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! The geomorphology of wetlands in drylands: resilience, nonresilience, or …?
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& Abstract

' Over the last decade, much attention has focused on wetland resilience to disturbances such as 

( extreme weather events, longer climate change, and human activities.  In geomorphology and 

!) cognate disciplines, resilience is defined in various ways and has physical and socioeconomic 

!! dimensions but commonly is taken to mean the ability of a system to (A) withstand disturbance, (B) 

!" recover from disturbance, or (C) adapt and evolve in response to disturbance to a more desirable 

!# (e.g., stable) configuration.  Most studies of wetland resilience have tended to focus on the more-or-

!$ less permanently saturated humid region wetlands, but whether the findings can be readily 

!% transferred to wetlands in drylands remains unclear.  Given the natural climatic variability and 

!* overall strong moisture deficit characteristic of drylands, are such wetlands likely to be more 

!& resilient or less resilient?  Focusing on wetlands in the South African drylands, this paper uses 

!' existing geomorphological, sedimentological, and geochronological data sets to provide the spatial 

!( (up to 50 km2) and temporal (late Quaternary) framework for an assessment of geomorphological 

") resilience.  Some wetlands have been highly resilient to environmental (especially climate) change, 

"! but others have been nonresilient with marked transformations in channel–floodplain structure and 

"" process connectivity having been driven by natural factors (e.g., local base–level fall, drought) or 

"# human activities (e.g., channel excavation, floodplain drainage).  Key issues related to the 

"$ assessment of wetland resilience include channel–floodplain dynamics in relation to 

"% geomorphological thresholds, wetland geomorphological ‘life cycles’, and the relative roles of 

"* natural and human activities.  These issues raise challenges for the involvement of 

"& geomorphologists in the practical application of the resilience concept in wetland management.  A 

"' key consideration is how geomorphological resilience interfaces with other dimensions of 

"( resilience, especially ecological resilience and socioeconomic resilience, the latter commonly being 

#) defined in terms of ecosystem service delivery.

#! Keywords: dryland; environmental change; floodplain; resilience, resilient; wetland
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## 1. Introduction

#$ ‘Wetland’ can be defined in various ways but is typically taken to be an area that is periodically or 

#% continually inundated by shallow water or has saturated soils and where plant growth and other 

#* biological activities are adapted to the wet conditions (Mitsch et al., 2009).  The term thus covers a 

#& wide variety of coastal and inland areas that are transitional between fully terrestrial and fully 

#' aquatic, including many estuaries, deltas, tidal flats, peatlands, floodplains, swamps, marshes, and 

#( oases.  Consequently, wetlands are key components of many landscapes worldwide and 

$) increasingly are regarded as providing a wide range of ecosystem services, including enhancement 

$! of biodiversity, water quality improvement, food supply, and recreational opportunities (Schuyt and 

$" Brander, 2004; Millennium Ecosystem Assessment, 2005a; Aber et al., 2012; Mitsch and 

$# Gosselink, 2015).  At the same time, there is growing recognition that factors such as climate 

$$ change, sea level rise, land use change, and population growth threaten the structure and 

$% functioning of many wetlands worldwide and that interdisciplinary scientific studies are urgently 

$* needed to support wetland management if ecosystem services are to be maintained or enhanced.

$&

$' Against this backdrop, and in common with concern over geomorphological and ecological changes 

$( occurring in other landscapes, the concept of ‘resilience’ has become increasingly prominent in the 

%) diverse wetland literature.  Although the literature does not always clearly or consistently define the 

%! concept, much attention has focused on the environmental and anthropogenic threats to wetlands 

%" and on the adaptation and mitigation strategies that may be required to ensure their resilience, 

%# especially vis-à-vis ecosystem service delivery.  Given the particular concern over sea level rise and 

%$ changing  atmospheric CO2 concentrations, coastal marshes and peatlands in humid regions have 

%% been the main focus of wetland resilience assessments (e.g., Morton and Barras, 2011; Swindles et 

%* al., 2016).  As a consequence, the numerous permanent and temporary wetlands in the world’s 

%& extensive drylands (a collective term for subhumid, semiarid, arid, and hyperarid environments) 

%' have been relatively neglected.  Given their presence in these climatically variable, moisture-
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$

%( stressed environments, however, the Millennium Ecosystem Assessment (2005b) recognised that 

*) wetlands in drylands may be disproportionately important in ecosystem service delivery.  These 

*! services may include water and food supply for many marginalised communities, so here too 

*" wetland resilience assessments are needed.  Tooth and McCarthy (2007) proposed that wetlands in 

*# drylands differ geomorphologically and sedimentologically from their humid region counterparts in 

*$ several key respects (Table 1), so it is unclear whether findings regarding wetland resilience can be 

*% readily transferred from humid to dryland regions, with key questions remaining unanswered.  For 

** instance, given that wetlands in drylands exist in marginal environments where small differences in 

*& moisture supply (rainfall, river flow, groundwater) can lead to large differences in hydroperiods 

*' (depth, extent, and duration of inundation/saturation), are wetlands in drylands likely to be less 

*( resilient to environmental change than humid region wetlands (e.g., Williams, 1999)?  Or given that 

&) wetlands in drylands have evolved under conditions of highly variable moisture supply, are they 

&! likely to be more resilient (e.g., Mohamed and Savenije, 2014)?  Can we even generalise about 

&" wetland resilience in different hydroclimatic settings or might wetland resilience be determined 

&# more by other factors (e.g., lithology, geomorphology, edaphic and vegetative characteristics, 

&$ human activities)?  Other key scientific and applied questions regarding the resilience of wetlands 

&% in drylands include: how resilient have wetlands in drylands been to past environmental changes?; 

&* what is the relative importance of climatic changes and human activities in driving contemporary 

&& and future changes to the resilience of wetlands in drylands?; and can we identify changes in 

&' wetlands in drylands that might serve as early warning signs of altering resilience?

&(
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%

') Table 1

'! Key geomorphological and sedimentological differences between the typical characteristics of wetlands in humid 

'" regions and wetlands in drylands, with emphasis placed on inland wetlands (after Tooth and McCarthy, 2007)

Characteristic Wetlands in humid regions Wetlands in drylands
Hydrological budgets Some wetlands can be sustained by climatic 

inputs alone (e.g., ombrotrophic mires) and 
typically remain (near-)continuously saturated

Most moderate to large wetlands cannot be 
sustained by climatic inputs alone and are 
subject to more frequent and/or longer periods 
of desiccation 

River channel 
processes and forms

Many floodplain wetlands have perennial, 
throughgoing channels that increase in size 
downstream

Some wetlands have perennial, throughgoing 
channels but commonly size decreases 
downstream, and some channels may locally 
disappear in floodouts before reforming 
farther downvalley

Geochemical budgets Inland wetland sediments are not typically 
characterised by excessive chemical 
sedimentation (e.g., salt accumulation)

Inland wetland sediments are prone to 
chemical sedimentation (e.g., salt 
accumulation)

The role of fire and 
aeolian processes 

Wetlands are typically (near-)continuously 
saturated, commonly leading to peat 
accumulation and limiting fires and aeolian 
deflation

Wetlands are commonly subject to 
desiccation, limiting peat accumulation and 
increasing susceptibility to fires and aeolian 
deflation

Timescales of 
development

Most wetlands have only developed since late 
Pleistocene deglaciation or with Holocene sea 
level rise

Many drylands escaped the direct effects of 
glaciation so most wetlands have longer 
histories that may extend far back into the 
Pleistocene or prior

'#

'$ To answer these types of questions, there is a critical need to have clear, consistent definitions and 

'% measures of resilience, but the application of the concept to wetlands — and more widely across 

'* geomorphology and the environmental sciences — is commonly shrouded by vagueness and 

'& imprecision.  Creative ambiguity may be appropriate for some environmental terms and concepts 

'' (Levina and Tirpak, 2006), but tighter definitions and measures are commonly desirable because of 

'( the need for rigorous scientific assessments (e.g., the comparative resilience of different wetlands) 

() or because of the attendant policy implications.  For instance, maintaining or increasing resilience is 

(! often seen as a desirable target in environmental management (e.g., Klein et al., 2003; Côté and 

(" Darling, 2010), so seemingly small differences in definition and/or interpretation might create 

(# different expectations from different stakeholders (c.f. ‘adaptation’ - Levina and Tirpak, 2006).  

($ Hence, the aims of this paper are fourfold: (i) to provide an overview of the resilience concept, 

(% including its origins, multiple definitions, and use in geomorphology; (ii) to summarise previous 

(* studies of wetland geomorphology in the South African drylands and to interpret the findings in 
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*

(& terms of some common definitions of resilience; (iii) to discuss the difficulties and potentials of 

(' assessing the resilience of wetlands in drylands more generally; and (iv) to outline the challenges 

(( for geomorphological inputs to practical applications of the resilience concept in wetland 

!)) management.  The emphasis is on wetlands in the South African drylands, but many of the points 

!)! raised will apply to wetlands in other drylands across Africa and farther afield, as well as to 

!)" wetlands more generally.

!)#

!)$ 2. Origins and definitions of resilience

!)% The concept of resilience arose largely in ecology (e.g., Holling, 1973; Westman, 1978; Hill, 1987), 

!)* thereafter spreading more widely across the natural and physical sciences to studies of 

!)& socioecological and social science systems (e.g., Adger, 2000, 2006; Folke, 2006, 2016; Folke et 

!)' al., 2010).  The concept is now widely embedded in natural hazards research (e.g., Klein et al., 

!)( 2003; Zhou et al., 2010) and in discourses about climate and wider environmental change (e.g., 

!!) Intergovernmental Panel on Climate Change, 2014; Tanner et al., 2015).  Consequently, the concept 

!!! has acquired multiple physical, social, and socioeconomic dimensions, as well as various links to 

!!" other concepts such as vulnerability, sensitivity, susceptibility, persistence, equilibrium, 

!!# thresholds/tipping points, recovery, and adaptive capacity.

!!$

!!% A full review of resilience and related concepts is beyond the scope of this paper, but at least three 

!!* definitions of system resilience can be identified in science and social science literature, namely an 

!!& ability for a given system to: (A) withstand disturbance; (B) recover from disturbance; or (C) adapt, 

!!' re-organise and evolve to a more desirable (e.g., stable) configuration.

!!(
!") Varying layers of vagueness are built into all these definitions (e.g., what system parameter(s) are 

!"! being measured and over what spatial and temporal scales?), but each definition has fundamentally 

!"" different expectations of the dynamics of a geomorphological, environmental, or social system that 
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&

!"# might occur in response to a disturbance such as an individual flood, sustained drought, longer-term 

!"$ climate changes, or human interventions.  Definition A implies that the system undergoes no 

!"% change or only limited change in response to disturbance and is sometimes defined as ‘resistance’ 

!"* (e.g., Phillips, 2009; Côté and Darling, 2010; Frisbee et al., 2013).  Definition B implies that the 

!"& system changes away from an initial starting state in response to disturbance, but then a return 

!"' (recovery) to that previous state occurs over some (commonly unspecified) time interval.  

!"( Definition C implies that the system changes away from an initial starting state in response to a 

!#) disturbance, but that the change is directional and occurs toward some specified (e.g., stable) end 

!#! state.  In this case, the disturbance could result from deliberate, direct human intervention; for 

!#" example, as part of a proactive land management strategy.

!##

!#$ In geomorphology, resilience has been discussed as part of broader treatments of sensitivity (e.g., 

!#% Brunsden, 2001; Fryirs, 2017) but has also received more specific assessments across many 

!#* subfields, including coastal, aeolian, and fluvial geomorphology (e.g., Long et al., 2006; 

!#& Woodroffe, 2007; Nield and Baas, 2008; Biron et al., 2014; Wohl, 2014; Fryirs et al., 2015; Calle et 

!#' al., 2017).  Although clear, consistent definitions have not always been provided, geomorphologists 

!#( most commonly employ definition B (cf. Phillips and van Dyke, 2016).

!$)

!$! Application of the resilience concept to wetlands in drylands — and wetlands more generally — has 

!$" particular challenges.  First, unlike some relatively simple geomorphological systems (e.g., 

!$# hillslopes), wetlands in drylands are not singular features; instead, many are composed of landform 

!$$ assemblages that may include various active and abandoned channels, levees, and floodplains.  

!$% Second, many wetlands in drylands are archetypal ecogeomorphological systems where biota 

!$* (plants and/or animals) are a key, even dominant, influence on geomorphological processes, forms, 

!$& and dynamics (e.g., Tooth and McCarthy, 2004).  Hence, one can attempt to define and measure 

!$' wetland ecological resilience (e.g., using water quality guidelines, trophic structures, or measures of 
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'

!$( biodiversity), wetland geomorphological resilience (e.g., using landform structure or process 

!%) connectivity), or some hybrid combination of the two.  Many wetlands in drylands are also subject 

!%! to various forms of management, commonly to enhance or maintain aspects of ecosystem service 

!%" delivery (e.g., Wetlands International, 2014), and so increasing attempts are also being made to 

!%# define and measure wetland socioeconomic resilience (e.g., Liersch et al., no date).  A distinction 

!%$ can thus be drawn between natural (e.g., ecological, geomorphological) resilience and 

!%% socioeconomic resilience, whereby society can use technologies to overcome local environmental 

!%* constraints.  In this paper, the focus is on wetland geomorphological resilience, but we need to bear 

!%& in mind the sometimes intimate coupling with ecological and socioeconomic systems, not least 

!%' because of growing recognition of the need to develop a shared language and common approaches 

!%( if such systems are to be managed holistically and sustainably.

!*)

!*! 3. Wetland geomorphology in the South African drylands

!*" As Long et al. (2006) have noted in the context of coastal systems, resilience means little without a 

!*# clearly defined spatial and temporal framework.  If adopting definition B of resilience, for instance, 

!*$ there is a clear need to consider the spatial and temporal scales of disturbance and recovery.  

!*% Consequently, attention hereafter is directed to four study sites (three extant wetlands and one 

!** former wetland) in the South African drylands where previous detailed investigations have been 

!*& undertaken using a combination of remotely sensed images, geomorphological and 

!*' sedimentological field data, and optically stimulated luminescence (OSL) dating.  The OSL data 

!*( sets in particular are among the most extensive for any wetlands in drylands and have enabled 

!&) reconstructions of wetland geomorphological changes over spatial scales ranging up to ~50 km2 and 

!&! over timescales ranging from the late Pleistocene to the present.  These reconstructions provide the 

!&" basis for interpretation of the natural environmental and anthropogenic factors influencing wetland 

!&# resilience.

!&$
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(

!&% All four study sites are located in the tectonically stable interior of northeastern and northern South 

!&* Africa (Fig. 1) where many riverine wetlands are sustained by rainfall and flooding in the austral 

!&& summer wet season (November through March) and undergo dessication during the drier winter 

!&' season.  Table 2 summarises the key climatic, catchment, river channel, and floodplain 

!&( characteristics, while Figs. 2-5 illustrate some of the key geomorphological features and select OSL 

!') ages for fluvial landforms.  The four sites have been influenced by various human activities that 

!'! range from low-intensity cattle grazing to more direct flow manipulation (Table 2), but with some 

!'" notable exceptions (detailed below), many reaches remain in a near-natural, little modified 

!'# condition.  Collectively, these wetlands represent a selection of the ‘valley bottom’ and ‘floodplain 

!'$ wetlands’ types highlighted in South African wetland classifications (Kotze et al., 2009a; Ollis et 

!'% al., 2015), but for brevity, the term ‘floodplain wetland’ is applied hereafter as a generic descriptor.

!'*
!'& Fig. 1. Location of the four study sites in South Africa.

!''
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!)

!'( Table 2

!() Summary of key climatic, catchment, river channel, and floodplain characteristics for the four wetlands in the South African drylands

Wetland Ppt, PEt
(mm)a

Catchment 
area
(km2)b

Slope
(m m-1)c

Floodplain 
width
(m)

Channel 
cross-
sectional 
area (m2)

Bankfull 
discharge
(m3 s-1)

Unit stream 
power
(W m-2)

Sediment 
load

Key fluvial 
features

Human 
impacts

Klip R. ~800,
~1400-2000

1140 ~0.00018 to 
0.00075

Up to ~1500 <73 (highest 
values in 
human-
impacted 
middle 
reaches)

<10-90
(highest 
values in 
human-
impacted 
middle 
reaches)

<10-15 
(highest 
values in 
human-
impacted 
middle 
reaches)

Mud, sand, 
minor 
gravel

Mixed bedrock-
alluvial but 
meandering 
channel, scroll 
bars, oxbows, 
palaeochannels, 
minor levees and 
alluvial ridges, 
backswamps

Cattle grazing, 
controlled 
burns (e.g., 
reedbeds), 
channel 
excavation by 
early colonial 
settlers, 
installation of 
modern flow 
control 
structures (e.g., 
weirs)

Tshwane R. ~585,
~1750

1420 ~0.00083 Up to ~1500 <20 <15 (declining 
downstream)

<10 Mud, sand, 
minor 
gravel

Fully alluvial 
meandering 
channel, oxbows, 
palaeochannels, 
prominent levees 
and alluvial 
ridges, 
backswamps

Light cattle 
grazing

Blood R. ~750-900, 
~1700-1800

690 Upper part: 
<0.0015, 
with two 
local 
steepenings 
up to ~0.014
Lower part: 
<0.0004

Up to ~2500 <20 (upper 
reaches only, 
lower 
reaches 
largely 
moribund)

<15 (upper 
reaches only, 
lower reaches 
largely 
moribund)

<10 (upper 
reaches only, 
lower 
reaches 
largely 
moribund)

Mud, sand, 
minor 
gravel

Upper part: fully 
alluvial low 
sinuosity channel, 
active and 
abandoned 
channel-levee 
complexes, 
floodouts, 
reforming 
channels 
(waterhole), 

Cattle grazing, 
controlled 
burns (e.g., 
reedbeds), 
earthen dams 
(now 
deliberately 
breached)
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!!

palaeochannels, 
headcuts, 
hillslope dongas 
(gullies and 
badlands) and 
impinging 
tributary fans
Lower part: 
mixed-bedrock 
alluvial but 
moribund and 
infilling 
meandering 
channel, oxbows, 
palaeochannels, 
local dongas 
(gullies)

Schoonspruit ~600, ~1400-
2000

325 <0.001 Up to ~1000 
(inset 
floodplain 
<20)

70-250 
(highest 
values in 
deeply incised 
reaches and 
likely 
overestimate 
flood 
discharges)

>15 Mud, sand, 
minor 
gravel

Incised mixed 
bedrock-alluvial 
channel with inset 
floodplain, 
abandoned 
floodplain 
wetland with 
oxbows and local 
palaeochannels, 
valley-margin 
dongas (gullies 
and badlands)

Light cattle 
grazing

!(! a Ppt (precipitation) and PEt (potential evapotranspiration) vales are based largely on Midgley et al. (1994) and Schulze (1997).
!(" b Catchment area to end of study reach.
!(# c Channel slope where channel is present, otherwise floodplain slope.
!($
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!"

!(% 3.1. Klip River floodplain wetland, Free State

!(* The Klip River floodplain wetland (Fig. 2) has been the site of extensive geomorphological, 

!(& sedimentological, and OSL dating work (Tooth et al., 2002, 2004, 2007, 2009; Rodnight et al., 

!(' 2005, 2006; Marren et al., 2006; Keen-Zebert et al., 2013).  Along the ~28-km-long study reach, the 

!(( perennial, throughgoing, sinuous (P up to ~1.75) river is flanked by a floodplain wetland up to ~1.5 

")) km wide (Fig. 2A).  This floodplain wetland hosts numerous palaeochannels and oxbows with 

")! dimensions (e.g., widths, sinuosities, meander wavelengths) that are similar to the modern channel 

")" (Fig. 2B).  Discharge, stream power, and channel cross-sectional area all increase slightly 

")# downstream (Table 2).  Long-term net aggradation is essentially zero, for the channel bed remains 

")$ grounded on relatively erodible mudstone/sandstone bedrock, but floodplain sediments 2-4 m thick 

")% are deposited by a combination of lateral point-bar, oblique, and abandoned-channel accretion 

")* (Marren et al., 2006).  Locally, the channel sits atop an alluvial ridge elevated up to ~1 m above the 

")& surrounding floodplain but possesses only minor levees (<0.5 m high).  At the lower end of the 

")' study reach, the river enters a valley carved into a resistant dolerite sill.  Here, the channel markedly 

")( straightens and floodplains are restricted to <40 m wide (Figs. 2A and 2C).  Cosmogenic isotope 

"!) analyses indicate that channel-bed dolerite outcrop is denuding at ~38-73 mm ka-1 (Keen-Zebert et 

"!! al., 2016), and so local base level remains essentially stable for extended periods of time (>10 ka).  

"!" A conceptual model of floodplain wetland development (Tooth et al., 2002, 2004) highlights how 

"!# this stable dolerite base level is a key factor promoting meander formation and valley widening in 

"!$ the upstream floodplain wetland (Fig. 6A).

"!%
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!#

"!*
"!& Fig. 2. Illustrations of some of the key geomorphological features and select OSL ages for landforms in the Klip River 

"!' floodplain wetland (source: modified after Tooth et al., 2004, 2009).

"!(

"") The OSL dating has focused on sand-rich deposits in the middle and lower parts of the study reach.  

""! In the middle part, where gradient steepens slightly and floodplain sediments transition from 

""" dominantly mud to dominantly sand, OSL ages for palaeochannels and associated oxbow fills (Fig. 

""# 2B) reveal that avulsions occurred at ~30, ~15, ~11, ~4.5, and ~1 ka (Rodnight et al., 2006; Tooth 

""$ et al., 2007, 2009).  Over the last 15 ka, therefore, avulsions have occurred once every 3-6 ka, 

""% corresponding to a frequency of <0.3 avulsions ka-1 (Tooth et al., 2007).  In the lower part, OSL 
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""* ages for scroll bar sequences (e.g., Fig. 2C) demonstrate that late Holocene meander migration rates 

""& were <0.2 m a-1 (Rodnight et al., 2005; Tooth et al., 2009).  In global terms, these rates are 

""' relatively slow and are supported by aerial photograph analyses, which reveal that despite the high 

""( density of oxbow lakes (up to 10/km of channel; Figs. 2A and 2C), only three cutoffs have occurred 

"#) in the study reach over the last 60-70 years (Tooth et al., 2009).  Along with field observations, 

"#! these findings provide the basis for interpreting the processes and controls of avulsion.  In this 

"#" setting, avulsions occur through an incisional process, whereby overbank floodwaters drain back to 

"## the channel through a breach in the channel bankline, initiating a small headcutting channel.  This 

"#$ headcutting channel enlarges and extends by knickpoint retreat during periods of overbank flow, 

"#% ultimately diverting discharge and sediment from the older, typically elevated channel, which is 

"#* then abandoned.  Along the Klip River, the lack of a clear, consistent link between regional 

"#& palaeoclimatic changes and individual avulsion events (Tooth et al., 2007) suggests that past 

"#' avulsions have not been extrinsically forced but rather have occurred intrinsically as a natural 

"#( outcome of meander-belt development.

"$)

"$! An ongoing avulsion that is associated with the formation of a new 3.0-3.5 km long channel on the 

"$" western floodplain margin (Fig. 2B) provides an exception.  Gully initiation and eventual channel 

"$# formation appear to have been initiated by the excavation of a trench across the wetlands (Fig. 2B) 

"$$ following colonial settlement in the valley (late 1800s onward).  This trench was probably 

"$% excavated in an attempt to drain the wetlands and improve access for grazing.

"$*

"$& 3.2. Tshwane River floodplain wetland, North West Province

"$' The Tshwane River floodplain wetland (Fig. 3) has been the subject of recent geomorphological 

"$( investigations (Larkin et al., 2017a, b).  Through the ~4-km-long study reach, the perennial, 

"%) throughgoing river has many morphological similarities to the Klip River.  In many places, the river 

"%! is highly sinuous (P up to ~2.7) and is flanked by a floodplain wetland up to ~1.5 km wide that 
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"%" hosts numerous palaeochannels and oxbows with dimensions similar to the modern channel (Fig. 

"%# 3A).  By contrast with the Klip River, however, discharge, stream power and channel cross-

"%$ sectional area all decrease downstream along the Tshwane River (Table 2), and the channel bed is 

"%% decoupled from bedrock, with floodplain sediments >7 m thick (Fig. 3B) being laid down by a 

"%* combination of lateral point-bar, oblique, abandoned-channel, and vertical accretion.  Consequently, 

"%& many reaches of the modern channel sit atop an alluvial ridge elevated up to 1.5 m, and levees are 

"%' more prominent than on the Klip (Fig. 3B).  The lower end of the study reach is formed by the 

"%( diffuse confluence with the aggrading Pienaars River (Fig. 3A), which provides the local base level 

"*) for the Tshwane reaches upstream (Larkin et al., 2017a).

"*!
"*" Fig. 3. Illustrations of some of the key geomorphological features and select OSL ages for landforms in the Tshwane 

"*# River floodplain wetland (source: modified after Larkin et al., 2017b).

"*$

"*% The OSL ages for palaeochannels and associated oxbow fills (Figs. 3A and 3B) have established a 

"** late Holocene avulsion history.  Older, undated palaeochannels are present in the reach (e.g., 
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"*& palaeochannel A; Figs. 3A and 3B), but over the last ~650 years, avulsions occurred at ~590, ~550, 

"*' and 110 years ago (Larkin et al., 2017b).  Aerial imagery and field evidence reveal that some other 

"*( sinuous reaches are being primed for avulsion, with headcutting channels having rapidly developed 

"&) in adjacent backswamps (Fig. 3C).  Over this timeframe, the frequency of ~4.6 avulsions ka-1 is 

"&! significantly higher than on the Klip River (Larkin et al., 2017b).  In the absence of well-defined 

"&" scroll bars along the Tshwane, meander migration rates have not been established, but aerial 

"&# photographs and field observations also reveal significantly higher rates of lateral activity along the 

"&$ Tshwane than along the Klip River, with 14 cutoffs having occurred in the much shorter study reach 

"&% over the last 60-70 years (Larkin et al., 2017b).  As on the Klip River, however, incisional avulsion 

"&* is the dominant process (Fig. 3C), and the lack of a clear, consistent link between regional 

"&& palaeoclimatic changes and individual avulsion events on the Tshwane River also suggests that 

"&' avulsions have been driven by intrinsic processes during meander-belt development.

"&(

"') 3.3. Blood River floodplain wetland, KwaZulu-Natal

"'! The Blood River floodplain wetland (Fig. 4) has been the subject of previous geomorphological 

"'" investigations (Lyons et al., 2013; Tooth et al., 2014).  The ~35-km-long study reach can be divided 

"'# into an upper part that contains sections of perennial but discontinuous, relatively straight (P ~1.15) 

"'$ channels and a lower part that is traversed by a perennial to intermittent, sinuous (P >2.30) channel 

"'% (Fig. 4A).  In the upper part, the modern channel is flanked by several abandoned channel–levee 

"'* complexes (Fig. 4B).  Discharge, stream power, and channel cross-sectional area rapidly decrease 

"'& downstream (Table 2), and the channel disappears within 0.5 km of entering the main area of 

"'' wetlands to form a ‘floodout’ (cf. Tooth, 1999, 2004), characterised here by an unchannelled 

"'( reedbed (principally Phragmites australis) up to ~1 km wide.  This reedbed extends for ~1 km 

"() downvalley (Fig. 4B), but traces of overgrown sinuous palaeochannels are present toward the 

"(! western floodplain margin.  At the southeastern margin of the floodout, several small headcutting 

"(" channels start abruptly on a locally steepened (~0.014) gradient (Fig. 4B) and convey water that 
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"(# filters through the reedbed.  As the gradient declines again downvalley, these headcutting channels 

"($ coalesce into a single, low sinuosity, ~1.25-km-long ‘reforming channel’ (Tooth, 1999, 2004) that 

"(% retains permanent water in a part of the wetlands that are otherwise seasonally dry (Fig. 4B).  This 

"(* reforming channel abruptly narrows and shallows toward its downstream end and disappears at 

"(& another floodout up to ~2 km wide (Fig. 4A).  This lower floodout extends for ~3 km downvalley 

"(' and is also characterized by an unchannelled reedbed, although here too clear evidence exists of 

"(( overgrown but throughgoing, sinuous palaeochannels.  Similar to the situation upvalley, the 

#)) southern limit of this lower floodout is also marked by several headcutting channels that start on a 

#)! locally steepened (~0.001) gradient (Fig. 4C).  These headcutting channels mark the transition to 

#)" the lower part of the study reach where a continuous, sinuous channel is flanked by numerous 

#)# oxbows, short palaeochannel sections, and small gullies known locally as dongas (Figs. 4A and 

#)$ 4C).  At the downstream end of the study reach, dolerite outcrop results in channel straightening 

#)% and the floodplain decreases to <100 m wide (Fig. 4A).
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#)*
#)& Fig. 4. Illustrations of some of the key geomorphological features and select OSL ages for landforms in the Blood River 

#)' floodplain wetland (source: modified after Tooth et al., 2014).

#)(

#!) The OSL dating has established that the discontinuity represented by the two floodouts developed 

#!! during the very late Holocene.  The OSL ages for oxbows within the lower part of the study reach 

#!" (Fig. 4C) reveal that between ~800 and 100 years ago, the wetlands were characterised by a 

#!# throughgoing, meandering channel (Tooth et al., 2014).  A sinuous channel remains in this lower 

#!$ part but is now largely moribund, and during the last ~100 years, major morphological and 

#!% sedimentary changes have occurred upvalley.  Here, a former throughgoing, meandering channel 

#!* has been replaced by straighter sections of channel that decrease in size downstream and terminate 

#!& in floodouts (Fig. 4B).  The initial cause(s) of this change are uncertain.  Human activities cannot be 

#!' discounted, but the change may have resulted from downstream decreases in discharge and 

#!( sediment transport induced by the severe 1930s drought, possibly in combination with rapid 
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#") encroachment and within-channel establishment of sedges and grasses (e.g., Phragmites australis) 

#"! in slow-flowing or stagnant sections of channel (Tooth et al., 2014).  Following the establishment of 

#"" the upper floodout, channel–levee complexes have formed and been abandoned on several 

#"# occasions during the last ~60 years (Fig. 4B), leading to local redistribution of water and sediment 

#"$ (Tooth et al., 2014).  Organo-clastic sediments >3 m thick have accumulated in the floodouts as 

#"% broad lobes, in places burying the former meander-belt sediments and leading to local gradient 

#"* increases.  In combination with the limited flows that filter through the floodouts, these increased 

#"& gradients have promoted the formation of the headcutting channels (Figs. 4B and 4C).  During the 

#"' 70–80 year period covered by aerial photographs, some of the headcutting channels have widened 

#"( slightly and extended some tens of metres upvalley into the floodout (Kotze, 1994; Tooth et al., 

##) 2014).

##!

##" 3.4 Schoonspruit former floodplain wetland, Free State

### The Schoonspruit (Fig. 5) traverses an abandoned floodplain wetland and has been the subject of 

##$ previous geomorphological investigations (Tooth et al., 2004; Keen-Zebert et al., 2013, 2016).  

##% Within the ~20-km-long study reach, the intermittent but throughgoing, sinuous (P ~1.99) channel 

##* has incised 3-5 m into the underlying mudstone.  Consequently, the ~1-km-wide floodplain (Fig. 

##& 5A) is now only rarely inundated by overbank flows, although rainfall can still lead to flooding in 

##' oxbows and abandoned channels.  Along the incised channel, an inset floodplain up to ~20 m wide 

##( has formed by lateral and vertical accretion (Tooth et al., 2004), while gullies (dongas) have eroded 

#$) into older, early to middle Pleistocene alluvial and/or colluvial sediments (Fig. 5B).  At the lower 

#$! end of the study reach, the river transitions to a valley carved into a resistant dolerite sill and 

#$" becomes less sinuous, with floodplains being restricted to <50 m wide (Fig. 5A).  Cosmogenic 

#$# isotope analyses indicate that channel-bed dolerite outcrop is denuding at ~100-255 mm ka-1 (Keen-

#$$ Zebert et al., 2016), with field evidence for flood-transported dolerite boulders and isolated 

#$% pedestals of jointed dolerite outcrop within the channel bed (Fig. 5C) suggesting a recent phase of 
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#$* incision.  This phase of dolerite incision has been interpreted as initiating a fall in local base level, 

#$& thereby generating a headward-retreating knickpoint that resulted in the channel incision evident in 

#$' the reaches upstream (Tooth et al., 2004; Keen-Zebert et al., 2013, 2016).

#$(
#%) Fig. 5. Illustrations of some of the key geomorphological features and select OSL ages for landforms in the former 

#%! floodplain wetland of the Schoonspruit (source: modified after Keen-Zebert et al., 2013).

#%"

#%# The OSL dating has established the timing of floodplain deposition and channel incision.  The OSL 

#%$ ages for sediments from the abandoned floodplain demonstrate that oxbow formation and overbank 

#%% sedimentation occurred between ~1.56 and 1.28 ka (Fig. 5B) and are indicative of the last phase of 

#%* channel–floodplain connectivity before incision occurred (Keen-Zebert et al., 2013).  Incision 

#%& began after ~1.28 ka and probably continued for ~1000 years, with renewed sedimentation at ~0.09 

#%' to 0.06 ka then leading to formation of the inset floodplains (Fig. 5B).
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#%(

#*) 4. Interpretation

#*! The findings from the four South African study sites provide the basis for an assessment of the 

#*" comparative resilience of each of the wetlands to natural environmental and anthropogenic drivers.

#*#

#*$ 4.1. Resilience of the Klip River floodplain wetland

#*% Prior to the last 100-150 years, the Klip River floodplain wetland appears to have been highly 

#** resilient to environmental change, with resilience best defined in terms of definition A (i.e., 

#*& resistance).  Over at least the last ~30 ka, the Klip River has remained a throughgoing, meandering 

#*' channel with roughly constant dimensions.  Regional and local palaeoclimatic fluctuations appear to 

#*( have had little impact on channel–floodplain morphology or dynamics, with infrequent avulsions 

#&) (<0.3 ka-1) occurring intrinsically as a natural outcome of meander-belt development.  Avulsions 

#&! have involved stepwise migrations of reaches up to ~4 km long (Fig. 2B), resulting in changes to 

#&" patterns of flooding and sedimentation, but the incisional avulsion process means that channel–

#&# floodplain structure and connectivity have essentially been maintained throughout avulsion events. 

#&$ Meander belts have then slowly reestablished along newly formed channels over successive 

#&% centuries to millennia (Tooth et al., 2007).

#&*

#&& Given the evidence for the dramatic late Quaternary transformations (e.g., braided to meandering, 

#&' or aggrading to incising) that have occurred along many other rivers worldwide in response to 

#&( discharge and sediment supply changes (e.g., Anderson et al., 2004; Hudson et al., 2008; Macklin et 

#') al., 2010), this long-term overall stability of channel dimensions and channel–floodplain structure 

#'! and connectivity along the Klip River study reach is remarkable.  Tooth et al. (2009) attributed this 

#'" stability to a combination of three factors.  First, a low sediment supply relative to the capacity for 

#'# onward transport means that the channel bed remains grounded on bedrock and that levee formation 

#'$ and alluvial ridge building is limited, so the aggradational factors that tend to promote avulsion 
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#'% (Slingerland and Smith, 2004) are reduced in importance.  Second, at the downstream end of the 

#'* floodplain wetland, a resistant dolerite barrier (Fig. 2C) acts as a stable local base level (Fig. 6A) 

#'& and thus has limited the potential for channel incision during the late Quaternary, as is indicated by 

#'' the absence of alluvial terraces in the study reach.  Third, the low energy conditions (bankfull unit 

#'( stream powers are <10-15 W m-2 throughout much of the study reach; Table 2) minimise the 

#() potential for rapid and/or widespread erosion, even during floods.  Together, these factors have 

#(! meant that the Klip River has been relatively unresponsive to late Quaternary palaeoclimatic 

#(" changes, with most channel–floodplain changes instead being driven by slow-acting and/or 

#(# infrequent intrinsic processes.

#($
#(% Fig. 6. Schematic illustration of the cycle of wetland development in the South African drylands: (A) meandering 

#(* channels and floodplain wetlands initially form atop more erodible rocks (e.g., mudstone, sandstone) upstream of 

#(& resistant outcrop (e.g., dolerite).  Migrating meanders locally impinge on the valley sides and over time lead to valley 

#(' widening; and (B) with incision through the resistant outcrop, knickpoint migration leads to straightening and 

#(( deepening of the channel.  This leads to wetland abandonment and desiccation and commonly initiates the formation of 

$)) large gullies that erode the former floodplain wetland sediments.  If base level stabilises (e.g., in a lower part of the 

$)! resistant rock mass), then meandering channels and floodplain wetlands can form anew in the reaches upstream, albeit 

$)" at a lower topographic level.  The timescales over which these processes occur is poorly constrained but within the 

$)# floodplain wetlands aerial photograph analyses and OSL dating demonstrate that channel changes (meander bend 

$)$ migration, bend cutoff, avulsion) occur on timescales of years to many tens of thousands of years (source: modified 

$)% after Tooth et al., 2004, and Keen-Zebert et al., 2013).
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$)*

$)& By strong contrast with the resilience to natural environmental change exhibited over most of the 

$)' late Quaternary, however, the Klip River floodplain wetland has not been resilient to recent human 

$)( impacts.  Under natural conditions, avulsions have occurred just once every 3-6 ka since 15 kyr. 

$!) Following colonial settlement (late 1800s onwards), however, an ongoing, potentially major 

$!! avulsion has been initiated only ~1 ka after the last natural avulsion event and in a part of the 

$!" floodplain wetland where avulsions have not occurred previously (Fig. 2B).  The avulsion has led to 

$!# major changes elsewhere in the reach, including failure of a 2-3 km long section of the original 

$!$ channel upstream (Fig. 2B), and dramatic channel widening and decreased overbank flooding 

$!% downstream (Tooth et al., 2007, 2009; McCarthy et al., 2010).

$!*

$!& 4.2. Resilience of the Tshwane River floodplain wetland

$!' Over the late Holocene, the Tshwane River floodplain wetland has been highly resilient to 

$!( environmental change, with resilience also best defined in terms of definition A (i.e., resistance).  

$") During at least the last ~650 years, the Tshwane River has remained a throughgoing, meandering 

$"! channel with roughly constant dimensions.  Palaeoclimatic fluctuations appear to have had little 

$"" impact on channel–floodplain morphology or dynamics, with relatively frequent avulsions 

$"# occurring intrinsically as a natural outcome of meander-belt development.  Avulsions have involved 

$"$ stepwise migrations of reaches up to ~5 km long (Fig. 3A) and have resulted in changing patterns of 

$"% flooding and sedimentation, but channel–floodplain structure and connectivity has essentially been 

$"* maintained throughout the incisional avulsion events.  Meander belts have then reestablished along 

$"& newly formed channels over successive decades to centuries (Larkin et al., 2017b).  Local base 

$"' level is determined by aggradation on the Pienaars River downvalley (Fig. 3A), but as along the 

$"( Klip River, the low energy conditions (bankfull unit stream powers are <10 W m  throughout 

$#) much of the study reach; Table 2) also minimise the potential for rapid and/or widespread erosion.  

$#! Consequently, the Tshwane River also has been relatively unresponsive to late Quaternary 
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$#" palaeoclimatic changes, with channel changes instead being driven by intrinsic processes.  The 

$## Tshwane River remains in a near-natural condition with human influence restricted to some 

$#$ subsistence grazing, and the natural resilience of this floodplain wetland has been preserved.

$#%

$#* 4.3. Resilience of the Blood River floodplain wetland

$#& The Blood River floodplain wetland is more difficult to assess in terms of resilience.  Although the 

$#' timing and consequences of the development of the discontinuity can be established, the initial 

$#( cause(s) remain uncertain.  Assuming that human activities have not led to development of the 

$$) discontinuity, however, then the most likely explanation is a combination of drought-induced 

$$! downstream decreases in discharge and sediment transport along with associated reedbed 

$$" establishment.  Given the dramatic change to channel–floodplain structure that has occurred 

$$# subsequently, then one interpretation could be that the wetland has been nonresilient to 

$$$ environmental change.  On the steepened, downvalley sides of the sediment lobes that mark the two 

$$% floodouts, however, the presence of headcutting channels (Figs. 4B and 4C) suggests an alternative 

$$* explanation.  The combination of headcutting channels and floodouts indicates partial analogy with 

$$& the system-scale, intrinsic morphological and sedimentary dynamics of those dryland fluvial 

$$' systems that are also characterised by a dynamic mosaic of channelled and unchannelled landforms 

$$( (e.g., discontinuous ephemeral streams and erosion cells; Schumm and Hadley, 1957; Pickup, 1985; 

$%) Bull, 1997).  If headcutting through the lobes continues, then a throughgoing channel may 

$%! reestablish in the upper part of the wetland, possibly eventually linking with the sinuous but now 

$%" moribund channel in the lower part (Tooth et al., 2014).  Given the aerial photograph evidence for 

$%# headcut retreat over the last 70-80 years (see above), it is plausible that reestablishment of a 

$%$ throughgoing channel and associated longitudinal flow and sediment transport connectivity could 

$%% occur on a timescale of centuries to a few millennia.  If this scenario were to unfold, then recovery 

$%* to a predisturbance (i.e., predrought) condition could occur.  Over this timescale, therefore, the 
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$%& Blood River floodplain wetland might then be regarded as resilient in terms of definition B (i.e., 

$%' ability to recover from disturbance).

$%(

$*) 4.4. Resilience of the Schoonspruit former floodplain wetland

$*! Over the last millennia, the Schoonspruit floodplain wetland has been nonresilient to environmental 

$*" change.  By strong contrast with the Klip River where a slowly eroding dolerite sill provides an 

$*# essentially stable local base level (Fig. 6A), recent incision has occurred into the dolerite sill at the 

$*$ downstream end of the Schoonspruit study reach (Figs. 5C and 6B).  Incision has resulted in local 

$*% base–level fall and associated knickpoint retreat, leading to deep channel incision in reaches 

$** upstream.  Incision has dramatically transformed channel–floodplain structure and connectivity, 

$*& with the higher elevation, former floodplain wetland now rarely inundated by overbank flows, while 

$*' inset floodplains have formed at a lower elevation.  If base level stabilises again (e.g., in a lower 

$*( section of the dolerite sill), however, then meandering, valley widening, and formation of extensive 

$&) floodplains might occur again in future (Tooth et al., 2004).  The timescale for such a development 

$&! is little known, but based on the OSL dating results from this and other wetlands, the process likely 

$&" takes many hundreds of millennia.  If this scenario were to unfold along the Schoonspruit, channel–

$&# floodplain structure and connectivity would eventually exhibit some degree of recovery, albeit at a 

$&$ lower topographic level, and this system might then also be regarded as exhibiting some degree of 

$&% resilience in terms of definition B.

$&*

$&& 5. Discussion

$&' The foregoing case studies demonstrate how wetlands in the South African drylands have exhibited 

$&( varying geomorphological resilience.  Even in catchments with similar hydroclimates, 

$') physiographies, lithologies, vegetation assemblages, and human impacts (Table 2), some wetlands 

$'! have been highly resilient to environmental change, but others have been nonresilient.  Integration 

$'" of the findings from these case studies with results from the geomorphological investigations of 
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$'# other wetlands in drylands, within the South African interior and farther afield, raises some key 

$'$ issues related to the assessment of wetland resilience.  These include a consideration of wetland 

$'% dynamics and geomorphological thresholds, wetland geomorphological ‘life cycles’, and the 

$'* relative roles of natural environmental and human impacts.  In turn, these issues raise challenges for 

$'& geomorphological inputs to practical applications of the resilience concept in wetland management.

$''

$'( 5.1. Wetland dynamics and geomorphological thresholds

$() A key factor determining the resilience of any given geomorphological system is its dynamics in 

$(! proximity to extrinsic thresholds (Schumm, 1973, 1979; Bull, 1979).  For a system operating far 

$(" from a threshold, significant changes to extrinsic controls (e.g., a disturbance event such as a flood, 

$(# sustained drought, or fire) may be required to push the system across that threshold and cause a 

$($ dramatic change in system structure and functioning.  For a system operating close to a threshold, 

$(% however, even relatively minor changes to extrinsic controls may lead to crossing of that threshold 

$(* and to significant changes in structure and functioning.  In either case, threshold crossing would 

$(& mean that the system would not be deemed as resilient under definition A (i.e., resistance).  If 

$(' subsequent changes to extrinsic controls enable movement back across the threshold, however, then 

$(( a return to a previous condition may occur over time.  Under this scenario, the system may be 

%)) deemed resilient under definition B (i.e., recovery).  Hence, for any given geomorphological 

%)! system, identifying where thresholds lie and what controls the nature and rate of movement across 

%)" these thresholds is critical.

%)#

%)$ In many wetlands in drylands, major channel–floodplain changes can be driven by the crossing of 

%)% intrinsic thresholds (e.g., internal process-form adjustments driven by downstream discharge 

%)* decreases) and/or by the crossing of extrinsic thresholds (e.g., event-based or more sustained 

%)& changes in flow and/or sediment supply induced by tectonic activity, climate change, or human 

%)' impacts; Ralph and Hesse, 2010; Grenfell et al., 2014; Larkin et al., 2017a).  The crossing of 
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%)( intrinsic thresholds does not threaten resilience as defined above because the changes occur as part 

%!) of natural autogenic dynamics that are unrelated to extrinsic disturbances.  Nonetheless, as 

%!! considered further below, the movement toward or across intrinsic thresholds could leave systems 

%!" more prone to the crossing of extrinsic thresholds that could then threaten resilience.

%!#

%!$ In their consideration of the sensitivity and vulnerability of southern African wetlands to 

%!% environmental change — concepts that are closely related to resilience — Ellery et al. (2016) 

%!* outlined how low-order, valley bottom wetlands in inland South Africa can be classified into stable 

%!& (unincised) and incised (gullied/channelled) types and then discriminated on a bivariate plot of 

%!' wetland area versus wetland gradient (Fig. 7, inset).  This plot provides the empirical underpinning 

%!( for a conceptual diagram (Fig. 7) that illustrates how individual wetlands may be driven across a 

%") fuzzy threshold (defined as the ‘zone of vulnerability’) from a stable to an incised condition by (i) 

%"! an increase in wetland area (i.e., extent of inundation/saturation) for a given wetland gradient as, 

%"" say, discharge increases or sediment accumulation locally blocks or restricts water outflow (Fig. 7, 

%"# pathway A to B) or (ii) an increase in wetland gradient for a given wetland area as, say, aggradation 

%"$ leads to localised valley floor steepening (Fig. 7, pathway A to C).  Increases in wetland area or 

%"% gradient are necessary preconditions for incision, but the trigger itself may be related to extrinsic 

%"* factors such as climate change, local base–level fall, or land use change (Ellery et al., 2016).

%"&
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%"'
%"( Fig. 7. Zones of stability, vulnerability, and incision for valley-bottom wetlands in southern Africa.  Valley-bottom 

%#) wetlands typically occur on low-order streams where the valley is narrow or impounded and tend to lack well-defined 

%#! channels and characteristic floodplain features.  The inset shows the underpinning empirical data set (figures modified 

%#" after Ellery et al., 2016).  This conceptual diagram is similar to the threshold-based models for gully incision (e.g., 

%## Patton and Schumm, 1975), but wetland area rather than drainage area (a surrogate for catchment runoff) is used on the 

%#$ x axis, in part because the former is easier to measure (Ellery et al., 2016).

%#%

%#* This conceptual approach can be adapted and extended to cater for the dynamics associated with the 

%#& larger floodplain wetlands that are the main focus of this paper.  Figure 8 is an attempt to capture 

%#' these dynamics for the four South African study sites considered above.  Gradient (for the channel 

%#( or unchannelled floodplain), discharge, and sediment availability form the three axes (Fig. 8), and 

%$) together determine system dynamics.  Gradient can be measured from topographic maps or surveys, 

%$! and discharge can be measured or approximated, but few sediment supply or sediment transport 

%$" data exist to enable quantification of sediment availability.  Nonetheless, the points for each system 

%$# can still be plotted in approximate relative positions and in relation to a common extrinsic threshold 
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%$$ that separates stable dynamics (i.e., minor aggradation/incision or no change) from more sustained, 

%$% system-transforming, sedimentation or erosion (Fig. 8).

%$*

%$&
%$' Fig. 8. Conceptual diagrams illustrating the diverse channel–floodplain dynamics that underpin the resilience or 

%$( nonresilience of wetlands in the drylands of South Africa: (A) Klip River floodplain wetland; (B) Tshwane River 

%%) floodplain wetland; (C) Blood River floodplain wetland; and (D) former floodplain wetland of the Schoonspruit.
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%%!

%%" Figure 8 attempts to address one of the problems common to many conceptual treatments of 

%%# geomorphological or environmental system dynamics in that any given system is typically treated 

%%$ as just one point in a phase space, with attention usually being focused on temporal macroscale 

%%% dynamics (e.g., points A, B, and C in Fig. 7; for an ecological example, see Côté and Darling, 

%%* 2010).  In reality, most wetlands — especially large floodplain wetlands — are not singular 

%%& landforms but are typically composed of a complex assemblage of channel and floodplain features 

%%' with controls (e.g., gradient, discharge, sediment availability) that vary spatially, downstream and 

%%( across the valley.  Hence, many microscale and mesoscale spatial and temporal dynamics may 

%*) occur alongside the temporal macroscale dynamics and are represented here as bounded departures 

%*! (smaller spheres with numbers) from the typical range of temporal macroscale system behaviour 

%*" (larger spheres with upper case letters).  For instance, avulsions within large floodplain wetland 

%*# systems represent local, threshold-crossing system instabilities (Figs. 8A and 8B), but so long as the 

%*$ overall wetland system remains stable (or recovers stability), then these instabilities do not affect 

%*% the resilience of the system as a whole.

%**

%*& The dynamics of the Klip River floodplain wetland provide a case in point.  Throughout much of 

%*' the late Quaternary, the essentially nonaggrading Klip system has operated — and in many reaches 

%*( continues to operate — far below a threshold (Fig. 8A).  Channel gradient is more-or-less stable, 

%&) while discharge and sediment availability are in approximate long-term balance.  Local and regional 

%&! environmental (especially palaeoclimatic) changes have not been of sufficient magnitude or 

%&" duration to alter this balance and push the system across a threshold.  Movement across a threshold 

%&# has occurred infrequently only in the avulsion-prone middle part of the study reach (Fig. 8A – 

%&$ ‘avulsing section’) where valley gradient steepens slightly and sediment becomes sandier.  

%&% Avulsions have led to redistribution of water and sediment but channel–floodplain structure and 
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%&* functioning have been maintained throughout, meandering belts have reestablished slowly over 

%&& time, and reach-scale and overall system resilience have been largely maintained (Fig. 8A).

%&'

%&( By contrast, over at least the last ~650 years, the vertically aggrading Tshwane system has been 

%') operating closer to a threshold condition (Fig. 8B).  Here, downstream decreases in discharge and 

%'! sediment flux promote vertical aggradation, as reflected in more prominent levee and alluvial ridge 

%'" growth (Fig. 3B), and the local decreases in channel gradient and increases in cross-floodplain 

%'# gradient that occur along developing meander belts help to prime reaches for more frequent 

%'$ avulsions.  Nonetheless, channel–floodplain structure and functioning have been maintained, 

%'% meandering belts have reestablished rapidly over time, and here too reach-scale and overall system 

%'* resilience have been maintained.

%'&

%'' The situations are different on the Blood River and the Schoonspruit floodplain wetlands, where a 

%'( substantial portion (Blood River) or the whole of the study reach (Schoonspruit) has moved across a 

%() threshold (Figs. 8C and 8D).  As discussed above, both systems may in time move back across the 

%(! threshold and exhibit some degree of recovery but only over timescales of centuries or far longer, 

%(" and therefore at present can be characterised as nonresilient.

%(#

%($ 5.2. Wetland geomorphological ‘life cycles’

%(% A key point emerging from this analysis is that resilience may change through the 

%(* geomorphological ‘life cycle’ of a wetland (cf. Ellery et al.’s (2016) discussion of changing wetland 

%(& sensitivity in peat-accumulating systems).  As an example, intrinsic changes (e.g., aggradation and 

%(' slope steepening that occur in response to downstream discharge decreases) may bring the wetland 

%(( close to an extrinsic threshold, leaving the system prone to event-based (e.g., flash flood) or more 

*)) sustained (e.g., prolonged drought) extrinsic disturbances that facilitate more dramatic changes and 
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*)! threaten resilience.  As shown by the example of the Blood River, such changes may occur in 

*)" combination with strong biotic feedbacks such as reedbed establishment (Tooth et al., 2014).

*)#

*)$ Alternatively, wetlands may be driven across thresholds by extrinsic controls that operate 

*)% essentially independently of intrinsic dynamics.  The long-term macroscale dynamics of the Klip 

*)* River and Schoonspruit floodplain wetlands, for instance, are controlled by the stability of their 

*)& respective lithologically controlled local base levels (a function of the rate and nature of bedrock 

*)' erosional processes), but the two systems currently are at different stages in the wetland 

*)( development cycle.  The Klip River remains unincised above an essentially stable local base level 

*!) (Fig. 6A), while the Schoonspruit has undergone recent deep incision in response to local base–

*!! level fall (Fig. 6B).

*!"

*!# 5.3. Relative roles of natural environmental and human impacts

*!$ Over the late Quaternary, the four South African study sites have been relatively unresponsive to 

*!% local and regional palaeoclimatic changes, probably owing to factors such as the characteristically 

*!* low stream powers, relatively low rates of sediment supply, and (in some cases) stable local base 

*!& levels.  Nonetheless, in the absence of human activities, wetland changes have been driven by a 

*!' variety of natural factors including intrinsic process-form dynamics (Klip, Tshwane), possibly 

*!( short-term weather extremes (drought in the Blood River), and lithologically controlled base–level 

*") fall (Schoonspruit).  As the examples of the Klip and Tshwane rivers show, however, such changes 

*"! have not necessarily threatened wetland resilience.

*""

*"# By contrast, even some floodplain wetlands that have been resilient to natural factors have been 

*"$ greatly impacted by human activities over the last 100-150 years.  With colonial settlement in the 

*"% Klip valley, for instance, a situation of long-term resilience changed dramatically, with parts of the 

*"* floodplain wetland now degraded.  Within South Africa and farther afield, many other wetlands in 
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*"& drylands also have been severely impacted by land use changes, commonly leading to the loss of 

*"' natural resilience (e.g., Richardson et al., 2005; Kotze et al., 2012; Cole and Cole, 2015).

*"(

*#) 5.4. Challenges for geomorphological inputs to practical applications of the resilience concept

*#! Evidence for the deleterious impacts of human activities on many wetlands in drylands, either 

*#" deliberate or inadvertent, highlights that debates about resilience are more than just academic 

*## exercises but have potential application in management contexts.  Indeed, maintaining, enhancing, 

*#$ or restoring resilience is a common objective in many wetland management, conservation, and 

*#% restoration strategies (e.g., Kotze et al., 2009b).  Even well-intentioned management strategies, 

*#* however, have been subject to varying degrees of success (e.g., Grenfell et al., 2009; Ralph et al., 

*#& 2015), and as study of the Klip River has shown, in some instances management interventions may 

*#' have even led to decreases in natural resilience (McCarthy et al., 2010).  In a practical sense, 

*#( therefore, can geomorphologists have greater input in developing guidelines for defining, 

*$) measuring, and identifying resilience as part of an holistic approach to wise or sustainable use of 

*$! wetlands in drylands?  In attempting to do so, there are at least three interrelated considerations.

*$"

*$# First, as previous studies (e.g., Côté and Darling, 2010) and this paper have stressed, there is a need 

*$$ to have clear definitions of resilience in environmental management.  Is the management objective 

*$% to aim for definition A (resistance) or definition B (recovery from disturbance) or definition C (a 

*$* more desirable configuration)?

*$&

*$' Second, in many management contexts, consideration needs to be given to the interface between 

*$( geomorphological resilience and other resilience dimensions, namely ecological resilience and 

*%) socioeconomic resilience, the latter perhaps being defined in terms of ecosystem service delivery 

*%! (e.g., Liersch et al., no date; Gitay et al., 2011; Wetlands International, 2014).  In natural systems, 

*%" these dimensions are often closely interrelated because many wetlands develop as a consequence of 
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*%# water, sediment, and biotic activity acting in combination, and this leads to strong links between 

*%$ wetland structure, functioning and ecosystem services.  In management contexts, however, 

*%% restoration, maintenance, or enhancement of geomorphological resilience (e.g., natural channel–

*%* floodplain forms) may not be the primary objective, with greater emphasis perhaps being placed on 

*%& managing for ecological resilience (e.g., biodiversity) or with priority being given to other aspects 

*%' of ecosystem service delivery (e.g., flooding alleviation).  Again, a study of the Klip River 

*%( floodplain wetland provides an instructive example (McCarthy et al., 2010).  In an ideal world, 

**) remediation of the degraded parts (Fig. 8A) would strive to return the wetland to its natural, 

**! precolonial, geomorphological condition.  In reality, other management goals have priority, namely 

**" maintaining current habitat and biodiversity (this has the added advantage of promoting local 

**# tourism, especially bird watching) and using the wetlands for water quality enhancement.  Attempts 

**$ to return the wetlands to their precolonial geomorphological condition (e.g., by removing exotic 

**% willow trees and erosion control structures) would in fact reduce habitat and biodiversity, 

*** permanently in the case of some avian species that now use the willows for perching, roosting, and 

**& nesting, and for centuries in the case of some aquatic species owing to the very slow natural rates of 

**' channel and floodplain change (Fig. 2C).  In assessing the various management options for 

**( remediating the degraded parts of these wetlands, McCarthy et al. (2010) concluded that while 

*&) further active, ongoing management intervention could restore some of the ecological and 

*&! hydrological functions, the wetland is likely to remain very far from its natural geomorphic 

*&" condition essentially in perpetuity.  Hence, the natural resilience of part of this wetland appears to 

*&# have been lost permanently, but some degree of ‘artificial’ or ‘managed’ resilience could probably 

*&$ be achieved.  In this and other cases, therefore, channel and ecological management may be 

*&% increasingly used to ‘engineer’ wetlands toward configurations deemed more desirable, thereby 

*&* meeting definition C of resilience.  Regardless of whether or not geomorphological resilience is the 

*&& primary concern, however, geomorphological insights are still needed for a comprehensive, holistic 

*&' understanding of the other dimensions of resilience.
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*&(
*') Third, in assessing wetland resilience for management purposes, identification and monitoring of 

*'! wetland dynamics in relation to geomorphological thresholds is needed.  Whether wetlands are 

*'" operating far from or close to thresholds will determine the appropriate management strategies for a 

*'# given set of objectives.  In small headwater wetlands in South Africa, Grenfell et al. (2005) 

*'$ proposed the use of floristic and edaphic indicators as early warning indicators of slow, progressive 

*'% changes related to upslope water resource developments (e.g., forestry), but these approaches need 

*'* to be developed for larger floodplain wetlands.  Wohl (2014) discussed methods for determining 

*'& resilience, thresholds, and metrics in the context of dryland channel networks; similar approaches 

*'' could be adapted for larger wetlands in drylands, many of which are associated with dryland 

*'( channels (Tooth and McCarthy, 2007).  In many wetlands in drylands, recent severe droughts have 

*() provided opportunities to identify early warning signs of wetland change.  For instance, during 

*(! Australia’s ‘millennium drought’ (c. CE 2001-2009), severe declines in water quality (e.g., acid 

*(" drainage) were reported from some ‘billabongs’ (water-filled depressions), although the ending of 

*(# the drought led to rapid recovery of water quality, demonstrating some degree of resilience to these 

*($ short-term hydrochemical changes (Murray Darling Wetlands Working Group Ltd., 2017).  With 

*(% more sustained or more frequent droughts projected in future, however, such rapid recovery in 

*(* water quality may not be so forthcoming; more fundamental structural and functional adjustments 

*(& may be expected in many wetlands in drylands, particularly where this is linked with increasing 

*(' human pressure on wetlands for dwindling resources.  Judging by the example of Blood River 

*(( (Tooth et al., 2014), even relatively simple indicators such as signs of reed encroachment in 

&)) stagnant or slow-flowing, drought-impacted channels might provide low cost, early warning signs 

&)! of potential threshold-crossing behaviour and might give rise to simple management mitigation 

&)" strategies (e.g., targeted reed harvesting from critical channel reaches).

&)#
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&)$ 6. Conclusion

&)% Like many other key concepts in geomorphology, resilience is an important but rather slippery and 

&)* amorphous concept.  For wetlands in drylands, the ambiguities in clearly defining resilience are 

&)& compounded by the wide variety of wetland characteristics resulting from diverse combinations of 

&)' hydroclimatic, geological, geomorphological, edaphic, vegetative, and anthropogenic controls, as 

&)( well as the practical difficulties in measuring resilience.  Nevertheless, using case studies from the 

&!) South African drylands, this paper has shown how aerial imagery, field data, and geochronology 

&!! can provide clearly defined spatial and temporal frameworks that enable assessment of wetland 

&!" resilience.  A synthesis of available research shows that these South African wetlands have 

&!# exhibited varying levels of geomorphological resilience and nonresilience, with a key determining 

&!$ factor being the operation of channel–floodplain dynamics in proximity to extrinsic thresholds.  

&!% While local threshold-crossing instabilities (e.g., intrinsically driven avulsions) may be experienced, 

&!* this may not necessarily affect overall wetland resilience but other factors (e.g., severe drought, 

&!& base–level changes) may push wetlands across a threshold with an effective loss of resilience.  For 

&!' many South African floodplain wetlands, consideration of the changing stability of downstream 

&!( local base levels illustrates how resilience may also change through the wetland ‘life cycle’.  Hence, 

&") on the basis of the findings from these South African wetlands and limited studies from farther 

&"! afield, generalising about the resilience of wetlands in drylands is hard.  As a group, wetlands in 

&"" drylands cannot be characterised as more resilient or less resilient than wetlands in more humid 

&"# regions.

&"$

&"% One clear conclusion emerges, however: even some wetlands in drylands that have been highly 

&"* resilient to natural factors (e.g., climate change) throughout much of the late Quaternary have been 

&"& greatly impacted by recent human activities.  In some cases, human activities have driven wetlands 

&"' across thresholds, with the changes to channel–floodplain structures and connectivity being of 

&"( sufficient magnitude to preclude a return to preimpact reference conditions, and resilience has 
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&#) effectively been lost.  This trend is not unique to wetlands in drylands, and many wetlands in humid 

&#! regions have been subject to similarly rapid, anthropogenically forced changes, particularly from 

&#" the second half of the twentieth century onward (Maltby, 1986; Dugan, 1993; Millennium 

&## Ecosystem Assessment, 2005b; Mitsch and Gosselink, 2015).

&#$

&#% Given that maintaining or enhancing resilience is often seen as a desirable target in wetland 

&#* management, the issue for geomorphologists is to operationalise the resilience concept and to 

&#& demonstrate how geomorphological resilience interfaces with other dimensions of resilience.  A key 

&#' priority is to try to identify early warning indicators of changes to wetland structure and functioning 

&#( that will enable wetland managers to identify and measure those wetlands operating close to 

&$) resilience-threatening thresholds.  This information can then be used to develop adaptation and/or 

&$! mitigation strategies that are consistent with management objectives.  In a putative Anthropocene, 

&$" increasing our understanding of coupled natural-human systems is being emphasised (e.g., Kotchen 

&$# and Young, 2007; Folke and Rockström, 2009; Chin et al., 2014), and related discussions about 

&$$ socioecological and sociogeomorphological systems are being aired (e.g., Folke et al., 2010; 

&$% Ashmore, 2015).  Clearly, abundant scope exists for wetland geomorphologists — and 

&$* geomorphologists more broadly — to improve communication of emerging insights regarding 

&$& resilience and to engage in educational and training activities that will enable society to meet the 

&$' mounting twenty-first century environmental management challenges.
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