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 Once sentence summary  

Under oxygen limiting conditions AOX can reduce nitrite to NO thereby it can drive 

Hb-NO cycle to increase energy efficiency 
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Abstract 

Alternative oxidase (AOX) is an integral part of the mitochondrial electron transport 

and can prevent reactive oxygen species (ROS) and nitric oxide (NO) production 

under non-stressed, normoxic conditions. Here we assessed the roles of AOX by 

imposing stress under normoxia in comparison to hypoxic conditions using AOX over 

expressing (AOX OE) and anti-sense (AOX AS) transgenic Arabidopsis seedlings 

and roots. Under normoxic conditions stress was induced with the defence elicitor 

flagellin (flg22). AOX OE reduced NO production whilst this was increased in AOX 

AS. Moreover AOX AS also exhibited an increase in superoxide and therefore 

peroxynitrite, tyrosine nitration suggesting that scavenging of NO by AOX can 

prevent toxic peroxynitrite formation under normoxia. In contrast, during hypoxia 

interestingly we found that AOX is a generator of NO. Thus, the NO produced during 

hypoxia, was enhanced in AOX OE and suppressed in AOX AS.  Additionally, 

treatment of WT or AOX OE with the AOX inhibitor SHAM inhibited hypoxic NO 

production. The enhanced levels of NO correlated with expression of non-symbiotic 

haemoglobin, increased NR activity and ATP production. The ATP generation was 

suppressed in nia1,2 mutant and non symbiotic haemoglobin antisense line treated 

with SHAM. Taken together these results suggest that hypoxic NO generation 

mediated by AOX has a discrete role by feeding into the haemoglobin-NO cycle to 

drive energy efficiency under conditions of low oxygen tension.  

 

Graphical abstract 
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Abbreviations 

Alternative oxidase 1a (AOX1a); Aminophenyl fluorescein (APF); cycle threshold 

(CT); 4-amino-5-methylamino 2ˈ ,7ˈ -difluorofluorescein diacetate (DAF-FM-DA); 

3,3-diaminobenzidine (DAB); flagellin (flg22); 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES); nitric oxide (NO); nitroblue tetrazolium 

(NBT); peroxynitrite (ONOO-); phenylmethylsulfonyl fluoride (PMSF); 

salicylhydroxamic acid (SHAM); tris-buffered saline (TBS).  

Keywords: alternative oxidase, nitric oxide, peroxynitrite, superoxide, energy 

efficiency 

 

1. Introduction 
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Mitochondria are responsible for generating most of the ATP by using proton motive 

force generated via electron transport chain (ETC) during the transfer of electrons 

from reducing equivalents to oxygen. As well as the usual terminal oxidase, 

cytochrome c oxidase (COX), plant mitochondria also contain an alternative oxidase 

(AOX). The AOX accepts electrons from ubiquinone pool and thus bypasses the 

later proton pumping steps in the electron transport chain, leading to reduced 

generation of ATP. Electron transfer via AOX can reduce production of ROS, 

contributing to the prevention of oxidative stress [1].  

Nitric oxide (NO) production is a recently emerged feature of mitochondria via 

mechanisms that is still under investigation [2]. More widely, NO is synthesised by 

several reductive and oxidative pathways in plants. Cytosolic nitrate reductase 

(cNR), plasma membrane-bound nitrite reductase (PM NI-NOR) and mitochondrial 

electron transport produce NO usually from the reduction of NO2
-. However, nitric 

oxide synthase-like activity, polyamine and hydroxylamine mediated NO pathways 

are oxidative in nature [3]. Plant mitochondria produce very high levels of NO (in the 

range 1-20 nmoles/gFW/hr) only under hypoxic conditions using nitrite as a terminal 

electron acceptor [4]. This, subcellular location of NO synthesis in mitochondria, is 

important for its involvement in cell death, hypoxia tolerance and also processes 

such as retrograde signalling [2]. The NO production is sensitive to myxothiazol 

(Myxo) and cyanide which inhibit complex III and COX respectively. The Km (nitrite) 

for this nitrite:NO reductase reaction is 175 μM and Ki 0.05% O2 for NO production 

[4] suggesting NO production takes place under very low oxygen conditions. Alber et 

al.[5] defined a novel mitochondrial NO which proved that NO2
- was being reduced at 

the ubiquinol oxidation centre (P, Qo site). 
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It is also the case that mitochondria are scavengers of NO [6] particularly under 

normoxic conditions [7]. Transgenic manipulation of AOX revealed a reciprocal 

relationship between AOX protein expression and reactive oxygen species (ROS) 

generation in cell cultures [8] and NO in leaves [7] of tobacco. Cvetkovska & 

Vanlerberghe, [7] found that antisense tobacco with reduced levels of AOX had 

elevated levels of O2
- and NO suggesting that the AOX respiratory pathway 

decreases leakage from the ETC. AOX reduces electron flow through complexes III 

and IV (COX) and thus decreases the leakage of electrons to nitrite and suppressed 

the accumulation of NO. 

Scavenging of NO is very important as excess of NO can react rapidly with proteins 

and other free radicals, leading to the formation of S-nitrosylated proteins and other 

compounds, tyrosine-nitrated proteins and the production of nitrite and peroxynitrite 

(ONOO-). Mitochondrially produced NO can also be scavenged by other systems, 

e.g. NO diffusion into the cytosol leads to the conversion of NO to nitrate by cytosolic 

non-symbiotic haemoglobin [9]. Nitrate is then converted to nitrite by nitrate 

reductase, and the whole sequence of reactions is known as the haemoglobin/nitric 

oxide (Hb/NO) cycle. This cycle can lead to limited ATP generation [10].  

The interactions between AOX and NO production have also been investigated. 

Cvetkovska & Vanlerberghe [7] demonstrated that transgenic tobacco plants that 

lack AOX exhibited increased levels of O2
- and NO. This led the authors to conclude 

that the AOX respiratory pathway prevented ROS and NO production by dampening 

electron flow from the ETC to oxygen or nitrite at COX. This suggests that AOX can 

prevent excess NO production under normoxia, but the role of AOX under stress 

conditions is not yet known. Alber et al. [5] have shown that AOX contributed to net 

rates of NO generated by the electron transport chain.  It is therefore interesting that 
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NO is an inducer for AOX [11]. This suggests a mutually regulatory mechanism 

whereby inducing AOX, NO can control both ROS and NO homeostasis. This 

mechanism is likely to be especially useful when NO and ROS levels increase under 

stress conditions. For instance, Huang et al. [12] found that AOX induction takes 

place in the presence of the bacterial elicitor harpin due to NO. In another study (Fu 

et al.) [13] showed AOX induction by NO protected plants from tobacco mosaic virus 

(TMV). There is clear evidence that mitochondrially produced NO can also 

nitrosylate proteins such as glycine decarboxylase (GDC) and thus promote cell 

death by countering AOX mediated protection [14]. 

In further considering the interactions between AOX and NO, it is clear that this 

needs to be further characterised with stress under normoxic conditions and equally, 

under hypoxic conditions. This latter situation is of  great interest due to its 

occurrence at  low oxygen tensions which is known to produce very high levels of 

NO and is seldom considered in investigations focusing on AOX. In the present 

study, we confirmed the AOX role in scavenging of NO and ROS in stress elicited 

under normoxia. However, under hypoxia we demonstrate a novel role for AOX in 

the production of NO that is linked to haemoglobin-NO cycle to increase energy 

efficiency. We further found that higher levels of NO production mediated by AOX 

under hypoxia does not contribute to toxic peroxynitrite formation. 

 

2. Materials and methods 

Plant materials and growth conditions 

Arabidopsis thaliana (AOX OE and AOX AS and NR null mutant nia 1,2) lines were 

obtained from the Nottingham Arabidopsis Stock Centre (UK), N6591,N6707,N 2356 
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respectively. The Silencing line of nHb1 was described in [31].      Seeds were 

surface sterilized using 75% ethanol and 0.1% triton X-100 followed by washing with 

100% ethanol. Seeds were allowed to air dry and grown on half-MS agar plates 

(supplemented with 1.5% sucrose). Initially, plates were kept at 4 °C for two days for 

stratification and later transferred to a growth chamber. The growth chamber had an 

8h light/ 16 h dark photoperiod with temperatures of 24/20 °C, in each respective 

light regime. The light intensity was 50-100 µmol m-2s-1. 

 

Treatments 

Two weeks old plants were used for treatments. For normoxia, plants were sampled 

directly from growth chamber. For hypoxia treatment, plants were subjected to 0.4% 

oxygen in a closed container (BiOxia H-800, Mumbai India) for 6 h..  Additionally, to 

induce the NO production under normoxic condition, 2.5 µM flg22 were directly 

added to seedlings and incubated for 10 min at room temperature. To inhibit the 

AOX pathway, seedlings were treated with 2.5 mM salicylhydroxamic acid (SHAM). 

After treatment, samples were either immediately used for fluorescence studies, or 

alternatively tissues were stored at -80 °C for other experiments. 

Measurements of NO, ONOO-, O2
- and H2O2

- 

For NO and ONOO- detection, roots were incubated in 10 mM HEPES pH 7.2 

containing 10 µM DAF-FM or 10 µM APF dye respectively, for 20 min at room 

temperature under dark conditions. The unbound dye was washed away with 10 mM 

HEPES pH 7.2 buffer. The images were taken in fluorescence microscope using λ488 

excitation and λ500-530 emission wavelength and 2 s light exposure and 20X zoom. . 

For APF quantification 3-4 seedlings weighing total 25 mg were incubated with 10 
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µM APF for 20 min in dark following treatments. Seedlings were crushed with micro 

pestle in 500 µl of extraction buffer that containing 50 mM HEPES, pH 7.2 and 

centrifuged at 13000g for 10 min and fluorescence from supernatant was quantified 

by microplate reader (Polar Star Omega, BMG Labtech, Germany) at λ488 excitation 

and λ500-530 emission. The plate was shaken before each measurement. 

Peroxynitrite-related fluorescence was calculated by subtracting the auto 

fluorescence value of seedlings (not incubated with APF dye) from total fluorescence 

of APF treated seedlings. Three biological and 3 technical replicate were used for 

each treatment. 

 For O2
- detection, roots were incubated with 0.1% NBT solution [40] for 24 h 

at room temperature under dark conditions. For H2O2 detection, roots were 

incubated with 0.1% DAB solution [40] for 2 h at room temperature under dark 

condition. The unbound dye was washed away with 70% ethanol and stored in the 

same until imaged. Images were taken under bright field using 20X zoom and 83 ms 

light exposure. The extent of staining was quantified using Image J software for 20 

plants per treatment. 

RNA isolation 

Total RNA was isolated from seedlings using Trizol reagent according to 

manufacturer’s instructions (Invitrogen). Briefly, 100 mg seedlings were ground in 

liquid nitrogen as fine powder and 1 ml of TRI reagent was added. Subsequently, the 

mixture was vortexed and incubated for 10 min at 25 °C. Thereafter, 200 µl of 

chloroform were added and incubated for 5 min at 25 °C. After vortexing, samples 

were centrifuged at 12,000×g for 15 min at 4 °C. The upper aqueous phase 

containing total RNA was transferred into a fresh tube containing an equal volume of 
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isopropanol. Mixtures were incubated for 1h  at -80 °C followed by centrifugation as 

described above. Supernatants were discarded and the precipitated RNA pellets 

were washed in 1 ml of 75% ethanol at 7500×g for 5 min at 4 °C. The resulting 

pellets were allowed to air-dry for 10-15 min and then resuspended in sterile DEPC-

treated water The obtained RNA was treated with RNase-free DNase I (1U/µg RNA) 

(Promega) and incubated for 30 min at 30 °C. Thereafter, 1 µl of RQ1DNase solution 

was added to terminate the reaction followed by incubating for 10 min at 65 °C to 

inactivate the DNase. 

Real time PCR 

Total RNA equivalent to 2 µg was taken for cDNA synthesis and synthesized 

according to the kit manufacturer's (Applied Biosystem) instructions. Real-time PCR 

was carried out at 95 °C for 20 s followed by 40 cycles of denaturation at 95 °C for 3 

s and annealing/extension at 60 °C for 30 s using 7900 Fast Real-Time PCR 

machine (Applied Biosystems). The 18S rRNA was used as a housekeeping gene 

for normalisation purposes. Cycle threshold (CT) values were obtained from the 

exponential phase of PCR amplification. The comparative CT method was used to 

analyze the results [41]. In this method, genes of interest (GOI) were normalized 

against 18S rRNA (housekeeping gene) expression, generating a ΔCT value (ΔCT = 

GOI CT−18S rRNA CT). The relative expression was then calculated according to 

the equation 2−ΔΔCT and normoxia was used as a calibrator. Primer details are given 

in SupplimentaryTable 1. 

SDS-PAGE and western blotting 

Total protein was extracted from frozen tissues. Extracts were prepared by grinding 

tissue in extraction buffer (50 mM potassium phosphate buffer pH 7.5 and 1 mM 
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phenylmethylsulfonyl fluoride) at 4°C. Homogenate was centrifuged at 14,000×g for 

15 min at 4°C. The supernatant was recovered, and total protein was estimated 

using the Bradford protein assay. 

Samples were mixed with 4X SDS loading dye and boiled for 3-5 min. Total protein 

(10, 25 and 50 µg) was separated on 10% SDS-PAGE [42]. Thereafter, protein was 

transferred to nitrocellulose membranes using iBlot® 2 dry blotting system (Life 

Technologies) at 20V for 7 min. To block the protein, membrane was incubated in a 

blocking buffer (1X TBS with 1% nonfat dry milk) for 2 h at 25 °C and then washed 

three times (5 min each) in TBST (0.1% Tween 20 in 1X TBS). The membrane was 

incubated overnight at 4 °C with primary antibody i.e. anti-AOX1a (1:1000 dilution, 

Agrisera) or against 3-nitrotyrosine (1:2000 dilution, Molecular Probes). Next, the 

membrane was washed three times (10 min each) in TBST followed by incubated for 

2 h with goat anti-rabbit IgG conjugated to horseradish peroxidase (1:10,000 dilution, 

Bangalore GeNeiTM). After that membrane was washed three times in TBST for 10 

min each. The blot was developed using the SuperSignal® West Pico 

chemiluminescent substrate (Thermo Scientific) and visualized in ChemiDoc (Bio-

Rad). Band intensity was quantified by using Image J program. 

ATP measurement 

Approximately 50 mg tissue was grinded in 0.5 ml of 10% w/v TCA and centrifuged 

at 10,000×g for 5 min at 4°C. The supernatant was collected and neutralized with 

10N KOH. The sample was centrifuged at 10,000×g for 5 min at 4°C. Supernatant 

was recovered and diluted 1:10 with the buffer provided in ATP determination kit, 

(Molecular Probes).  Diluted sample (equivalent to 0.25 µg protein) was added to 

100 µl of reaction mixture and luminescence was recorded for 3 min (ATP 
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determination kit, Molecular Probe). ATP standard (1-5 nM) was run every time 

along with unknown samples. 

Nitrate reductase activity 

NR activity was measured according to [15] with minor modifications. The frozen 

tissue was ground in liquid nitrogen and extracted in 0.5 ml of extraction buffer (100 

mM HEPES pH 7.6, 3.5 mM β-mercaptoethanol, 15 mM MgCl2, 0.5% PVP, 0.5% 

BSA and 0.3% Triton X-100). The homogenate was centrifuged at 14,000×g for 10 

min at 4 °C. The supernatant was recovered and used directly in the assay. The 

supernatant equivalent to 100 µg protein was added to assay buffer (100 mM 

HEPES pH 7.6, 1 mM DTT, 15 mM MgCl2, 5 mM KNO3 and 0.2 mM NADH) in a final 

volume of 1ml. After 10 min, the reaction was stopped by adding 125 µl of zinc 

acetate (0.5M). Afterwards, 1 ml of Griess reagent (1% sulphanilamide, 0.1% 

naphthylethylene dihydrochloride) was added and incubated for 10 min at 25 °C. The 

absorbance was read at 546 nm. 0.1 µM and 10 µM KNO2 was used as standard. 

Hypoxia tolerance assay 

To check the hypoxia tolerance, 20 seeds from each line were germinated on vertical 

MS plates. After 9 day old seedlings were subjected to 0.4% O2 for 24 h under dark 

conditions. The plates were then transferred to light with normal growth conditions to 

examine their recovery from hypoxia. After a week the phenotypes of surviving and 

dead plants were assessed.  

3. Results 

Induction of AOX under normoxia and hypoxia 
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Cvetkovska & Vanlerberghe [7] indicated that lack of AOX increased levels of 

superoxide and NO. However, it is not known whether AOX can prevent NO under 

stress conditions which are not associated with cell death. Therefore we compared 

normoxic stress imposed by the application of the pathogen-associated molecular 

pattern (PAMP) flagellin (flg22) to be compared with stress-linked to hypoxia.  

Initially, we sought to assess the effect of each form of stress on AOX protein 

accumulation. We treated WT Col-0 seedlings with flg22 for 10 min under normoxic 

conditions. flg22 led to a 16 fold induction of AOX1A transcript levels and 9 fold 

increase in protein levels. We then tested the impact of hypoxia on induction of AOX. 

For this purpose seedlings were flushed continuously for 6 hours with 0.4% oxygen. 

A seven-fold induction in AOX1A transcript levels and 11 fold increase protein levels 

were observed in response to hypoxia treatment (Fig 1). Taken together these 

results suggesting that AOX induction occurs in response to flg22 treatment and 

hypoxia.  

AOX is a scavenger of NO under normoxia in response to flg 22 treatment 

To measure the impact on AOX on NO elicited with flg22 under normoxia we 

employed the fluorescent reporter, 4-amino-5-methylamino 2ˈ ,7ˈ -

difluorofluorescein diacetate (DAF-FM-DA) (Fig. 2). Under normoxic conditions WT 

Col-0 roots generated a small amount of NO whereas slightly reduced levels (but not 

significantly compared to WT) of NO was observed in AOX OE roots. However, a 

significant increase in NO levels were observed in AS roots, suggesting that AOX 

can scavenge NO under normoxic conditions. In response to flg22 we observed 

increased NO generation.  This was significantly increased in AOX AS lines but 
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tended towards a decrease in AOX OE. This suggested a negative correlation 

between AOX and NO in flg22 induction. 

AOX can reduce superoxide, hydrogen peroxide and peroxynitrite in response 

to flg22 treatment 

AOX can prevent over reduction of ubiqunol pool thereby it can prevent excess 

formation of O2
-. Excess of NO can react with O2

- to form ONOO-. As AOX prevents 

excess of NO (Fig. 2) it can modulate the formation of ONOO-. Hence, parallel to our 

investigations of flg22-elciited NO effects, we assess its impact on O2
- and ONOO-. 

For this purpose Nitro blue tetrazolium (NBT) staining was used to visualize O2
- 

levels (Fig. 3).  Unchallenged roots of WT and AOX AS line produced slightly higher 

amount of superoxide under normoxic conditions than AOX OE roots (Fig. 3A). In 

response to flg22, an increase in O2
- was found in WT and AOX AS than AOX OE 

roots. This indicated that AOX can contribute for scavenging of flg22-elicited O2
- 

production.  

Given this role for NO, we sought to confirm that AOX played a role in controlling 

ONOO-, therefore, its levels were measured by Aminophenyl fluorescein (APF). 

Untreated roots of WT, AOX OE and AS produced very low levels of ONOO-, but 

upon application of flg22, APF fluorescence increased approximately 3 fold in WT 

and 5 fold in AS line (Fig 3B). AOX OE produced very low levels of ONOO- 

suggesting that AOX can modulate ONOO-, most likely though suppression of both 

NO (Fig. 2) and O2
- (Fig. 3A). ONOO- is a strong nitrating agent, hence we checked 

tyrosine nitration in responses to flg22 (Fig. 3C). Under control conditions the all the 

genotypes displayed some extent of tyrosine nitration. Upon flg22 treatment Tyr-

nitration has increased approximately 2.5 fold in WT, whereas a significant decrease 
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in Try-nitration was observed on AOX OE. Taken together, these results were 

consistent with AOX modulating NO, O2
- , ONOO- and Try-nitration. 

AOX is producer of nitric oxide under hypoxic condition 

Under hypoxic condition plant generate significant amount of NO [15], hence we 

tested how AOX could impact on NO generated during hypoxia. Seedlings were 

exposed to 0.4% oxygen for 6 hours immediately afterwards were incubated with 

DAF-FMDA and the relative fluorescence was assessed (Fig. 4) 

Under normoxic conditions roots produced very little NO and this background NO 

production appeared to be further reduced in AOX OE roots. With AOX AS there was 

clear increase in NO levels compared to WT roots (Fig. 4A). 

With hypoxia treatment, NO production in roots was elevated beyond anything 

detected under normoxic conditions (Fig 4A).  In AOX OE, NO generation appeared 

to be more than that seen in WT roots but with AOX AS this was clearly reduced.. In 

order to confirm the possibility of AOX in generation of NO, seedlings were pre 

incubated with AOX inhibitor salicylhydroxamic acid (SHAM) for an hour and then 

these seedlings were exposed to hypoxia for 6 h and the NO production was 

measured using DAF-FM-DA. SHAM clearly inhibited hypoxia induced NO. Taken 

together our transgenic and pharmacological approaches clearly indicate that AOX is 

a generator of NO under hypoxia.  

Higher AOX mediated NO production under hypoxia does not contribute to 

peroxynitrite formation 

Given that AOX mediates increased NO production in response to hypoxia, we 

tested if O2
- production and therefore ONOO- could be similarly influenced (Fig 5A). 
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In WT roots, the imposition of hypoxia did not appear to greatly increase O2
- in 

compared to normoxic conditions. However, with the AOX OE line, there appear to 

be slight increase in O2
- generation with hypoxia. The generation of O2

- was much 

increased in the AOX AS in hypoxic over normoxic conditions. It should be noted that 

this is the inverse of pattern NO generation seen in Fig 4.   

Analysis of ONOO- levels by APF fluorescence revealed that hypoxia leads to 

increased production of ONOO-.  Increased ONOO- was prominent in AOX AS and 

WT lines but AOX OE produced reduced levels of ONOO- (Fig 5B) despite of very 

high level of NO production (Fig 4A&B). Analysis of tyrosine nitration also revealed 

that AOX OE has reduced tyrosine nitration (Fig 5C). Taken together these results 

suggesting that increased levels of NO under hypoxic condition does not contribute 

significant towards ONOO- production. This could arise from increased NO 

generation not being matched with elevated O2
- in hypoxia. 

NO generation via AOX leads to increased energy efficiency under hypoxia 

The AOX dependent increase in NO under hypoxia could feed into the non-symbiotic 

haemoglobin-NO cycle to contribute to the ATP generation. To test this possibility, 

we measured the expression of non-symbiotic haemoglobin 1 (nHb1) transcript 

levels in response to hypoxia. Under hypoxic conditions nHb1 expression has 

increased 180 fold in WT, 106 fold in AOX AS line where as strikingly 634 fold in the 

AOX OE line (Fig 6A). This indicated a correlation between NO and nHb1 expression 

under hypoxia (compare Fig 4A and Fig 6A). 

Other components of the haemoglobin-NO cycle, NIA1, NIA2 expression, NR activity 

and ATP production were also tested. Assessments of NIA1 expression indicated 

elevated expression in response to hypoxia but this did not significantly change 
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between WT, AOX OE and AOX AS genotypes (Fig 6B). In contrast to NIA1, the 

NIA2 expression was supressed under hypoxia but again with no significant 

difference between the WT and AOX genotypes was observed (Fig 6C). 

Since there is no change in expression of NIA1 and NIA2 between genotypes, we 

checked NR enzymatic activity. Under hypoxia a slight increase in NR activity was 

observed in WT and AS line but the OE line showed a 10-12 fold increase in NR 

activity. This suggested the active operation of Hb-NO cycle in AOX OE line and by 

implication with the increased NO seen in hypoxic WT lines.  

The active operation of an AOX augmented Hb-NO cycle needed to be confirmed 

through increased ATP production.  Measurements indicated significantly (P < 0.05) 

greater hypoxic ATP production in AOX OE over both WT and AOS-AS lines which 

did not significantly different from each other (Fig. 6E). To further confirm whether 

AOX induced NO feeds into Hb-NO cycle we checked ATP production in nia1,2 

mutant and found that this mutant has reduced ATP levels (Fig. 6E). To further 

confirm Hb-NO cycle involvement we measured ATP from non-symbiotic 

haemoglobin antisense line seedlings and found that this line has reduced ATP and 

the production of ATP was further diminished in the presence of SHAM suggesting 

that AOX mediated NO feeds into Hb-NO cycle. 

Another prediction of an AOX augmented Hb-NO cycle is that it could confer 

increased plant viability under prolonged hypoxic stress. Thus, nine-day seedlings 

were maintained under hypoxic conditions (0.4% O2) for 24 h and after a week they 

were assessed for relative viability. In the single example shown in Fig. 6G, the AOX 

OE seedlings appeared to be notably greener and therefore had a higher viability. 

This was quantified through measurements of chlorophyll content in the seedlings 
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(Fig. 6F). AOX OE seedlings had significantly (P < 0.05) higher chlorophyll content 

and additionally, this was significantly reduced in AOX AS. This latter result 

suggested reduced plant viability if the AOX augmented Hb-NO cycle is 

compromised under hypoxic conditions.  

4. Discussion 

NO has many roles in plant growth development and stress responses. Within a 

plant response to stress, it is an important signalling molecule that can confer 

tolerance [16-18] but equally can elicit programme cell death in plants [19]. One 

important mechanism through which NO can confer tolerance is via induction of AOX 

as a component of the mitochondrial ETC. 

Several lines of evidence have unambiguously shown this to be the case and linked 

these events to stress tolerance. For instance, Huang et al. [12] demonstrated that 

NO treatment of Arabidopsis suspension cells increased the capacity of alternative 

respiratory pathway. Further, addition of an AOX inhibitor leads to increase NO 

sensitivity and cell death. Thus, NO induces the AOX1a gene to counteract the 

toxicity of NO. Another study demonstrated that pre-treatment of barley seedlings 

with NO increased both AOX1 expression and antioxidant enzyme activities thereby 

conferring better growth and adaptability during arsenic stress [20].  In a biotic 

stress, inoculation of lower leaves of tomato with tobacco mosaic virus (TMV) elicited 

a rapid increase in both NO and AOX in upper uninoculated leaves. This effect was 

directly associated with conferring resistance to disease as application of KCN (an 

inhibitor of cytochrome pathway) to upper uninoculated leaves, induced AOX 

transcripts and quantum yield of photosystem II and reduced the TMV viral 

accumulation [13]. 
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These studies notwithstanding, most of these studies have not examined the roles of 

NO and AOX at sites of stress responses where the rates of NO and ROS 

production are considerable. One example of this would be the hypersensitive 

response (HR); a form of PCD associated with plant resistance to infection [19]. This 

situation has been previously explored by [21] who observed two different forms of 

HR one elicited by Pseudomonas syringae pv. (P.s.pv.) phaseolicola and another by 

P. s. pv.maculicola. P. s. pv. Maculicola elicited a substantial burst of mitochondrial 

O2
- generation with no change in AOX, whilst P.s.pv. phaseolicola induced in AOX 

and no observable O2
- generation in the mitochondria. The clear implication is that 

AOX regulates O2
- generation during some forms of HR which agreed with the 

observed role of AOX in non-stressed plants previously studied by these same 

authors [7]. However, other than influencing the relative rate of cell death, AOX did 

not affect the ultimate outcome of the interaction; the formation of a HR [21].  

In our case, we sought to focus on a component of the defence response which is 

also linked to NO and ROS, but not linked to the elicitation of cell death; so- called 

PAMP-triggered immunity (PTI) [22]. Bacterial flagellin and its conserved peptide 

flg22 is a well-characterised PAMP [23] and is known to elicit both ROS and NO 

[24,25,]. These responses to flg22 were confirmed in Arabidopsis seedlings and 

roots (Fig. 2, Fig.3).  

To examine the roles of AOX in our studies we employed the well-characterised 

Arabidopsis lines where AOX expression is suppressed by and anti-sense approach 

(AOX AS) and also where AOX was over-expressed (AOX OE) [26].  Our 

characterisation of the responses of WT, AOX AS and AOX OE to flg22 

demonstrated an inverse correlation between the rates of NO and O2
- generation 
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and AOX expression. This accorded with well-established role of AOX in 

suppressing NO and ROS under normoxia in unstressed plants [21]. 

Beyond this we examined the potential role of AOX influenced events following flg22 

elicitation. Flg22 is an effective inducer of AOX expression (Fig. 1) and it is likely that 

one of its role is to dampen ROS, NO accumulation (Fig. 2 and Fig 3) and thereby 

reduce ONOO- generation (Fig. 3B) and tyrosine nitration (Fig. 3C). This could be 

important in maintaining plant cell viability during PTI.  In this context, it is relevant 

that increasing tyrosine nitration has been observed with the senescence form of cell 

death [27]. Many nitrated proteins were detected in this study analysis of these 

proteins would give new insights for the role of these nitrated proteins under hypoxia 

and reoxygenation. We also investigated previously unexplored links between 

hypoxia, NO and AOX. Previously it was demonstrated that Complex III and 

cytochrome c oxidase are the sites for NO production [4,15] but the contribution of 

AOX in hypoxic/anoxic NO was largely ignored. Most plants need to respond to 

hypoxic stress at various points in their lifecycles. Mostly obviously, heavy rain or 

flooding will result in soil water logging will limit the ability of oxygen to diffuse to the 

roots [28]. Plants may employ one of many physiological responses to submergence 

including hyponasty, elongation of floral stems, petioles or internodes or even the 

formation of aerial roots [29].  Many of the mechanisms underlying these responses 

to low oxygen have been extensively characterised [30] and some have been shown 

to be influenced by NO [31]. Given this background, it was entirely appropriate that 

we explored hypoxic NO, AOX effects in roots. This stated, hypoxic responses are 

also features of normal seed development [32].  

Firstly, we demonstrated that AOX transcript and protein are clearly upregulated 

under hypoxia in seedlings (Fig 1) and roots (Supplementary Figure 1). Our study 
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explored several roles for this increased AOX using the transgenic AOX lines. As we 

focused on roots, we established that the patterns of AOX expression in the lines 

were similar to those reported in leaves (Supplementary Figure 1). We initially 

explored that AOX could modulate hypoxic ROS generation and therefore the plant 

post-stress survival [33]. Our analyses demonstrated increased O2
- (Fig 5) in 

response to hypoxic treatment and these are suppressed by AOX, as noted in 

normoxic situations.  However, our important observation as that under hypoxia 

results providing AOX itself can produce NO, whereas same protein scavenges NO 

under normoxia. These data clearly indicated a discrete role for AOX under hypoxia. 

Interestingly, hypoxic roles for AOX did not extent to H2O2 which was also elevated 

(Supplementary Fig. 2). This indicated non-AOX mediated forms of ROS generation 

during limited O2 supply.  

The role of the NO could be to inhibit aconitase increased citrate which can provide 

carbon skeletons for amino acid synthesis which is important for hypoxic survival 

[11]. Equally, the role of AOX increasing NO (O2
- + NO è ONOO-) could act to 

reduce the formation of ONOO-. Our results show that AOX OE line has increased 

levels of NO (Fig 4) yet reduced levels of ONOO- and tyrosine nitration (Fig 5) 

suggesting that in the presence of AOX toxic ONOO- formation can be reduced 

either due to scavenging of excess levels of O2
- by AOX. A complementary 

hypothesis could be that there could be competition for NO between nHb1 and O2
- 

for the formation of ONOO-. This would immediately imply that and AOX augmented 

Hb-NO cycle is important under hypoxia, possibly preventing the formation of ONOO- 

but also contributing to ATP generation. Further, NO can inhibit COX but AOX is not 

sensitive to NO. Thus, if excess of NO produced under hypoxic conditions it can 
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prevent COX to function. Under such conditions AOX induction can drive anaerobic 

ATP synthesis [34].  

Our subsequent analyses explored the possibility of an AOX augmented Hb-NO 

cycle in hypoxia (Fig. 7). We found increases in each of the key players in this cycle 

under hypoxia.  Thus, AOX dependent generation of NO was demonstrated using 

transgenic lines and also via inhibition using SHAM (Fig. 4). This should feed into a 

NO oxidation step mediated by nHb. 

Other authors have previously demonstrated that NO and hypoxia induces nHb1 [9]. 

In this study, the increased expression of nHb1 in the AOX OE line (Fig. 6A) 

demonstrated how AOX generated NO fed into nHb1. The NO3
- product should then 

be reduced back to NO through the combined action nitrate NR and nitrite: NO 

reductase (Ni:NOR) reactions. In our study we found increased NR enzymatic 

activity in response to hypoxia (Fig 6D) although but we found no significant change 

in NIA1 expression in WT, AOX AS and AOXOE lines.  This suggests that hypoxic 

NR activity was being modified through established post-translation modifications 

[35] such as phosphorylation or interactions with 14-3-3 proteins [36]. It could be a 

direct effect of NO itself as this can stimulate the activity of NR in plant roots [37]. In 

contrast to NIA1, the NIA2 transcript levels were supressed under hypoxia via AOX 

and therefore mostly likely NO independent mechanisms (Fig, 6C).  Therefore, our 

observed increase in NR activity (Fig. 6D) could be a mediated by the NIA1 a NR 

product. NIA2 encodes the NR form which contributes around 90 % of a plants NR 

activity [38], so its reduced expression could imply that the plants nitrate assimilatory 

capacity would affected. This is currently being assessed in our group.  
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The main predication of our model is that AOX would contribute to increased ATP 

generation during hypoxia.  This was suggested from our direct ATP measurements 

in WT and the AOX transgenic lines, nia 1,2 mutant and nHb1 silencing line (Fig. 

6E). Further, AOX and presumably, at least in part, in the augmented Hb/NO cycle 

clearly contributes to increased tolerance to hypoxia (Fig. 6F&G).  

Taken together our results demonstrate a novel role of AOX in NO metabolism in 

plants under hypoxia. Previously, it was thought AOX contributed to energetically 

wasteful processes but in hypoxia AOX itself can contribute indirectly for increasing 

energy efficiency by reduction of nitrite to NO and pushing Hb-NO cycle.  Much 

research effort is focused on the derivation of flood tolerant varieties of; for example, 

rice. Thus, genes such as Submergence 1A (SUB1A) and stem elongating 

SNORKEL1 and SNORKEL2 have been introgressed to high-yielding rice varieties 

[39].  Our data shows that AOX OE line survived much better in response to hypoxic 

stress (Fig 6) suggesting that AOX over expressing in crop plants could be another 

target in breeding programmes targeting flooding/water logging tolerance.  
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Supplementary Figure 1. Expression of AOX in the root of WT Arabidopsis roots 

and of alternative oxidase over-expressing (AOX OE) and anti-sense (AOX AS) 

transgenic lines.  

For immunodetection ofAOX1a protein, total protein (50 µg) from each sample was 

separated on 10% SDS-PAGE and followed by detected using anti-AOX1a antibody 

as described in methodology.  

Supplementary Figure 2. Changes in H2O2 in WT, AOX1a antisense (AOX AS) and 

AOX1a over-expression (AOX OE) lines in response to 6 h hypoxia treatment. 

Microscopic detection of H2O2in Arabidopsis roots following staining with 3, 3-

diaminobenzidine (DAB). Under normoxia and after hypoxia treatment, roots were 
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incubated with 0.1% DAB solution for 2 h at room temperature under dark conditions. 

Images were taken with the light microscope at 20X zoom.  

 

Supplementary Table 1.The list of primers used in the present study for qRT-PCR 

analysis. 
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Figure 1. AOX1a transcript and protein analysis in WT seedlings of Arabidopsis 

thaliana in response to normoxia, normoxia + 2.5 µM flg22 and 6h hypoxia. (A) 

Transcript levels were calculated using ΔΔCt method.18S rRNA was used as 

housekeeping gene. (B) For immunodetection of AOX1a protein, total protein (50 µg) 

from each sample was separated on 10% SDS-PAGE and followed by detected 

using anti-AOX1a antibody as described in methodology. Band intensity was 

calculated using Image J software. 

Figure 2. Microscopic NO detection in the roots of WT, AOX1a antisense lines (AOX 

AS) and AOX1a overexpression lines (AOX OE) in response to normoxia and 2.5 µM 

flg22. (A) Two weeks old seedlings were incubated with 10 µM DAF for 20 min at 

room temperature and observed in a fluorescence microscope with 

excitation/emission maxima of 495/515 nm. (B) DAF fluorescence was quantified in 

20 seedling per treatment using Image J software. Asterisks indicate significant 

difference compared to WT under normoxic or hypoxic conditions (P<0.05). Bar = 50 

µm 

Figure 3. Changes in O2
-, ONOO- and tyrosine nitrated proteins in WT, AOX1a 

antisense (AOX AS) and AOX1a over-expression (AOX OE) lines in response to 

flg22 under normoxic conditions. (A) Microscopic O2
- detection in Arabidopsis roots. 

After flg22 treatment, roots were incubated with 0.1% NBT for 24 h and images were 

taken in light microscope at 20X zoom. The extent of straining was quantified in 20 

seedling per treatment using Image J software (Right panel). The letters indicate 

significant (P <0.05) groupings. (B) ONOO- (APF fluorescence) detection in 

Arabidopsis roots. After flg22 treatment, roots were incubated with 10 µM APF in 10 
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mM HEPES pH 7.2 for 20 min at room temperature and observed in fluorescence 

microscope using λ488 excitation and λ500-530 emission wavelength. Fluorescence was 

quantified by fluorimeter (Right panel). The letters indicate significant (P <0.05) 

groupings. (C) Immunodetection of tyr-nitrated proteins. Total protein was extracted 

from seedlings treated with 2.5 µM flg22. Total protein equivalent to 25 µg was 

separated on 10% SDS-PAGE under non-reducing condition (Ponceau stain was 

displayed as loading control). Membrane was treated with Anti-tyr-nitrosine antibody 

(1:2000) and secondary antibody IgG goat anti-rabbit HRP conjugate (1:5000). The 

blot was developed using chemiluminescent substrate. The band intensity was 

quantified using Image J software (Right panel). The blot is a representative image 

of 3 independent replicates. 

Figure 4. Microscopic NO detection in the roots of WT, AOX1a antisense lines (AOX 

AS) and AOX1a overexpression lines (AOX OE) under normoxic and hypoxic 

conditions. (A) Two week old seedlings under normoxic or hypoxic conditions or 

hypoxic conditions with 2.5 mM SHAM were incubated with 10 µM DAF-FM-DA for 

20 min at room temperature and observed in a fluorescence microscope with 

excitation/emission maxima of 495/515 nm. (B) DAF fluorescence was quantified in 

20 seedling per treatment using Image J software. The letters indicate significant (P 

<0.05) groupings.  

Figure 5. Changes in O2
-, ONOO- and tyrosine nitrated proteins in WT, AOX1a 

antisense (AOX AS) and AOX1a over-expression (AOX OE) lines in response to 6 h 

hypoxia treatment. (A) Microscopic O2
- detection in Arabidopsis roots. After 

hypoxia treatment, roots were incubated with 0.1% NBT for 24 h and images were 

taken with the light microscope at 20X zoom. The extent of straining was quantified 

in 20 seedling per treatment using Image J software (Right panel). The letters 
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indicate significant (P <0.05) groupings.  (B) Measurement of ONOO- (APF 

fluorescence) levels in Arabidopsis roots. After hypoxia treatment, roots were 

incubated with 10 µM APF in 10 mM HEPES pH 7.2 for 20 min at room temperature 

and observed under a fluorescence microscope using λ488 excitation and λ500-

530 emission wavelength. Fluorescence was quantified by fluorimeter (Right panel). . 

The letters indicate significant (P <0.05) groupings. (C) Immunodetection of tyr-

nitrated proteins. Total protein was extracted from seedlings treated with normoxia 

and hypoxia. Total protein equivalent to 25 µg was separated on 10% SDS-PAGE 

under non-reducing condition (Ponceau stain was displayed as loading control). The 

membrane was treated with Anti-tyr-nitrosine antibody (1:2000) and secondary 

antibody IgG goat anti-rabbit HRP conjugate (1:5000). The blot was developed 

using chemiluminescent substrate. The band intensity was quantified using Image 

J software. The blot is a representative image of 3 independent replicates. WT band 

intensity was normalised to 100% and compared with the intensity of AS and OE for 

each treatment. 

Figure 6. Effect of hypoxia treatment on Hb/NO cycle, energy efficiency and survival 

in the seedlings of WT, AOX1a antisense (AS) and AOX1a overexpression (OE) 

lines. (A-C) Changes in HB1, NIA1 and NIA2 transcript levels in response to 

normoxia and 6 h hypoxia. Transcript levels were calculated using ΔΔCt method and 

18S rRNA was used as housekeeping gene; The letters indicate significant (P <0.05) 

groupings.(D) Measurement of nitrate reductase (NR) activity in response to 

normoxia and 6 h hypoxia; The letters indicate significant (P <0.05) groupings. (E) 

Measurement of ATP levels after 6 h hypoxia treatment employed a luciferase based 

assay kit; The letters indicate significant (P <0.05) groupings (F) Total chlorophyll 

content from reoxygenated seedlings following hypoxia as measured by a 
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colorimetric assay. Values presented here are the mean (n = 3±SD). (G) Phenotypes 

of seedlings before, and after exposure to 24 h hypoxia treatment and seven days 

after reoxygenation. 

Figure 7.Schematic model showing alternative oxidase generated NO feeding into 

the haemoglobin-NO cycle during hypoxia. Under oxygen limiting conditions, 

cytosolic NR produces very high amounts of NO due to inhibition of NO2
-reduction to 

NH4
+ is inhibited [15]. Excess of NO will contribute to the inhibition of cytochrome c 

oxidase or Complex IV (dotted red line) which can have NO consuming activities. We 

suggest when COX is inhibited the increased NO2
- is reduced to NO by alternative 

oxidase (AOX) under conditions of hypoxia. The elevated NO will feed into the 

haemoglobin-NO cycle. The haemoglobin–nitric oxide (Hb/NO) cycle has been 

described elsewhere [10] but briefly involved NO scavenging by oxyhemoglobin 

(Hb(Fe2+)O2) which is reduced to 2Hb(Fe3+) by the methemoglobin reductase 

(MetHb-R) protein. This is coupled to NO oxidation to from NO3
-
. Nitrate reductase 

(NR) will produce NO2
- to serve as an electron donor at AOX which are linked to the 

mitochondrial electron transport chain [4,15] and ATP synthesis. Note the reductive 

power is provided by NAD(P)H at several steps.  

 

 

 

 

Highlights  
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· Under normoxic conditions AOX acts as scavenger of NO when treated with 

flg22 

· AOX over expressing line (AOX OE) displayed less NO and opposing effect 

was observed in AOX antisense line (AOX-AS) under normoxia in response to 

flg22 treatment 

· Scavenging of NO by AOX can prevent toxic peroxynitrite and tyrosine 

nitration formation under normoxia 

· In contrast to normoxia, during hypoxia AOX is a generator of NO 

· The enhanced levels of NO under hypoxia correlated with expression of non-

symbiotic haemoglobin, increased NR activity and ATP production 

· Hypoxic NO generation mediated by AOX has a discrete role by feeding into 

the haemoglobin-NO cycle to drive energy efficiency under conditions of low 

oxygen tension.  
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