids obtained from American Leonardite. The composition of 

the humic extract was 68 % humic acid, 17 % fulvic acid and 15 % potassium. 

Six treatments (control (C), sheep manure (SM), alfalfa residues (AR), humic acid (HA), 

sheep manure + humic acid (SM+ HA) and alfalfa residues + humic acid (AR+ HA)) were 

replicated three times in a completely randomized block design with a total of 18 mesocosms. 

Mesocosms were incubated in the greenhouse for 30 days at 25 °C.  Soil respiration was 

assessed for 30 days and the CO2 release for 50 and 70 days. At the end of the period of 

incubation, the soil was analyzed to determine aggregate stability, microbial activity, the 

abundance of bacteria and fungi, bulk density, soil porosity and organic carbon.    

 

Planting details 

Seeds of maize (Zea mays L.) were sown at 3 cm depth on the 15th March 2015 with five 

hybrid seeds for each mesocosm. Seedlings were thinned to 3 seedlings at 14 days. Pots were 

weighed to maintain the soil moisture content close to 25 % field capacity. Fertilizers were 

uniformly applied to soil before planting. Urea was added at a rate of 300 kg/ha as a source of 
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nitrogen (equivalent to 0.75 g for each mesocosm). Compound fertilizer was applied at a rate 

of 120 kg/ha (triple superphosphate) as a source of phosphorous (0.3 g for each mesocosm), 

which contained 15 % calcium. Potassium sulphate was applied at a rate of 100 kg/ha (0.25 g 

for each mesocosm). The height and dry weight of maize were measured two months after 

planting.  

Chemical analyses 

Respiration was estimated based on the alkali trap method (Sonnenholzner and Boyed 2000). 

20 g of soil was placed inside a flask corked with a stopper attached to a 10 ml glass bottle. 

The bottle was filled with a 5 ml solution of 0.62 M NaOH. The NaOH solution captured any 

CO2 that was respired from the soil. For each molecule of CO2 evolved during respiration, 

two molecules of NaOH are needed to neutralize the potential acidity.  

1 M of HCl was used to titrate with the NaOH containing a phenolphthalein indicator. The 

endpoint of the titration was when the pink colour was changed. Soil respiration was 

estimated as follows: 

 𝐂𝐂𝐂𝐂𝐂𝐂 �𝐦𝐦𝐦𝐦
𝐦𝐦
�  = (𝐁𝐁  − 𝐕𝐕)𝐍𝐍𝐂𝐂𝐂𝐂

𝐰𝐰
                     Equation 1                 

Where  B = standard  HCl  used  to  titrate NaOH  in  the  blank (mL),  V =standard HCl  

used  to  titrate NaOH  in  the  treatment (mL), N  = molarity  of HCl  (1.00 M),   22 =  

equivalent  weight  of  CO2,  W  = dry weight of  soil in  the chamber  (g).   

Aggregate stability was measured by wet sieving (Hazelton and Murphy 2007). The soil was 

prepared by sieving to 2 mm, and then transferred to sieves with 0.25 mm apertures on a 

shaking machine within a water tank. Resulting stable aggregates were dried at 110 °C and 

weighed, with correction for sand content. Soil microbial populations were processed using a 

soil dilution plate method (Nandhini and Josephine 2013).  1 g of soil was diluted with 
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sterilized water up to 10-1, 10-2, 10-3, 10-4, 10-5, 10-6; 1 ml aliquots of each dilution were added 

to 20 ml of nutrient agar medium. Tryptic-soya agar was used to culture bacterial colonies 

and Martin’s Rose Bengal agar for fungal colonies. Populations were enumerated by counting 

colony-forming units (CFU g-1 of dry soil). Bacterial plates were incubated at 28 °C for 3 

days and fungal plates at 25°C for 7 days. To calculate the number of bacteria and fungi per 

gram of diluted sample, equation 2 was used:  

 

Viable cells / g dry soil = (Mean plate count × Dilution factor) / Dry weight 

of soil (g)                                                                  Equation 2 

 

Soil bulk density was determined using a core method (Culley 1993), 5 cm in length and 5 

cm in diameter, with a core taken from the surface of each mesocosm. Cores were oven-dried 

at 105 C°, weighed to determine weight per given volume and the bulk density of each 

mesocosm calculated. Soil bulk density was calculated according to the below equation:  

Soil bulk density= weight of soil (g)/ volume of soil (cm3)    Equation 3 

Porosity was calculated according to Głąb and Kulling, (2008) by dividing the soil bulk 

density to particle density to obtain averages values of the soil porosity according to the 

below equation:  

 % porosity = (1 - rb/rp) × 100                                        Equation 4    

Where rb= soil bulk density, rp = particle density  

A muffle furnace method was used to estimate soil organic carbon (Ball 1964; AL-Maliki et 

al. 2014). A Pyrex crucible containing 10 g of soil was oven-dried at 105 C° over-night, then 

placed into a muffle furnace and ignited at 400 °C for 16 hours. The percentage loss ignition 
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was calculated as follow:  LOI results were divided by 1.724 to obtain the percentages of soil 

organic carbon. 

 

% 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥 𝐢𝐢𝐦𝐦𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐥𝐥𝐢𝐢 =  (𝐥𝐥𝐨𝐨𝐨𝐨𝐢𝐢 𝐝𝐝𝐝𝐝𝐝𝐝 𝐥𝐥𝐥𝐥𝐢𝐢𝐥𝐥 𝐰𝐰𝐨𝐨𝐢𝐢𝐦𝐦𝐡𝐡𝐢𝐢− 𝐢𝐢𝐦𝐦𝐢𝐢𝐢𝐢𝐢𝐢𝐨𝐨𝐝𝐝 𝐥𝐥𝐥𝐥𝐢𝐢𝐥𝐥 𝐰𝐰𝐨𝐨𝐢𝐢𝐦𝐦𝐡𝐡𝐢𝐢  ) 
(𝐥𝐥𝐨𝐨𝐨𝐨𝐢𝐢 𝐝𝐝𝐝𝐝𝐝𝐝 𝐥𝐥𝐥𝐥𝐢𝐢𝐥𝐥 𝐰𝐰𝐨𝐨𝐢𝐢𝐦𝐦𝐡𝐡𝐢𝐢)

× 𝟏𝟏𝟏𝟏𝟏𝟏                   Equation 5 

Statistical analysis  

The data were analyzed using Minitab version 14. Microbial activity was analyzed using two-

way analysis of variance (ANOVA), tested two factors (treatments and incubation periods). 

Results for the aggregate stability, bulk density, bacterial abundance, fungal abundance, 

organic carbon, dry weight of plant and height of plant were analyzed by one-way ANOVA. 

Means were further evaluated where significant treatment effects were observed using 

Tukey’s honest significance difference (HSD) test with a significance level of P < 0.05. To 

test the relationships between variables, linear correlation coefficients were calculated at the 

significance level of P < 0.05. 

 

Results  

Effect of treatments on soil respiration (CO2-C efflux) and microbial 
population  
 
The amendment of alfalfa residues, sheep manure, and humic acid steadily and significantly 

increased soil respiration compared to the control treatment (Figure 1). The magnitude of 

increase was from 9.94 CO2-C mg g-1 in the control treatment to 38.47, 42.92, 33.34, 27.44, 

and 26.11 CO2-C mg g-1 for AR+ HA, SM, AR, SM+HA, and HA treatments respectively. 

Overall, the highest increase in soil respiration was in SM treatment, although it was not 

significantly different from the HA+ AR treatment. Overall, there was significantly lower soil 

respiration for the HA treatment compared to the AR +HA, SM, AR treatments. It was found 
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that soil respiration was markedly lower for the HA + SM treatment in a comparison to the 

SM treatment, whereas when HA treatment has combined with AR, soil respiration increased 

though not significantly compared to the AR treatment. Soil respiration was affected 

significantly by the incubation period; it was higher at 38.54 CO2-C mg g-1 at day 50 

compared to day 30 and 70 (23.45, and 26.27 CO2-C mg g-1) respectively. There was an 

interaction (p<0.001) (Figure 1) between time and treatments confirming that treatments did 

not affect soil respiration similarly with time. All treatments recorded a rise in soil respiration 

in day 50 and then a consistent decline to day 70, except for the HA treatment which showed 

a slight increase at day 50, then further increase at day 70. Moreover, the combination of HA 

with SM displayed a clear decline in soil respiration at day 50 and 70. In contrast, the (HA+ 

AR) treatment revealed a consistent increase in soil respiration over the incubation period. 

   

On average, the bacterial abundance in the control treatment was significantly lower (15× 106 

g-1 dry soil) compared to (120× 106 g-1 dry soil, 100× 106 g-1 dry soil , 150× 106 g-1 dry soil, 

190× 106 g-1 dry soil) the AR, AR+HA , SM and SM+HA treatments respectively (Figure 2). 

However, the bacterial population in the HA treatment was not significantly different from 

the control. A greater rise in the bacterial population was observed at (HA+SM) treatment 

(190× 106 g-1 dry soil) and to less extent with the (HA+AR) treatment (100× 106 g-1 dry soil).   

Total bacteria abundance was higher in the SM treatment compared to the AR treatment. The 

fungal abundance increased significantly in the AR, AR+HA, SM, and SM+HA treatments 

(Figure 3) compared to the control. In contrast, the fungal abundance in HA treatment was 

not significantly different from the control treatment. Furthermore, the fungal abundance 

increased in the AR compared to the SM treatment.    

Effect of treatments on soil aggregation, soil bulk density and porosity 
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Aggregate stability varied markedly between treatments. A substantial significant increase 

was detected in the HA+SM treatment compared to other treatments (Figure 4). It was also 

noted that aggregate stability in the HA treatment was very low compared to other treatments 

and indeed lower than the control treatment; aggregate stability in the AR+ HA treatment was 

not significantly different from the control. The improvements in aggregate stability were 

clear comparing the HA+SM and AR treatments.      

Soil bulk density was significantly lower in all treatments combinations compared to the 

control (Figure 5). Lower soil bulk density was detected in the HA+ AR treatment compared 

to all other treatments. The addition of the AR only did not significantly decrease soil bulk 

density compared to the SM, HA, AR+HA and SM+HA treatments.  

Soil porosity varied among treatments (Figure 6). All treatments had a significant increase 

compared to the control. The highest increase in soil porosity was when HA was incorporated 

with the AR treatment. Soil porosity was lower in the AR treatment compared to the SM, 

HA, AR+HA, and SM+HA treatments. 

Effect of treatments on soil organic carbon 

Where soil was amended with organic matter, the soil organic carbon increased compared to 

the control (Figure 7). The highest increase was in the HA+SM treatment. Soil organic 

carbon content in the HA+ AR was not significantly different from the AR treatment. The 

HA only treatments led to significantly lower soil organic carbon than all other treatment 

combinations, although it was not significantly lower than the AR treatment. The soil organic 

carbon content in the SM treatment was significantly higher than in the AR treatment.   

Effect of treatments on growth of the plant  
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Plant height was significantly greater in all treatments compared to the control (Figure 8). 

There were no significant differences in plant height between the SM, HA, AR+HA, and 

SM+HA treatments.  The plant weight was significantly greater in all treatments compared to 

the control except for the HA treatment (Figure 9). There was a significant increase in plant 

weight when HA has combined with the AR and SM compared to the HA treatment and 

control. 

The relationship between aggregate stability and biological binding agents  

The correlations between aggregate stability and the biological parameters evaluated in this 

experiment may be related to improved soil structure and the plant growth.  There was a 

highly significant correlation (r= 0.82, p-value < 0.001) between the aggregate stability and 

the bacterial abundance (Table 2). The correlation between aggregate stability and fungal 

abundance was also close (r= 0.78, p-value < 0.001). A significant correlation (r= 0.74, p-

value < 0.001) was also found between soil organic carbon content and aggregate stability. 

Soil respiration was found to have a marginal non-significant correlation (r= 0.40, p-value = 

0.06) with the aggregate stability.  

Bulk density plays a vital role in enhancing soil quality and the plant growth.  It was found 

that the soil respiration and the organic carbon content related to bulk density. A significant 

negative correlation (r= - 0.64, p-value = 0.004) was found between soil respiration and bulk 

density. Furthermore, the correlation between organic matter and bulk density was significant 

(r= - 0.70, p-value = 0.002). There were no significant correlations between bulk density and 

bacterial or fungal abundance.  

                                    

The relationship between soil parameters and plant growth  
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  Soil parameters may have affected plant growth. There was a significant negative 

correlation (r= - 0.78, p-value = 0.001) between the plant height and soil bulk density (Table 

3). There were significant positive correlations (p-value < 0.001) between plant height and 

soil respiration, carbon and porosity. Fungal abundance had a weaker correlation with  (r= 

0.49, p-value = 0.03) plant height.  In contrast, height was not correlated with bacterial 

abundance or aggregate stability.  

Similar trends were found for plant biomass. with soil respiration, organic carbon content, 

porosity and aggregate stability positively correlated with biomass (p < 0.01) and bulk 

density negatively so (p < 0.01. There here was a significant correlation (r= 0.63, p-value = 

0.005) between the fungal abundance and plant biomass, but not so for bacteria.  

Discussion  

Effect of treatments on soil respiration (CO2-C efflux) and the microbial 
population  
 
Soil respiration increased after addition of organic materials (Figure 1), probably due to the 

carbon, phosphorus and nitrogen inputs. Microbial decomposition of litter can yield fats, 

lignin, and waxes plus humus (Lynch and Bragg 1985; Christensen 1986; Angers et al. 1997). 

These findings are in accordance with those of Abiven et al. (2007) and AL-Maliki et al. 

(2017) who found a marked increase in soil microbial activity after the addition of organic 

residues. The highest increase in respiration for the SM treatment might have been due to its 

higher cellulose and lignin contents supporting microbial activity through slow early 

decomposition increasing thereafter. As expected (Dilly 2004), humic acid increased soil 

respiration because it is an energy source for the microbial activity. Also, added humic acid 

could lower the high pH of the saline soil favouring microbial activity. Microbes in the soil 

require a continuous supply of organic substrate. This increase in soil microbial activity at the 
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HA+AR could be a result of the larger quantities of nitrogen, phosphorous and carbon, and 

pH amelioration.  

 The incorporation of HA with SM decreased soil respiration compared to the SM treatment. 

This decrease in soil respiration could be linked to increases in aggregate stability and 

associated physical protection of organic matter (Sarker et al. 2018). There was an interaction 

effect for respiration (Figure 1) between treatments and time. A prominent feature of this was 

the increase at day 50 and subsequent decrease for most organic amendments contrasting 

with the HA treatment which showed a consistent rise to day 50 and 70; this was due 

probably to the chemical recalcitrance of the humic.  

The bacterial and fungal populations increased in all the treatments compared to the control 

treatments (Figures 2 and 3). The highest increases in the bacterial and fungal abundance 

were for the HA + SM treatment. As with respiration, several factors including mineral 

nutrient contents, proportions of less labile organic fractions (e.g cellulose and lignin), pH 

effects and effects on soil structure may explain variations in treatment effects on bacterial 

and fungal abundance.   

It was noted that the chemical composition of the organic materials played a crucial role in 

increasing the bacterial and fungal population in the soil. The bacterial population was higher 

in the SM treatment than the AR treatment. SM has large C/N ratio and contained more 

cellulose and lignin which might have decomposed slowly attracting and supporting the 

bacterial community over time. Soil bacteria can decompose cellulose in the aerobic and 

anaerobic soil circumstances (Coughlan and Mayer 1992). This study can witness that 

bacteria are important contributors to the soil cellulose degradation. Interestingly, the soil 

aggregate stability was higher in the SM treatment; this provides an extra protection for the 

bacterial community against the predator. Ranjard and Richaume (2001) found that bacteria 
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located within micropores in a good soil structure are protected against predation. Moreover, 

the stable soil aggregates have small pores impeding the diffusion of the water and oxygen 

giving a favour to the anaerobic bacteria to inevitably increase in the SM treatment. In these 

circumstances, the organic carbon in the small pores of the stable aggregates would not be 

accessible by the fungal population which has a larger size than bacteria, and they reside in 

the outer part of the soil aggregates, therefore they were relatively lower in the SM treatment 

than AR.  In contrast, the fungal population was higher in the AR treatment which is from the 

plant origin containing more nitrogen, carbon and phosphorus which are used as an energy 

source to support the fungal activity. Fungi are important degraders in soils (Baldrian and 

Valášková 2008).   

Effect of treatments on aggregate stability, bulk density and soil porosity 

Figure 4 showed that the easily decomposable materials (AR with and without HA) did not 

significantly increase aggregate stability compared to the non-treated soil. In contrast, the 

highest increase in aggregate stability was in the more recalcitrant materials (SM with and 

without HA). The likely explanation is that the C/N ratio of litter residues affects soil 

aggregate stability dynamics. It is probable that low C/N ratio inputs of the AR treatment 

were decomposed between zero and 30 days, with short-term effects on aggregation; the 

higher C/N ratio SM inputs produced longer-term effects. Furthermore, humic acid would 

have mitigated the negative effects of high pH on microbial communities associated with 

improvements in soil structure. Interestingly, the higher bacterial and fungal abundance was 

in the SH+ HA treatment. Bacteria can produce polymers which might be adsorbed to soil 

surfaces leading to the formation of aggregates (Lynch and Bragg 1985). Here there was a 

close correlation (r= 0.82, p-value= 0.001) between aggregate stability and bacterial 

abundance. Moreover, fungal hyphae can link soil particles causing an enhanced soil 
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structure (AL-Maliki et al. 2017). Fungal hyphae might enmesh soil particles resulting in an 

improved soil stabilisation by acting as a ‘’sticky string bag’’ (Oades 1993; Haydu-

Houdeshell 2018). These conclusions are consistent with the significant correlation (r= 0.78, 

p-value= 0.001) between aggregate stability and fungal abundance.  

It was expected that humic acid would increase  stable aggregates because it contains 

aliphatic and aromatic carbon are capable of linking soil particles together (Sung et al. 2012). 

However, this was not the case.  Shanmunagathan and Oades (1983) and Oades (1984) 

observed that humic acid increased the negative charges on clays causing their dispersion. 

Disrupted soil structure could cause a reduction in the soil pores, potentially leading to 

anaerobic conditions and impeded activity of the soil microbes promoting soil structure.  

Here bacterial and fungal abundances were diminished when humic acid added to the soil. An 

increase in the microbial abundance can form binding agents resulting in a maximised 

aggregate stability.  This result is consistent with Gu and Doner (1993) who found that humic 

acid was an effective dispersing agent for Na-clays and Na-soils. Likewise, Nelson et al. 

(1999) also revealed that the amino acids were responsible for clay dispersion in sodic soils.  

The incorporation of organic materials in the soil led to higher soil porosity and lower bulk 

density (Figures 5 and 6). These findings are consistent with those of Rosolem et al. (2010) 

who found that soil organic matter enhanced aggregation and soil porosity, aeration, water 

infiltration, and water retention, and a decrease in soil bulk density. The largest improvement 

in porosity and bulk density was in the HA + AR treatment. This outcome could be attributed 

to the alfalfa residues being a high quality substrate for microbes producing binding agents 

such as fates, waxes and polysaccharides (Abiven et al. 2007). Reduced pH would have 

further enhanced this process. These results are in accordance with Franzluebbers (2002) who 

found that soil organic matter improved soil aggregation and macroporosity by enhancing the 
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soil biological activity. Similar results were recorded by Silveira Neto et al. (2006), who 

showed that soil bulk density decreased through an increase in soil organic matter.   

 

 

 

Effect of treatments on soil organic carbon 

Soil organic carbon content increased substantially after the incorporation of the organic 

materials (Figure 7). The largest increase was in the HA + SM treatment. Increases in organic 

carbon with inputs are inevitable but in this case may have been enhanced  by higher 

aggregate stability in the SM + HA treatment protecting organic inputs from decomposition 

(Tisdall and Oades 1982; Ghosh et al. 2018). There was a close correlation (r =0. 70, p-

value= 0.002) between aggregate stability and organic carbon. Furthermore, there was a 

higher consistent population of bacteria and fungi in the SM + HA treatment causing an 

improvement in soil organic matter decomposition leading to much more microbial 

mucilages leading to an obvious increase in soil organic carbon content. This point is proved 

by bringing a significant correlation (r =70, p-value= 0.001) (r =61, p-value= 0.006) between 

bacterial, fungal population and soil organic carbon respectively suggesting a particular role 

of the microbial population in increasing soil organic carbon. Fungi produce glomalin which 

is an important protein contributing to the organic carbon storage (Debode et al. 2016). 

Moreover, bacteria can produce mucilages and polysaccharides (Ahmed et al. 2018) which 

may also stabilise carbon inputs to some extent.      

 

 Effect of treatments on growth of the plant  
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All the organic materials significantly increased plant height and biomass (Figure 8). Organic 

materials contain large quantities of nutrients such as nitrogen, phosphorous and potassium 

which encouraged plant growth. Other indirect effects include improvements in soil structure, 

bulk density, soil porosity, microbial activity and organic carbon. The increase in aggregate 

stability and reduction in bulk density would have enhanced water supply to plants and 

promoted rooting thus increasing nutrient uptake and productivity (Yanardağ et al. 2017).   

These interpretations were consistent with correlations between plant and soil parameters 

(Table 3). Microbial activity plays a vital role in the conversion of organic nutrients into 

available plant forms. Organic carbon can promote the growth of the plant by improving the 

physical and biological health of soil as a source of energy (De Deyn et al. 2008). 

Improvements in physical conditions would also promote plant growth.  Fungi have a 

potential to increase the soil fertility by mobilizing phosphorus, potassium and iron (Rashid et 

al. 2016). Fungal hyphae also enmesh soil particles, leading to an enhanced soil structure 

(Debode et al. 2016; AL-Maliki et al. 2017; Ghorchiani et al. 2018).   

Conclusion 

This study concluded that the application of HA alone did not improve aggregate stability and 

bacteria and fungi abundance in a saline soil. The incorporation of SM with HA improved all 

of  the above parameters and in addition increased organic carbon. The combination of HA 

with AR improved soil respiration, bulk density, soil porosity and plant dry weight. Soil 

respiration was lower in HA + SM treatment with evidence of organic carbon protection. The 

increases in plant growth with organic inputs were attributed, in addition to their nutrient 

inputs, to improved physical conditions and microbial activity. This study suggests that the 

application of HA alone could not improve arid land soil. However, the combination of HA 

with SM or AR might be a potential means of achieving this objective with benefits for the 

growth of plants in arid ecosystems which suffer from salinity.   
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	Alfalfa residues (Medicago sativa L.) were chopped to less than 1 cm and mixed thoroughly with 5 kg dry soil. Alfalfa residues and sheep manure were mixed into soils at a rate of 1 % (7 ton ha-1) of the dry soil. The chemical compositions of sheep man...

