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Abstract 41 

Climate change is shifting species’ ranges. Simple predictive metrics of range shifts, such 42 

as climate velocity, that do not require extensive knowledge and data on individual species 43 

could help guide conservation. We review research on climate velocity, describing the theory 44 

underpinning the concept and its assumptions. We highlight how climate velocity has 45 

already been applied in conservation-related research, including climate residence time, 46 

climate refugia, endemism, historic and projected range shifts, exposure to climate change, 47 

and climate connectivity. Finally, we discuss ways to enhance the use of climate velocity in 48 

conservation, through tailoring it to be more biologically meaningful, informing design of 49 

protected areas, conserving ocean biodiversity in three dimensions, and informing 50 

conservation actions. 51 

 52 
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Simple climate metrics could help conservation in a changing climate 53 

Climate change is likely to become the most serious threat to biodiversity this century [1, 2]. 54 

In fact, anthropogenic climate change, initiated in the Industrial Revolution, has already 55 

affected ecological systems from individual organisms to biomes [3, 4], and has influenced 56 

>80% of all biological processes [5]. Although ecological responses to climate change are 57 

numerous, complex and multi-faceted, probably the most fundamental is the spatial 58 

redistribution of global biodiversity [3]. Such species range shifts, in response to a changing 59 

climate, have been observed across terrestrial and marine ecosystems during the current 60 

warming period [6-8] and since the last glacial maximum [9, 10]. Understanding the 61 

processes underpinning range shifts and predicting their potential outcomes is needed to 62 

inform conservation, and reduce risks to food security, human health, and the viability of 63 

numerous industries that depend on ecosystem services, including forestry, fisheries, and 64 

eco-tourism. 65 

 66 

Mechanisms underpinning range shifts are a blend of a species’ exposure, sensitivity and 67 

vulnerability to climate change, combined with its adaptive capacity [11]. Of these 68 

characteristics, only exposure to climate change might be considered relatively generic 69 

across species, with other traits being specific to individual species or populations. But 70 

detailed physiological, ecological and evolutionary data are missing for most species, 71 

especially in the tropics and much of the global ocean [12], and current research priorities 72 

make collection of such data increasingly difficult [13, 14]. This leaves conservation and 73 

management agencies to make decisions with whatever alternative tools are available. 74 

Threats to biodiversity posed by climate change have thus traditionally been quantified using 75 

rates of warming or cooling, temperature anomalies, or degree heating weeks [15]. What 76 

these simple indices do not convey is the relative likelihood that a species might escape the 77 

threat of climate change by shifting its distribution. A promising solution that retains 78 

generality, but conveys more ecologically relevant information is the velocity of climate 79 

change, or more simply, climate velocity [16-18]. Climate velocity is a metric that uses freely-80 
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accessible environmental and climate data, without the need for detailed ecological 81 

knowledge [19], to approximate the observed shifts in species’ distributions [20-23]. Climate 82 

velocity thereby provides a simple and intuitive measure of threats to biodiversity posed by 83 

climate change [24] and as such, in is simplest form, is not bespoke for particular species. 84 

 85 

Here, we explore the meaning, utility and application of climate velocity, with a particular 86 

focus on the potential for its use to guide conservation under a changing climate. We begin 87 

by defining the concept of climate velocity, as there are several formulations with different 88 

conceptual underpinnings. This leads to a summary of the methodological aspects and 89 

caveats that need to be considered when using climate velocity. We then describe the 90 

different applications of climate velocity that have provided new insights into many areas of 91 

climate-change ecology. Next, we look to the future and explore four ways to improve the 92 

utility of climate velocity in conservation. We focus on simple metrics that use raw climate 93 

variables, and do not consider velocities that can be calculated from species distribution 94 

models or assemblage models that scale climate space by biological data (e.g., Generalized 95 

Dissimilarity Modelling) [25]. This review is targeted at ecologists seeking to understand how 96 

climate change could affect communities, and for conservation practitioners wanting to 97 

include climate change in their planning. 98 

 99 

What is climate velocity? 100 

Climate velocity is a vector that describes the speed and direction that a point on a gridded 101 

map would need to move to remain static in climate space (e.g., to maintain an isoline of a 102 

given variable in a univariate environment) under climate change (see Glossary). From an 103 

ecological perspective, climate velocity can be conceptualized as the speed and direction in 104 

which a species would need to move to maintain its current climate conditions under climate 105 

change (see Box 1). For this reason, climate velocity can be considered the potential 106 

exposure to climate change faced by a species, if the climate moves beyond the 107 

physiological tolerance of a local population. Despite the intuitive ecological relevance, 108 
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however, climate velocity is based solely on environmental variables and not on species 109 

data (Box 1). 110 

 111 

Two major approaches to calculating climate velocity have emerged: viz., “local” climate and 112 

“climate-analogue” velocities (Figure 1). Local climate velocity is the original metric 113 

proposed in 2009 by Loarie et al. [16]. To calculate local climate velocity at a location – how 114 

far and in which direction the isoline of an environmental variable would move – only the 115 

rate of change of a variable (e.g., temperature) through time (i.e., the trend, usually 116 

estimated as the regression slope), and the corresponding spatial gradient of that variable, 117 

are needed. The spatial gradient represents the complexity of the climate landscape, its 118 

magnitude calculated as the length of a vector resulting from the weighted sum of the 119 

latitudinal and longitudinal pairwise differences in values of the climate variable between a 120 

focal cell and its nearest neighbours (Figure 1A). The associated angle of the vector gives 121 

the direction of the spatial gradient. Directions of climate velocity are reversed relative to 122 

those of the spatial gradient to reflect response expectations (e.g., in a warming climate, 123 

movement towards cooler locations). It is this dependence on neighbouring (local) cells for 124 

the estimation of the spatial gradient in climate that gives local climate velocity its name. 125 

 126 

Climate-analogue velocity [26] emerged as an extension of the climate analogue concept 127 

[27] – i.e., the identification of points in space with climates sufficiently similar to those of the 128 

points under consideration (Figure 1). Euclidean distances are often used as measures of 129 

multivariate climatic dissimilarity, climate analogy being set by reference to a dissimilarity 130 

threshold defined either subjectively [28, 29] or using regional statistics (e.g., 95th percentile 131 

of the minimum Euclidean distance between each future climate and all current climates) 132 

[26, 30]. Importantly, the selected threshold is constant and common to all local climates. 133 

When the points under consideration represent the current climate, and their analogues are 134 

sought in a future climate, the geographic distance between points can be divided by the 135 

time separating the periods to compute a speed of climate change. The direction for the 136 
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climate-analogue velocity is provided by the relative positions of the original point and its 137 

future analogue (Figure 1B). Climate-analogue velocity can be further conceptualized in two 138 

related but distinct ways: “forward” analogue velocity, the original formulation, and 139 

“backward” analogue velocity, which is the inverse of forward velocity ([28], Glossary). 140 

 141 

Local and climate-analogue velocities have been used in different situations. Local climate 142 

velocity has usually been used for exploring potential responses of biota to single variables, 143 

usually temperature [31], but sometimes precipitation [32]. This metric has been favoured 144 

by ecologists when gradients are smooth and where there is one main variable driving 145 

change (e.g., in the open ocean, Figure S1). Local climate velocity can be constrained by 146 

species requirements for particular habitat features, such as being limited to coastal marine 147 

regions by the need for light on the sea bottom, or substratum types for reef formation, or 148 

intertidal zones [33]. By contrast, climate-analogue velocity has usually been used with 149 

multiple variables [34]. It has greater ecological realism in complex environments with 150 

contrasting climatic gradients, and is favoured by ecologists dealing with species with 151 

multiple needs. For example, on land, temperature and rainfall have often been analysed in 152 

multivariate space using climate-analogue velocity (Figure S1). Irrespective of the climate-153 

velocity metric used and data availability, researchers should be aware of several associated 154 

caveats (Box 2), and a suite of methodological aspects, including which environmental 155 

variables to use, their time and space scales, and how to combine multiple variables (Box 156 

3). 157 

 158 

To encourage the robust use of climate velocity in the ecological and conservation research 159 

communities, we provide two resources. The first is a collection of R functions aggregated 160 

into a package, vocc, that is freely available on GitHub (https://github.com/cbrown5/vocc). 161 

This package calculates the local climate velocity for univariate environmental datasets, on 162 

local to global scales (see the SOM of Hamann et al. [28] for R code for climate-analogue 163 

velocity). The second resource is a list of all freely available environmental datasets (and 164 
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their websites) that have been used in climate-velocity research (Table S1 supplemental 165 

online information). 166 

 167 

Current applications of climate velocity 168 

Figure S2 shows conceptual relationships among different applications of climate velocity, 169 

highlighting key references, and common applications between local climate and climate-170 

analogue velocity. There are six main areas where local and climate-analogue velocities 171 

have provided new insights into climate-change ecology. 172 

 173 

1. Climate residence time 174 

From its inception, local climate velocity was used to estimate the residence time of current 175 

climates in protected areas and different biomes under climate change [16, 17]. Large 176 

protected areas, especially in hilly areas, are likely to continue to provide climate space for 177 

resident species into the next century (because air temperature decreases with altitude), but 178 

small reserves and reserves in flatter areas are likely to fail to do so (see also Box 1 and 179 

Box 3). The latter conclusion should, however, be viewed with caution: values of climate 180 

residence time can be alarmingly small, but might not reflect individual species’ residence 181 

times, because the local climate might not approach critical thermal limits for a species, a 182 

species’ thermal range might be large, or a species might be able to adapt behaviourally (or 183 

otherwise) thereby persisting in a climate that might otherwise be inhospitable [33, 35]. 184 

Nevertheless, the primary conservation-related recommendations from studies of climate 185 

residence time seem defensible. They include emissions reductions to slow the rate of 186 

climate change, and expanding networks of protected areas and including more 187 

mountainous terrain [36] to increase the residence time of climates (and therefore migrating 188 

species). 189 

 190 

2. Climate refugia and rates of endemism 191 
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Areas of low local climate and climate-analogue velocities can be considered candidate 192 

areas for protection [24, 37] because they are likely to contain a consistent suite of species 193 

and their ecological interactions as they evolved together in a slowly moving climate. Such 194 

areas are often called climate refugia, and have been linked with high levels of endemism 195 

[38]. For example, Sandel et al. [9] related local climate velocity between the last glacial 196 

maximum and current climates, and used these to explore endemism of amphibians, 197 

mammals and birds. Relationships between climate velocity and rates of endemism were 198 

weakest for wide-ranging species and strongest for narrow-ranged species, suggesting that 199 

areas of slow climate velocity provide important refugia for biodiversity under climate 200 

change. Subsequent studies on endemic species of insects and mammals [39], birds [40, 201 

41], and plants [42, 43]  confirm these patterns at a regional scale, and patterns seem to 202 

hold even at local scales within freshwater streams [44]. 203 

 204 

3. Historic range shifts 205 

The magnitude and direction of local climate velocity explains range shifts in many species 206 

on land [22] and in the ocean [7, 21, 22, 45-47]. For example, on land, global meta-analysis 207 

of over the past 40 years showed that terrestrial species tracked local climate velocity in 208 

response to warming to higher latitudes and higher elevation [48]. In marine systems, 209 

extensive data on marine species (128 million individual fish and invertebrate records across 210 

360 harvested species) around North America closely track local climate velocity, both 211 

horizontally and vertically in the ocean, over the past 50 years [20]. We expect greater 212 

agreement between climate velocity and species distribution shifts in homogenous systems 213 

such as the open ocean and continental plains. Such homogenous systems pose fewer 214 

constraints on movement because species are more able to follow local climate velocity, 215 

whereas heterogeneous and complex systems have barriers to dispersal and movement 216 

that can constrain distribution shifts. In such environments, estimates of climate velocity can 217 

be modified – see Section Tailoring climate velocity to be more biologically meaningful. Note 218 
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also that even in relatively homogenous regions, divergence among climate variables 219 

mediating species’ distributions might complicate responses. 220 

 221 

4. Exposure of organisms to climate change, migration velocities and the formation of novel 222 

communities 223 

Because climate velocity quantifies the speed and direction of a changing climate, it also 224 

quantifies the exposure of a species to climate change [19, 29]. Recently, Ordonez et al. 225 

[30] used local climate velocity as one of three mechanisms driving the reshuffling of species 226 

and emergence of novel communities under climate change, the other two being climate 227 

novelty (opening of new suitable environments) and divergence (discrepancy in the direction 228 

of change among gradients of different climate variables in relation to a species’ niche). As 229 

elsewhere [24, 26, 49], slow local and climate-analogue velocities were associated with 230 

regions of strong spatial gradients in environmental conditions (e.g., mountains) and 231 

assumed to be least-exposed to climate change (i.e., requiring shorter dispersal distances 232 

to track changes in climate). Climate exposure can also be modified by climate connectivity 233 

(see below) [24, 29, 50]. In this case, exposure relates to the cost of moving through 234 

climatically heterogeneous land- or seascapes, possibly accounting for other non-climate 235 

drivers conditioning dispersal [29]. 236 

 237 

5. Climate-velocity trajectories and climate connectivity 238 

To address Loarie et al.’s [16] caution that local climate velocity is discontinuous, Burrows 239 

et al. [24] developed climate-velocity trajectories by moving climate “tracers” between 240 

neighbouring grid cells based on the local climate velocity. Climate-velocity trajectories thus 241 

track specific climate conditions through time as continuous paths (see Box 4 Figure I). 242 

Spatially aggregated patterns of climate-velocity trajectories suggest changes in species 243 

richness with climate, and notably highlight areas that might receive few or no climate 244 

migrants through lack of connections to warmer places (climate ‘sources’: locally warm 245 

areas such as equatorward-facing coastlines on land or poleward-facing coastlines in the 246 
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ocean), and areas where there might be local extirpations through lack of connections to 247 

cooler areas (climate ‘sinks’: locally cool areas such as mountain tops on land and 248 

equatorward facing coastlines in the ocean) (e.g. [2, 22]).  249 

 250 

6. Projected range shifts with climate change 251 

As climate velocity is an indicator of the speed at which species’ range shifts track climate 252 

change – potentially the maximum possible rate of range shift when dispersal is not a limiting 253 

factor – climate-driven changes in the geographical distribution of species can be simply 254 

predicted by forward (or backward) projection of their climate envelopes (see Glossary) 255 

following the speed and direction of local or analogue climate velocities. This approach has 256 

been combined with species’ thermal tolerances and depth preferences to predict changes 257 

in distribution of marine species. Applying this approach for >13,000 marine species, García 258 

Molinos et al. [33] found that biodiversity would decrease in equatorial regions, but increase 259 

in others, and there would be a spatial homogenization of biodiversity by 2100. Recent 260 

observations of marine communities confirm those results in response to climate change 261 

[51, 52]. However, the likelihood of a response, and a subsequent shift in range mirroring 262 

climate velocity, is species-specific. For example, opportunities for the expansion and risk 263 

of contraction of a geographical range will depend on changes in the local climate space 264 

relative to a species’ physiological tolerances (see Box 1, Figure II). Even if a geographical 265 

shift is triggered by changes in climate, different dispersal capacities of species result in 266 

range shifts that keep pace with, lag or even exceed rates of climate displacement [53-60]. 267 

Range shifts will also depend on the interaction between climate change and external 268 

directional forces. In a recent global meta-analysis [61], statistical models combining the 269 

effect of climate velocity and its alignment with ocean currents explained a significantly 270 

higher proportion of the variance in observed range shifts for marine species globally than 271 

models based only on climate. 272 

 273 
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Enhancing use of climate velocity in conservation 274 

Although recent applications of climate velocity have provided new insights into climate-275 

change ecology, they have so far made only generic recommendations concerning 276 

conservation [62-64]. Here, we explore four research areas where we believe that climate 277 

velocity can be integrated more directly into biodiversity conservation under a changing 278 

climate. 279 

 280 

1. Tailoring climate velocity to be more biologically meaningful 281 

In its simplest form, climate velocity is a purely physical metric, so the utility of climate 282 

velocity in conservation could be improved through the addition of information that can better 283 

represent underlying ecological processes (Figure 2). First, a more realistic spatial extent 284 

can be defined for climate-analogue velocity algorithms by limiting the pool of potential 285 

analogues to those locations within the distance that species can be expected to cover over 286 

a given period based on their dispersal capability (Figure 2B). If this information on dispersal 287 

capacity is not available, alternative proxies might be suitable. For example, the limits of 288 

reported range expansion and contraction rates can be used to limit the analogue search 289 

radius [50]. Similar considerations apply to the spatial resolution of the climatic layers 290 

defining the spatial units for local climate velocities (e.g., resolutions that are too fine could 291 

result in local climate sinks that are easily avoided in reality by a widely-dispersing species). 292 

Second, analogous environmental conditions can be made more relevant to a species by 293 

considering the climate tolerance of a species, or the historical variability in local climate 294 

conditions [50] (Figure 2C). Last, climate velocity (local and analogue approaches) and 295 

climate-velocity trajectories miss information about the potential for a species to depart from 296 

the minimum-distance path in search of routes less exposed to changes in climate [29, 50] 297 

or other non-climate factors conditioning dispersal, such as habitat permeability [65], or 298 

directional forces, such as wind and ocean currents [61]. Least-cost paths [29, 65] and 299 

randomized shortest paths [50] linking present and future analogues can be used for this 300 

purpose, the latter having the advantage of allowing a degree of network exploration rather 301 
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than a single, unidirectional source-to-destination pathway [66]. This reflects a more realistic 302 

scenario, where the location of the future climate analogue and the optimal route to reach it 303 

are unknown a priori. 304 

 305 

Changes in climate can also manifest differently depending on season, and this seasonal 306 

signal can be obscured in annual means that are usually used in calculating climate velocity. 307 

Tailoring climate velocity to match temporal windows of biological processes or life stages 308 

could therefore provide more meaningful information for conservation (see example in 309 

Figure S3). For example, maximum and/or minimum monthly temperature or precipitation 310 

[26, 32, 34, 67] can be used to calculate local or climate-analogue velocities when seasonal 311 

processes are under consideration [68]. Further, analysis of the seasonal local climate 312 

velocity could be complemented with the shift in the timing of fixed temperatures to capture 313 

the onset or termination of seasonal processes [18]. The utility of combining metrics of 314 

climate velocity and timing has not yet been investigated. 315 

 316 

Species can “escape” climate change by exploiting specific microclimates. For example, 317 

mammals could spend more time underground in burrows, or marine invertebrates could 318 

spend more time in the sediment than exposed. Thus, incorporating such microhabitats or 319 

local climate refugia into climate velocity might also increase biological realism. But how this 320 

might be achieved is an open question, and many challenges remain. For example, 321 

microclimate refugia manifest at scales finer than those resolved in climate velocities, yet 322 

the local climate heterogeneity generated by such microclimates can be much greater than 323 

macroclimatic trends [69]. Microhabitats could also be more important in two-dimensional 324 

environments (e.g. terrestrial landscapes) than well-mixed, three-dimensional pelagic 325 

environments, at least for large organisms. 326 

 327 

It should be noted that in each instance, adding biological realism to climate velocity comes 328 

at a cost. The current lack of biological information in climate velocity in its simplest form 329 
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confers generality across a broad range of species. However, the more climate velocity is 330 

tailored to be more biologically meaningful, the more specific the metric becomes to the 331 

species under consideration. Thus, the path of increasing biological realism moves climate 332 

velocity towards species distribution models or other species-specific modelling approaches 333 

that potentially have better predictive ability, but require more species-specific information 334 

and are less generally applicable. 335 

 336 

2. Informing design of protected areas and their networks 337 

Protected areas need to be considered within a holistic ecosystem-based management 338 

approach that recognizes the interactive and cumulative impact of human activities [70]. 339 

However, the consideration of climate change in the design and evaluation of protected 340 

areas is still in its infancy [71]. Here, climate velocity might be useful in several ways. First, 341 

climate velocity identifies regions where climate conditions are changing rapidly, or are 342 

projected to do so in the future. These regions might correspond to those where distribution 343 

shifts are more likely, particularly at range boundaries or for range-restricted species, 344 

potentially moving species out of the protected areas designed to protect them [72, 73]. 345 

Further, current climate-velocity patterns can differ strongly from those projected for the 346 

future, highlighting the challenge of anticipating effects of a dynamic climate when designing 347 

static networks of protected areas (see Box 3). Second, climate velocity can be used to 348 

estimate climate residence time (Glossary) of different protected areas across a network 349 

(Box 3), indicating the required pace of adaptation to climate change. Areas of long climate 350 

residence times correspond to areas of low climate velocity. On land, however, areas of long 351 

residence times tend to be in mountainous terrain, perhaps contributing to the problem of 352 

residual reserves, that is, areas where conservation impact is low because the land is 353 

unsuitable for conversion or extraction of natural resources [74, 75]. Third, climate velocity 354 

can also be interpreted in terms of the opportunities for range expansions via dispersal and 355 

colonization from local populations at the leading edge of a species’ distribution. Here, 356 

establishing the connectivity between current and future climates will be important for 357 
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anticipating whether the existing network of protected areas will capture those expansions. 358 

For example, climate-velocity trajectories [24] used for this purpose can reveal emergent 359 

classes of isotherm shifts [76], which could be relevant to biology and ultimately used to 360 

inform conservation actions (Box 3). 361 

 362 

3. Conserving ocean biodiversity in three dimensions 363 

In the ocean, climate velocity has mainly been applied to surface temperatures (e.g., [33, 364 

50, 77]), which are probably relevant for epipelagic (0-200 m) marine groups, including all 365 

photosynthetic organisms that need to remain within the sunlit zone (the top 200 m). But in 366 

the open ocean, mesopelagic (200-1000 m) and bathypelagic (1000-4000 m) marine groups 367 

live below this sunlit zone, and the magnitude and direction of climate velocity might change 368 

with depth, with important implications for conservation [78, 79] (Figure S4). For example, 369 

although there is less warming in the deep ocean relative to the surface [80], spatial 370 

gradients are likely to be gentler at depth, so it is unclear how the climate velocity might 371 

change with depth. Moreover, the direction of climate velocity could differ with depth, 372 

according to the spatial gradient of temperature in different ocean layers (Figure S4, also 373 

see the SOM of Hiddink et al. [21]), implying that species distributions might move in different 374 

directions with depth. Different horizontal speeds and directions of climate velocity with 375 

depth would influence whether organisms at different depths remain within a particular 376 

marine protected area with climate change [81], and whether communities at different 377 

depths and that interact, remain intact. 378 

 379 

Not only can climate velocity be applied in horizontal slices in the ocean, but to the seafloor. 380 

Movements of organisms on the seafloor are restricted to a two-dimensional surface, as 381 

they are on land, and conventional two-dimensional climate velocity is therefore appropriate. 382 

As terrestrial species move to higher (cooler) elevations with warming, marine organisms 383 

on the seafloor have been observed to move to deeper (cooler) water with warming [20] 384 

(Figure S4). A pertinent conservation issue concerning seafloor communities is how best to 385 
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conserve seamounts, which have high levels of endemism and vertical habitat zonation [82], 386 

as mountains do on land. Applying local-climate velocity to seamounts could provide new 387 

insights into how these unique communities could respond to climate change. Seamounts 388 

also function as stepping stones for many animals across the abyssal plain [83], as 389 

mountains do on land. Applying climate-analogue velocity could provide new insights into 390 

how animals might move between seamounts in response to climate change, and help 391 

inform networks of protected areas for seamounts. 392 

 393 

Movements of organisms at the sea surface, at different ocean depths, or on the seafloor 394 

are restricted to two dimensions, and conventional climate velocity is therefore appropriate. 395 

However, movement of organisms in the open ocean is different, as organisms can move 396 

vertically through the water to maintain their environmental conditions. Climate velocity can 397 

thus be calculated purely vertically, from the surface to seafloor. This vertical climate velocity 398 

can be used to make projections of vertical shifts of open ocean species under climate 399 

change (Figure S4). Similarly, vertical velocity could be calculated for other variables (e.g., 400 

shoaling of oxygen or pH [84], but see Boxes 2 and 3). 401 

 402 

So far, we have considered horizontal and vertical climate velocity independently. Most 403 

organisms in the open ocean, however, are not constrained to moving only horizontally or 404 

vertically in response to climate change, but could simultaneously move horizontally and 405 

vertically to maintain their current temperature conditions. Thus, a final advance in the open 406 

ocean would be to combine the horizontal and vertical velocities into a truly three-407 

dimensional climate velocity. 408 

 409 

4. The potential of climate velocity to inform conservation actions 410 

Climate-velocity trajectories provide considerable scope to inform conservation actions (see 411 

Table S2 for trajectory classes [24, 76] and a summary of potential implications for species 412 

and conservation actions). For example, climate source areas (i.e., regions of novel climate 413 
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conditions) might face loss of indigenous biodiversity through emigration of species with 414 

good dispersal ability, and in some cases extirpation of some species with short dispersal 415 

abilities that cannot track their climate niche. In climate source areas, conservation actions 416 

might be focused not only on monitoring alien invasive species that might occupy emptying 417 

niches, but also ensuring that indigenous species have the ability to emigrate (Table S1). 418 

By contrast, in climate sink areas (i.e., where climates converge and sometimes disappear), 419 

species must adapt to new climate or face extirpation, and must also cope with climate-420 

immigrant species that bring novel interactions. In climate sinks, conservation actions might 421 

be focused on potential mitigation of other anthropogenic stressors to aid adaptation, and in 422 

extreme cases, assisted migration could be considered [85] (Table S2). Areas where climate 423 

changes little (e.g., slow and non-moving climate-velocity trajectory classes) are key for 424 

conservation because they usually provide refuges from climate change and have high rates 425 

of endemism [9]. Although these areas are likely to be the main focus to protect biodiversity, 426 

they might also be good places to release species translocated from climate sinks (Table 427 

S2). 428 

 429 

Concluding remarks 430 

The growing literature on climate velocity demonstrates that it can provide valuable 431 

information on the magnitude and direction of species’ range shifts under a changing 432 

climate. This simple index, based on environmental data with no physiological information, 433 

is providing new ecological insights. We hope that this review stimulates wider consideration 434 

and incorporation of climate velocity in biodiversity conservation, and that the emerging 435 

approaches we highlight will help generate positive long-term conservation outcomes. We 436 

also hope that the vocc R package we have made freely available on GitHub 437 

(https://github.com/cbrown5/vocc) for calculating local climate velocity (in conjunction with 438 

the the R code from Hamann et al. [28] for calculating climate-analogue velocity) will make 439 

the use of climate velocity more accessible, and thus stimulate further applications, 440 

especially by conservation practitioners. 441 
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Figures 655 

Figure 1. Mathematical and graphical differences between (A) local climate and (B) climate-656 

analogue velocities. 657 

 658 

Figure 2. Tailoring climate velocity to be more biologically meaningful. (A) The local velocity 659 

associated with a cell in flat terrain (black square - L1), typically high because of the relatively 660 

flat spatial thermal gradient (note the widely spaced isotherms), can overestimate true 661 

migration requirements by only considering the immediate surroundings (a 3x3 662 

neighbourhood in this case) if suitable future habitats are nearby (grey square). Conversely, 663 

in mountainous terrain (red square - L2), steep gradients resulting in low climate velocity can 664 

underestimate migration requirements where no suitable habitat (orange square) is 665 

available in the surroundings (e.g., locations close to mountain tops), despite the perceived 666 

low migration requirements. (B) Where human-assisted migration is not of concern and the 667 

purpose is to infer potential biological responses, climate-analogue velocities can be too 668 

inclusive by searching for future climate analogues (orange squares) across unrealistically 669 

wide regions beyond the distances species might be able to disperse over time (inner circle 670 

– tree, outer circle – bird). (C) Thresholds can be set by reference to the thermal tolerances 671 

of representative taxa (upper row) or the local historical climate variability (lower row) 672 

characterizing the range of climatic conditions local populations are adapted to (grey box 673 

bounding the extremes of the local temperature time series for a reference period). Future 674 

mean thermal conditions at the focal cell L2 (dotted red line, first column) move beyond the 675 

upper thermal tolerance of the species and outside the bounds of historical local thermal 676 

variability, suggesting a likely extirpation of the local population. On the other hand, the two 677 

candidate target sites (L3, L4) within the dispersal range will develop analogue climates for 678 

the species as their future thermal environments will be within the threshold (note that L4 will 679 

be a climate analogue only under one criterion). The selected target locality for the 680 

calculation of the analogue velocity would be the geographically closest climate analogue to 681 

the focal cell (L3). Alternatively, cost-path analysis could be used instead of Euclidean 682 
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distances to reflect more realistically the influence of thermal gradients (climate connectivity) 683 

and other non-climate factors on the dispersal route between present and future analogues. 684 

 685 
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Glossary 695 

Bioclimatic or biotic velocity: Based on data from species’ range shifts using climate 696 

maps of suitable and unsuitable areas, biotic velocity estimates the rate at which species 697 

must move to track their climate niche. For any species, it is calculated as the distance 698 

between a site and the nearest location considered to be suitable for that species within its 699 

future projected range [67, 86]. Biotic velocity has also been termed bioclimatic velocity [87], 700 

and calculated following the local climate velocity approach using species’ suitability maps 701 

instead of climate maps to obtain temporal trends and spatial gradients. Sometimes a 702 

distinction is made between these terms based on whether ranges and habitat suitability for 703 

the periods being analysed are projected or predicted [88]. 704 

 705 

Climate-analogue velocity: A climate-velocity metric that considers the distance between 706 

points at a particular point in time and their future climate analogues, divided by the time 707 

difference (Fig. 1B). There are two types: forward analogue velocity, which is the straight-708 

line speed and direction required to reach a given climate-analogue destination at some 709 

point in the future (usually a single destination for any origin under consideration); and 710 

backward analogue velocity, which considers a destination and asks which points (usually 711 

several) of origin might eventually feed into the destination. 712 

 713 

Climate residence time: The amount of time necessary for a climate isoline to emerge from 714 

a specific area (usually a protected area). It is estimated as the (equivalent) diameter of the 715 

area divided by the mean climate velocity within that area [16]. 716 

 717 

Isoline: A line connecting points of equal value across space. Isoline, isocline, and isopleth 718 

are all synonyms. 719 

 720 

Local climate velocity: The original climate-velocity metric [16] that has two main 721 

components in its calculation: a temporal trend and a spatial gradient, both for the same 722 
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climate variable (Fig. 1A). Local climate velocity is an estimate of the instantaneous climate 723 

velocity of an isoline at a location.  724 
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Box 1. The ecological context of climate velocity 725 

Estimates of speed and direction associated with climate velocity can be conceptualized by 726 

considering air temperature on land. Because air temperature decreases predictably with 727 

elevation (~6.5°C per 1,000 m), as the climate warms, an organism at the bottom of a hill 728 

tends to move uphill or to the nearest climate-analogue area to maintain its thermal 729 

environment (i.e., short-distance dispersal). This would yield slow (low) climate velocities 730 

(directed uphill or to the closest climate analogue area), because an organism does not 731 

need to move far to maintain its thermal environment (Figure I blue arrow). Conversely, flat 732 

landscapes are more homogenous thermal environments, and an organism experiencing a 733 

warming landscape might need to migrate a long way to remain in its original thermal 734 

environment (i.e., long-distance dispersal). This would manifest as a high climate velocity 735 

directed towards the nearest occurrence of the original temperature (Figure I red arrow). 736 

 737 

Figure I. Understanding climate velocity on land. 738 

 739 

How the distribution of a species responds to a gradual change in its climate space [89] 740 

requires consideration of the relationship between a species’ physiological tolerance and 741 

range dynamics. This can be conceptualized in two ways: a representation of a species’ 742 

performance curve across a latitudinal gradient (Figure IIA), and a geographical 743 

representation of species’ distribution across a latitudinal gradient (Figure IIB). As climate 744 

warms, the initial location of the thermal performance curve will shift in space towards cooler 745 

environments, commonly higher latitudes (Fig. IIA). This shift in climate, which can be 746 

represented by climate velocity, will tend to cause geographic range shifts in species’ 747 

distribution (i.e., range expansions or contractions of local populations), as species maintain 748 

their original thermal environment (Fig. IIB). 749 

 750 

Figure II. (A) Simple bell-shaped curve for the relationship between species distribution and 751 

performance (probability of occurrence) across a latitudinal gradient under climate change. 752 
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(B) The distribution of a species showing separate populations (dark circles) across a 753 

latitudinal gradient at two times. Local population contractions and expansions are observed 754 

at each range edge at time t2. 755 

  756 
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Box 2. Caveats associated with climate velocity 757 

Climate velocity is not species movement. When discussing climate velocity, it is 758 

sometimes easy to fall into the trap of making unsupported claims about species movement. 759 

A range-edge might be more likely to move if it is near the species’ thermal maximum, but 760 

other responses to climate change are possible, including behavioural modification and 761 

genetic selection, which are more important in species with limited capacity to disperse. 762 

 763 

The fractional nature of the local climate velocity metric can be misleading. Because 764 

local climate velocity is the ratio of the temporal trend over the spatial gradient in climate, 765 

small and biologically irrelevant temporal trends over vanishingly small spatial gradients can 766 

lead to high local climate velocities. Imagine two different locations on the Earth’s surface, 767 

one of which warms by 0.1°C over a given time, and the other by 1°C over the corresponding 768 

period. Further imagine that tracking the 0.1°C change experienced at the first location 769 

requires moving 100 km, while tracking the 1°C change at the second location requires 770 

moving 50 km. The first location has twice the climate velocity of the second, but it ignores 771 

the magnitude of change at the location itself, which can sometimes be a better index of the 772 

need for a range shift. 773 

 774 

Climate velocity currently has no standard measure of uncertainty. There are many 775 

potential sources of uncertainty in estimates of climate velocity that are usually 776 

unacknowledged. These include (but are not limited to): (a) error in the gridded climate 777 

metrics that affect estimates of spatial gradient and temporal trend in the climate variable, 778 

and (b) variability both within individual climate projections (model runs) and among climate 779 

projections (different general circulation models and representative concentration 780 

pathways). Schliep et al. [90] go beyond the conventional finite-difference approach to 781 

climate velocity explained here by modelling temperature (as an example of a climate 782 

variable) as a function of both space and time within a stochastic Bayesian framework. This 783 

allows the quantification of variability associated with simultaneous estimates of spatial 784 
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gradients and temporal trends in temperature (i.e., uncertainty source (a) above). Although 785 

this process is numerically complex and computationally demanding, it is an important first 786 

step in quantifying uncertainty. Accounting for remaining sources of uncertainty require 787 

further research. 788 

 789 

Climate velocity does not include biological information. In its simplest form, climate 790 

velocity does not include biological information such as dispersal potential of species, 791 

landscape permeability, habitat suitability, or species interactions. This lack of biological 792 

information means that climate velocities are general; any increase in biological realism 793 

reduces this generality (see Section 1. Tailoring climate velocity to be more biologically 794 

meaningful). 795 

  796 
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Box 3. Methodological considerations when applying climate velocity 797 

Which environmental variables? 798 

Most analyses of climate velocity have used temperature, as it influences species’ 799 

distributions on land, in freshwater, and in the ocean. Temperature is a particularly strong 800 

environmental driver in the ocean because it is correlated with nutrient availability, thereby 801 

also controlling system structure and function [14]. But climate velocity can be applied to 802 

any environmental variable. For example, on land, climate-velocity analyses have often 803 

included rainfall because the distribution and productivity of plant communities is regulated 804 

by water availability.  805 

 806 

When applying climate velocity to a new environmental variable, one should consider the 807 

functional relationship between the environmental driver and its biological response. Climate 808 

velocity might have ecological relevance for a variable where the relationship with biological 809 

performance is symmetrical (Box 1), but might not if it is a step function. For example, most 810 

marine life cannot survive oxygen concentrations <2 mg.l-1, and tracking this “threshold” 811 

oxygen isoline might be more informative than estimating climate velocity for all isotherms, 812 

most of which are not ecologically relevant. Technically this is just the analogue velocity of 813 

a single isoline. 814 

 815 

Finally, most environmental variables are represented in climate-velocity analyses using 816 

summary statistics, and their selection warrants careful consideration. For example, annual 817 

mean values might better predict shifts over the entire species’ ranges, while extreme values 818 

might be more appropriate at range edges. Similarly, bottom temperatures are more 819 

appropriate than surface temperatures for bottom-dwelling marine species [21]. The often 820 

unacknowledged uncertainties associated with data products should also be considered 821 

(Box 2). 822 

 823 

What time scales? 824 
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Climate velocity is best suited to studies of climate-change impacts, which by definition, 825 

implies time scales of decades or longer. 826 

 827 

What space scales? 828 

Climate velocity has been applied to gridded environmental data at spatial scales from ~1 829 

km to ~110 km. On land, most applications have used a fine spatial resolution (e.g., a few 830 

kilometres [26], [32]), reflecting the importance of terrain on microclimates and organism 831 

dispersal [29]. By contrast, analyses in the ocean have used a coarser spatial resolution 832 

(e.g., a hundred kilometres), not only because fine-scale data are not always available, but 833 

because there are fewer dispersal barriers [91] so organisms disperse further, and because 834 

microclimates might be less important [92]. However, shallow-water and seafloor 835 

communities are structured more by biological than environmental processes [93], 836 

suggesting the need for finer-scale analyses. It might be desirable in some instances to 837 

match the spatial resolution to climate turnover, so that the spatial resolution might be finer 838 

around mountains than plains, and coastally than in the open ocean. Irrespective, coarser 839 

spatial resolution leads to greater climate velocity because it averages over fine-scale 840 

variation [32]. 841 

 842 

Combining environmental variables? 843 

Climate velocity has usually been applied to an individual variable. When considering 844 

multiple variables (e.g., temperature and rainfall), these have generally been treated 845 

separately as independent drivers of species movement [17, 26, 32]. However, Hamann et 846 

al. [28] developed a multivariate approach to climate-analogue velocity based on a Principal 847 

Components Analysis of multiple metrics (e.g., minimum, maximum, mean) of temperature 848 

and rainfall. This approach has the benefit of considering the multivariate movement of 849 

climate space, but at the cost of complicating interpretation. Moreover, multivariate climate-850 

analogue velocities are likely to be higher than corresponding univariate estimates [28, 34], 851 

since finding similar multivariate climates will often require a large search radius (i.e., similar 852 
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rainfall is likely to be found closer than similar rainfall and temperature combined). The 853 

magnitude of this effect can be mitigated by relaxing assumptions defining analogue 854 

climates (e.g., expanding bandwidth to incorporate more climate variability [67]). Multivariate 855 

local climate velocity could be calculated by applying vector algebra to multiple univariate 856 

estimates of local climate velocity. For example, if there were two univariate climate 857 

velocities (e.g., temperature and rainfall) in opposing directions and equal in magnitude they 858 

would cancel. However, in general, the new multivariate climate space would not be the 859 

same as the original. This divergence in angles of such univariate estimates can be 860 

considered as a measure of climate stress on an organism and has provided insight into 861 

potential ecological responses to multivariate climate change [30]. 862 

  863 
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Box 4. A case study applying climate velocity, residence time and climate-velocity 864 

trajectories to the UK marine protected area network 865 

To illustrate the utility of climate velocity to networks of marine protected areas (MPA), we 866 

examine climate conditions across the network in UK territorial waters for past (1960-2009) 867 

and future (2006-2050) climate at 1° spatial resolution. Past and future local climate 868 

velocities were calculated, respectively, from annual mean sea surface temperatures (SSTs) 869 

from the Hadley Centre data set HadISST 1.1 and a multi-model ensemble for the IPCC 870 

RCP8.5 climate pathway [94]. Climate velocities were calculated for both periods as cell 871 

ratios of the local temporal trend (slope from the linear regression of annual SST over time) 872 

to the (3x3) spatial gradient based on average annual mean SSTs [18]. Local climate 873 

velocity associated with the MPA network over the past 50 years in UK waters shows strong 874 

contrasts between western and eastern halves of the UK Exclusive Economic Zone (Figure 875 

IA). However, both sides are projected to have similar magnitudes of local climate velocity 876 

by 2050, because of a general decrease in local climate velocity in the North Sea and local 877 

increases on the western side (Figure IB). The large spatial variability in local climate velocity 878 

will require species responding to climate change to shift their distribution up to 10 times 879 

faster or slower depending on the location of the MPA within the network. 880 

 881 

On the other hand, climate residence time shows high variation across the UK MPA network 882 

for both periods (Figure IC,D). MPAs along the west coast of Scotland are predicted to 883 

register largest reductions in residence time, while those within the Irish Sea and north of 884 

the Strait of Dover are predicted to increase. Reduction of residence time suggests reduced 885 

viability of a protected area as the rate of change in conditions within the area increases, 886 

potentially compromising local adaptation to climate change, especially of range-restricted 887 

species, while facilitating the establishment of immigrant and invasive species [95]. 888 

 889 

Climate-velocity trajectories over the past 50 years are generally directed poleward along 890 

the English coast (Figure IE), suggesting that the coastal network currently exhibits good 891 
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connectivity (MPAs in the north should receive climate migrants from those in the south as 892 

temperature warms). However, climate-velocity trajectories until 2050, as projected from 893 

RCP8.5, show a different pattern on the east coast of the UK, where thermal niches move 894 

offshore into the North Sea towards Scandinavia (Figure IF). This scenario suggests that 895 

littoral species on this coast might be forced to adapt in situ, because they become 896 

disconnected from their current thermal niches. This could have management implications, 897 

especially for smaller protected areas on the east coast of Scotland, where residence times 898 

will continue to be short. Here, the possibility of assisted migration and translocations of 899 

species of concern might be considered. 900 

 901 

Figure I. A case study illustrating the application of (A, B) local climate velocity, (C, D) 902 

residence time, and (E, F) climate trajectories. (A, C, E) past (1960-2009) and (B, D, F) 903 

future (2006-2050) climate conditions across the MPA network in UK territorial waters 904 

(dashed line). For each MPA centroid (points on the maps), we show the expected thermal 905 

shift by projecting its SST in time following the speed and direction of local climate velocities 906 

(VoCC) at each cell. 907 

 908 


