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Numerical simulations are used to investigate the hydrodynamic benefits of body-fin
and fin-fin interactions in a fish model in carangiform swimming. The geometry and
kinematics of the model are reconstructed in three-dimensions from high speed videos
of a live fish, Jack Crevalle (Caranx hippos), during steady swimming. The simulations
employ an immersed-boundary-method based incompressible Navier-Stokes flow solver
that allows us to quantitatively characterize the propulsive performance of the fish median
fins (the dorsal and the anal fins) and the caudal fin using 3D full-body simulations. This
includes a detailed analysis of associated performance enhancement mechanisms and their
connection to the vortex dynamics. Comparisons are made using three different models
containing different combinations of the fish body and fins to provide insights into the
fish’s force production. The results indicate that the fish produces high performance
propulsion by utilizing complex interactions among the fins and the body. By connecting
the vortex dynamics and surface force distribution, it is found that the leading-edge
vortices (LEVs) produced by the caudal fin motion is associated with most of the thrust
production in this fishlike model. These vortices could be strengthened by the vorticity
capture from the vortices generated by the posterior body during undulatory motion.
Meanwhile, the pressure difference between the two sides of posterior body resulting
from the posterior body vortices (PBVs) helps with the alleviation of the body drag.
The appearance of the median fins in the posterior region further strengthens the PBVs
and caudal fin wake capture mechanism. This work provides new physical insights into
how body-fin and fin-fin interactions enhance thrust production in swimming fishes, and
emphasizes that movements of both the body and fins contribute to overall swimming
performance in fishlike locomotion.
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1. Introduction

In undulatory swimming, fish use their body and caudal fin to interact with the sur-
rounding flow. The caudal fin is considered as the main propulsor to generate thrust
during steady swimming. Previously, the hydrodynamics of caudal fins and caudal-fin
inspired models were studied in isolation in order to eliminate the confounding effects
associated with the motion of the body or other fins (Koochesfahani (1989); Buchholz
& Smits (2006); Triantafyllou et al. (1993); Anderson et al. (1998); Dong et al. (2006)),
even though it is widely thought that the interaction between the caudal fin and other
body parts can potentially improve thrust production and propulsive efficiency (Lighthill
(1970); Wu (1971); Ahlborn et al. (1991); Gopalkrishnan et al. (1994)).

To elucidate some of these interactions, Drucker & Lauder (2001) employed a digital
particle image velocimetry (DPIV) to study wakes shed by the dorsal fin of a bluegill
sunfish. Their results showed that vortices generated by the dorsal fin were captured by
the caudal fin to enhance trailing-edge vortices. Tytell (2006) further investigated the
behavior of streamwise vortices in bluefill sunfish swimming and the vortical interactions
between the median fins (dorsal and anal fins) and the caudal fin. His results showed
that the streamwise circulation decreased as the flow moved from the median fins to
the caudal fin, which suggested vorticity exploitation by the caudal fin. Based on the
measured two-dimensional (2D) flows in a number of vertical planes, Tytell (2006) also
proposed a three-dimensional (3D) flow structure model behind the fish, which is more
complex than the flow structures observed in the wake of a single caudal-fin-inspired
model (e.g., two sets of vortex rings in Dong et al. (2006)) due to the involvement of
vortices generated by the median fins. In addition, a similar DPIV study applied to flow
measurements around swimming brook trout found that the caudal fin moved through
incident flow greatly altered by the dorsal and anal fins instead of directly encountering a
free-stream flow (Standen & Lauder (2007)). All of these 2D PIV results have indicated
that flows associated with a swimming fish are dominated by unsteady mechanisms,
such as vortex shedding, fin-vortex interaction, and vortex merging, which suggests that
propulsive performance may be enhanced due to fin-fin and fin-body interactions.

Experimental and computational studies on rigid hydrofoils also showed that multiple
foils in tandem can improve swimming performance when their movements are offset
with the correct phase angle (Akhtar et al. (2007); Boschitsch et al. (2014)). Numerical
simulations suggested that the downstream foil could produce three times more thrust
when the phase offset is 48◦ and the distance between the two plates was about a chord
length (Akhtar et al. (2007)). Boschitsch et al. (2014) further studied the performance
of two in-line pitching foils over a wide range of spacings and phase offsets in a water
tunnel, and found that the thrust and propulsive efficiency of the downstream foil could
be as high as 1.6 times than that of an isolated foil at a spacing of 0.25 chord length and
phase offset of 300◦.

A number of previous computational studies examined the fluid dynamics and force
production in simplified fish models (Borazjani & Sotiropoulos (2008); Xin & Wu (2013);
Xia et al. (2015)). Of particular note here is the study of vorticity fields and the perfor-
mance of the body-tail system by Zhu et al. (2002). Using a panel method (Wolfgang
et al. (1999)) and two simplified fish models, they tested the swimming models at differ-
ent Strouhal numbers, and found that the fin-fin interactions could increase the thrust by
up to 15.9% and the propulsive efficiency by about 4% compared to the model without
dorsal and anal fins. While the aforementioned work suggested performance gains are
possible in fin-fin and fin-body systems, they were limited by their inability to provide
high-fidelity 3D flow structures in the near field and the detailed measurement of vortex-
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Figure 1. A side and ventral view of live Jack Crevalle (Caranx hippos) fish during swimming
(a,c) and reconstructed computer model (b,d) of the body and fins. In (a, c), virtual skeletons
(in red) used for the kinematics reconstruction are shown along with the live fish images. The
caudal fin (tail) is shown in red in (c, d).

body interactions in fish swimming. There are still key questions that remain concerning
the vortex dynamics and hydrodynamic benefits resulting from body-fin interaction dur-
ing a fish’s undulatory swimming, especially for high-speed swimming fishes such as many
carangiform species with elongate dorsal and anal fins that extend along the posterior
body margins.

One of the key differences between previous studies and the current effort is that both
the fish model and the undulatory motion are built from detailed experimental examina-
tion of freely-swimming fishes in all their complexity. In particular, body and fin models
for computational analysis were adopted from 3D scan of the fish body with ultra-fine
resolutions. Figure 1 shows the 3D body-fin model and its comparison with instantaneous
high-speed video frames during swimming. A large number of surface meshes are needed
to resolve the fish body and the fins, such as the dorsal fin, the anal fin and the caudal
fin. These mesh points need to be tracked to accurately reconstruct the kinematics in
the computational model. Next, the water tunnel experiments have documented in detail
fish body-fin kinematics during steady swimming of a jack fish by using a photogram-
metry system with two high speed cameras orthogonally aligned around the test section.
Figure 2 shows experimental visualizations of the body-fin kinematics which clearly high-
light the complex motion of the body-fin system during undulatory swimming (see also
supplementary movie 1).

In order to fully understand the body-fin interactions as well as to identify the hydro-
dynamic role of the body and the fins in this fishlike locomotion, three computational
models, a full body-fin model (M1) including the dorsal fin and the anal fin as shown in
figure 1(b), a body-caudal fin model (M2), and a caudal fin-only model (M3, highlighted
in red), are built for the flow simulation. The models use the same undulatory motion
documented in figure 2. Force production and power consumption of the body and the
fins are compared among these three models to assess the corresponding hydrodynamic
performance. Flow mechanisms are studied by analyzing the vorticity fields and the sur-
face force distribution in detail. The effects of fish size and undulatory frequency on
the associated findings in body-fin and fin-fin interactions are also examined by vary-
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Figure 2. Snapshots of a Jack Crevalle (Caranx hippos) fish swimming steadily at 2L/s
during one representative tail beat cycle.

ing two key flow parameters, the Strouhal number (St) and the Reynolds number (Re),
respectively.
The rest of this paper is organized as follows. First, live fish experiments, morphomet-

rics, and model reconstruction are presented in Sec. 2. Then, the simulation methodology
are presented in Sec. 3. A detailed discussion of the hydrodynamic performance and the
vortex structures observed over different computational models and their changes along
with key flow parameters (St and Re) are included in Sec. 4. Finally, conclusions are
provided in Sec. 5.

2. Jack Fish Body-fin Model and Kinematics

Live fish experiments were conducted by following the same protocol as previous work
(Akanyeti et al. (2016)). The model of a Crevalle Jack (Caranx hippos) was selected for the
computational study. This fish species belongs to the family Carangidae, of which one of
the major fish swimming modes, Carangiform locomotion, is named. In lab’s water tunnel,
we swam 12 individuals (mean total length L = 33.8 ± 1.8 cm ) in a recirculating flow
tank at speeds ranging from 1-4 body lengths per second (L/s). Since body kinematics
did not change much with speed, we selected one representative swimming speed for an
average sized individual (2.0L/s, L=31 cm) for extracting the kinematics of the fishlike
locomotion in current study. The swimming kinematics is recorded with two synchronized
high speed, high resolution cameras (ventral and side view) at 500 frames per second.
Six snapshots during a full undulatory cycle in ventral view are shown in figure 2. At the
swimming speed studied here, the the fish’s pectoral fins and pelvic fins were held against
the body throughout swimming and are thus not expected to have a significant effect on
the predicted hydrodynamics. As such, only fish’s trunk (TK), dorsal fin (DF), anal fin
(AF) and caudal fin (CF) are considered in the full body-fin model (figure 1b). TK is
modeled as a solid body with surface closed and the fins are modeled as zero-thickness
membranes. The surfaces of the model are represented by triangular cells. There are in
total 2.86 × 104 surface meshes (TK: 2.27 × 104, DF: 1.66 × 103, AF: 1.68 × 103, CF:
2.56× 103) used in the model to resolve the complexity of the body and fins.
The key geometric quantities are marked in figure 1(b, d) and measured when the

fish body and fins are stretched (see table 1 for the details). Here, L represents the
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H w ADF AAF ACF s Lc AR α
0.286 0.144 0.008 0.008 0.023 0.315 0.244 4.31 40◦

Table 1. Geometric quantities of the Crevalle Jack fish model. (All the quantities in length
scale and area scale are normalized by L and L2, respectively.)

total length of the body and is selected as the reference length in our simulations and
discussions. H and w are the body height and body width, respectively. Lc is the total
length of the CF. s is its span length, and α is the angle between the leading edge of CF
and the horizontal line. All fins areas are measured from the model and are denoted as
ADF , AAF and ACF for DF, AF and CF, respectively. The aspect-ratio (AR) of CF is
calculated as AR = s2/ACF .

The method used to reconstruct the Crevalle Jack body-fin kinematics is the same
as that used by Fish et al. (2016) and Liu et al. (2015), and is developed from the
method employed by Koehler et al. (2012) for tracking the kinematics of insect flight.
For completeness, we briefly summarize it as follows. We bound the fish body and fins
with a series of virtual skeletons, which were connected one after another and can be
rotated about their joints with three degree of freedom (figure 1a, c). At each time step,
we adjust the rotating angles of those skeletons to match our models with the high-speed
videos from two orthogonal views. The accuracy of this reconstruction method has been
evaluated by comparing the positions of the fish body and fins between the model and
the high-speed images. The error was found to be less than 3%.

The reconstructed body and fin undulatory kinematics of fish model is shown in figure
3. The midline profile (figure 3a) is similar to that of a carangiform swimmer (Lauder
& Tytell (2006)), in which the anterior half of the body has much smaller oscillating
amplitude compared with the posterior tail region. The wavelength (λ) measured from
the midline profile is about 1.05L , which is in the range of 0.89 ∼ 1.1L observed in
most carangiform swimmers (Videler & Wardle (1991)). It is slightly lower than that of
a thunniform swimmer (1.16 ∼ 1.21L in yellowfin tuna reported by Dewar & Graham
(1994)).

Flapping of the CF exhibits a dorsoventral asymmetry. The 3D shapes of the fish model
during leftward flapping and rightward flapping of the CF are shown in figure 3(b) and
(c), respectively. The amplitude of the upper tail tip is 0.189L, which is 13% higher than
that of the lower tip (figure 3b, c). Also visible is a small phase advance (about 4% of the
total period) in the upper tip with respect to the lower tail tip. These kinematic features
could cause the dorsoventral asymmetry of the thrust production between the upper and
the lower lobe of CF.

In addition, the undulatory motion is not strictly left-right symmetric. This can be
seen from the mid-line shapes in figure 3(a). Also evidence for this asymmetry is that the
maximum lateral speed of the upper tip during rightward flapping is about 7% higher
than that during leftward flapping of the CF (results not shown here).

In the majority of previous fish swimming studies (Liu & Kawachi (1999); Zhu et al.
(2002); Borazjani & Sotiropoulos (2008); etc.), the undulatory motion was treated as an
ideal 2D kinematic model (a simplified sinusoidal wave) which was based on the mid-
line motion of the fish observed from the dorsal or ventral view. Both the asymmetries of
the motion (dorsoventral asymmetry and left-right aysemmetry) and their hydrodynamic
effects were not considered. However, we do observe the asymmetric features in all jack
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Figure 3. (a) Midlines of the Crevalle Jack fish model during undulatory motion. (b) Posterior
view of the three-dimensional movement of the model when caudal fin moves from right to left
(0 6 t/T 6 0.5). (c) Movement of the model when caudal fin (CF) moves from left to right
(0 < t/T 6 0.5) Arrows denote the direction of CF motion. The red and blue dashed lines above
the top and below the bottom of the tail are the trajectories of the upper and the lower tip of
the caudal fin, respectively, during a full cycle.The heat map superimposed on the caudal fin
shows the the lateral amplitude of the caudal fin in the fish frame of reference (zc is the position
of the mid-plane when fish body is stretched).

fish swimming videos. We will describe the hydrodynamic effects of these kinematic
asymmetries on the propulsive performance later in this paper.

3. Numerical Method and Simulations

The 3D incompressible Navier-Stokes equations are discretized using a cell-centred,
collocated arrangement of the primitive variables and are solved using a finite-difference-
based Cartesian grid immersed boundary method (Mittal et al. (2008)). The equations
are integrated in time using the fractional step method. The Navier-Stokes equations are
discretized on a Cartesian mesh and boundary conditions on the immersed boundary
are imposed through a ghost-cell procedure. This method was successfully applied in
many simulations of flapping propulsion (Dong et al. (2010); Liu et al. (2015); Wan et al.
(2015); Liu et al. (2016)). More details about this method can be found in Dong et al.
(2006) and Mittal et al. (2008). And related validations about this solver can be found
in our previous work (Mittal et al. (2006); Dong et al. (2010); Li et al. (2015); Wan et al.
(2015)).
As shown in figure 4, the simulations were carried out on a non-uniform Cartesian

grid. The computational domain size was chosen as 12L× 6L× 6L with 384× 192× 192
(about 14.2 million) grid points in total. A cuboidal region around the fish model with
high-resolution grids (spacing of 0.007L, 0.004L and 0.0038L in x−, y− and z−direction,
respectively.) is designed to resolve the near-field vortex structures. At the right-hand
boundary (upstream boundary), we provide a constant inflow velocity boundary condi-
tion. The left-hand boundary (downstream boundary) is the outflow boundary, allowing
the vortices to convect out of this boundary without reflections. The zero gradient bound-
ary condition is provided at all lateral boundaries. A homogeneous Neumann boundary
condition is used for the pressure at all boundaries.
The selection of the current grid set-up was based on extensive tests to ensure that

the domain is large enough to achieve accurate results, and grid refinement has been
performed to make sure that the simulation results are grid-independent. Figure 5 shows
the comparison of caudal fin thrust coefficients of the full body-fin model in three grids.
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Figure 4. Schematic of the computational mesh and boundary conditions employed in the
presented simulations.
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Figure 5. Comparison of the caudal fin thrust coefficient of full body-fin model for demon-
strating the grid independence of the computed results. The grids employed in simulations
are 356 × 144 × 144 = 7.38 × 106 with minimum grid spacing ∆min = 0.0078 (for coarse
mesh), 384 × 192 × 192 = 14.15 × 106 with ∆min = 0.0038 (for medium mesh) and
412× 202× 202 = 16.81× 106 with ∆min = 0.0029 (for fine mesh).

It shows that the difference of both the mean value and the peak value of the thrust
coefficient between the medium-grid case (adopted in this paper) and the fine-grid case
is less than 1.8%. This demonstrates that the hydrodynamic force in the current study
was grid-independent.
In order to examine the hydrodynamics of the body-fin and fin-fin interactions dur-

ing undulatory swimming, three computational models were employed to measure the
difference between the full body-fin model (M1), the body-caudal fin model (M2) and
the caudal fin-only model(M3). It is worth noting that the CF kinematics and the flow
condition in M3 are the same as those used in M1 and M2. Two key dimensionless param-
eters, the Strouhal number (St) and the Reynolds number (Re), were varied to examine
the effect of size and frequency on the fish swimming performance. The St is defined as
St = fA/U , where f is the flapping frequency; A is the averaged peak-to-peak amplitude
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St Re A/L
0.3 ∼ 0.6 500 ∼ 8000 0.178

Table 2. Variations of St and Re, and the normalized flapping amplitude A/L in the current
study.

of the CF, and U is the swimming speed. The Re is defined as Re = UL/ν , where ν is
the kinematic viscosity of water.
In aforementioned lab experiments, the measured St of the live jack fish swimming

was around 0.3. And the Re ranged from 110,000 to 457,000. It is very challenging to
directly simulate the flow at a Re in this range with current computational capabilities.
The purpose of the viscous flow simulation is to capture the key features of the wake
structures for addressing the fundamental hydrodynamic mechanisms of fish-like swim-
ming. Previous studies (Bozkurttas et al. (2009); Buchholz & Smits (2006)) have shown
that the major flow features in flapping propulsion are similar for a changing Reynolds
number. Kern & Koumoutsakos (2006) simulated a model fish’s swimming at the Re
ranging from 2400 to 3900, which is 5- to 30-fold reduction of that in experimental stud-
ies. The wake patterns obtained in their simulations showed strong similarities with the
experimental results (Müller et al. (2001)). There are also other precedents that reduce
the Re to the order of 103 or lower in viscous model simulations of fish swimming (Fish
et al. (2016); Liu et al. (2015); Wang et al. (2012); Borazjani et al. (2012); Borazjani &
Sotiropoulos (2010); Borazjani & Sotiropoulos (2008); Dong & Lu (2007)) with the goal
of understanding fundamental physical mechanisms without the requirement of simulat-
ing flow features at very large Reynolds numbers, on the order of 104 or greater. It is
worth noting that few studies that employed turbulence models in fish swimming simu-
lations (such as Bottom II et al. (2016) and Chang et al. (2012)) can be found. In this
paper, in order to understand the predominant vortex dynamics, the Reynolds number
in current viscous flow simulation has been reduced to the order of 103 (see table 2) to
meet the requirement of the mesh resolution and computational cost by the simulation
of swimming fish models. This is equivalent to a smaller size body performing a slower
motion. We have covered a wide range of St in our simulations, which is also summarized
in Table 2. It should be noted that in our simulations we fixed the CF amplitude (mean
amplitude of the upper and lower tip) as 0.178L, according to the measured value from
the experiment.
The forces on the fish model’s body and fins are computed through direct integration of

the surface pressure and shear, which are projected from the flow variables around the fish
body (Mittal et al. (2008)). The thrust force (FT , along the swimming direction) is pre-
sented as a non-dimensional coefficient (CT ), which is computed as CT = FT /0.5ρU

2ACF ,
where U is the incoming flow speed and ρ is the fluid density. The total power is defined
as the rate of the output work done by the fish model. Its non-dimensional coefficient
(CP ) is defined as, CP =

∮
−(¯̄σ · n⃗) · V⃗ ds/0.5ρU3ACF , where

∮
denotes the integration

along the model surface, ¯̄σ and V⃗ represent the stress tensor and the velocity vector of
the fluid adjacent to the model surface, respectively, and n⃗ is the normal vector of each
point on the model surface. Note the root region of the CF in both M1 and M2 does
not produce force because it is covered by the peduncle of the body model. As such, the
force and power produced by the same area in M3 is not included into the calculation
of the force coefficients for the comparisons among these three models. The 3D wake
structures are then visualized by the isosurface of the imaginary part of the complex
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Figure 6. (a) Thrust and (b) power coefficients generated by TK, DF, AF and CF of the full
body-fin model (M1) during one representative tail beat cycle. The black solid lines in (a) and
(b) are total thrust and power, respectively. St = 0.5, Re = 2100.

eigenvalue (λi) derived from the instantaneous velocity gradient tensor, which identifies
flow regions where rotation dominates over strain (Mittal & Balachandar (1995); Koehler
et al. (2011)).

4. Results and Discussion

In this section, we first present the simulation results of the full body-fin model (M1)
at St = 0.5 and Re = 2100 in section 4.1. The comparison between M1, M2 and M3
are shown in sections 4.2 ∼ 4.4. Then a parametric study on the effects of the Reynolds
number and the Strouhal number is presented in section 4.5.

4.1. Hydrodynamic forces and wake topology of full fish model

In all simulations, five undulatory cycles have been simulated. The hydrodynamic forces
of the fish model reach a periodic state after three cycles. The periodic state in M1 is
shown in figure 6, where force and power coefficients are plotted as function of time.
Figure 6(a) shows the time history of the thrust coefficient produced by all four parts,

i.e, TK, CF, DF, and AF, of the fish model. It indicates that the TK produces drag force
(negative C̄T ), while the CF mainly produces propulsive force during the strokes. Both
the TK force and the CF force demonstrate that the force production is slightly different
between the leftward flapping and the rightward flapping. This is consistent with the
left-right asymmetry of the kinematics discussed in section 2.
Figure 6(b) shows the time history of the power coefficient (C̄P ) of different body

parts. It can be seen that the amplitudes of C̄T and C̄P of DF and AF are much smaller
than those of TK and CF due to their small areas. The cycle-averaged C̄T and C̄P have
also been tabulated in in table 3 and table 4, respectively. It’s found that the DF and
the AF generate drag force with a small amount of hydrodynamic power consumption.
The hydrodynamic benefit of the DF and the AF in the whole body propulsion system
will be discussed in the following sections.
Figure 7 shows the 3D wake vortex topology of M1 during rightward flapping. From

the top view of the flow structures (figure 7a), two sets of inter-connected vortex rings
are generated that convect to the downstream. This is consistent with the double-row
wake structures found by Borazjani & Sotiropoulos (2008) at a relatively high Strouhal
number (St > 0.3). In addition, many smaller scale vortices generated from the fish
posterior body are found emerged with the vortex rings after interacting with the caudal
fin. This can be observed in the perspective view of the wake structures (figure 7b)
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Figure 7. 3D wake structures in M1 at t/T = 0.67 from (a) the top view and (b) a perspective
view. The wake structures are visualized by the isosurface of λi. |λi| = 5.6 is for the isosurface
in white and |λi| = 11.2 highlights the vortex core in blue.

as well. As indicated in the plot, these small vortices include the trailing edge vortices
(TEVs), the posterior body vortices (PBVs), and the leading edge vortices (LEVs). In
particular, the PBVs are generated by the posterior part of the body, which will be
inevitably captured by the caudal fin. This will further affect the strength of the LEVs
formed around the the caudal fin. The consequent change of the caudal fin propulsive
performance will be investigated later.

4.2. Performance of different fish-fin models

Following the same simulation setup in previous section, the hydrodynamic role of TK,
DF and AF in the fish model propulsion is examined by evaluating their performance in
M1, M2 and M3, respectively.
Figure 8(a) shows the comparison of body drag between the M1 model and the M2

model. Table 3 summarizes the cycle-average drag coefficients of the fish body, the me-
dian fins, and the caudal fin in all three computational models, respectively. The total
drag coefficient in M1 is 0.668, which is 20% smaller than that of M2. This indicates
a significant body drag reduction due to the appearance of the median fins on the fish
body in M1. In the mean time, the thrust produced by the CF in M1 is found 13.4%
higher than that produced in M2. From the time history of caudal fin thrust production
in Figure 9(a), it’s found that the enhancement happens in the mid-strokes.
Figure 8b and 9b show the comparison of the time history of hydrodynamic power

consumption between M1 and M2 by the body and the tail, respectively. Results in
Table 4 indicate that 16.7% more total hydrodynamic power is needed in M1 due to
the appearance of the median fins. To further understand the propulsive efficiency of
both models, the Froude efficiency ηF (Liu et al. (1996); Liu et al. (2011a); Liu et al.
(2011b)) is compared between M1 and M2. It is defined by ηF = C̄T · Ũ/C̄P T , where
C̄T is the cycle-averaged CF thrust coefficient, C̄P T is the cycle-averaged total power
coefficient and Ũ is the non-dimensional incoming flow speed. It’s found that the Froude
efficiencies in M1 and M2 are 16% and 16.5%, respectively. This indicates that change of
the swimming efficiency due to the median fins is only about 3% with remarkable body
drag reduction and tail trust enhancement.
In order to understand the effect of the body-fin interaction on tail’s propulsive per-

formance, comparison of tail force production and its hydrodynamic power consumption
between M2 and M3 are shown in figure 9 and table 3. It is found that the thrust force
produced by the caudal fin in M2 is 29.8% higher than that produced in M3. This suggests
that in carangiform swimming the fish body has positive impact on the thrust production
of the CF. In addition, the time history of the hydrodynamic power coefficients (CP ) of
CFs in M2 and M3 is shown in figure 9(b). We can see that the CF power consumptions
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Figure 8. (a) Drag coefficient (CD = −CT ) and (b) power coefficient (CP ) of the fish body in
M1 (TK, DF and AF together) and M2 (TK only) during one representative tail beat cycle. In
both cases, St = 0.5, Re = 2100.

Figure 9. (a) Caudal fin generated thrust coefficients and (b) caudal fin power coefficients of
M1, M2 and M3 during one representative tail beat cycle. In all cases, St = 0.5, Re = 2100.

TK DF AF CF Total

M1 -0.668 -0.0096 -0.0103 0.593 -0.095
M2 -0.834 - - 0.523 -0.311
M3 - - - 0.403 -

Table 3. Cycle-averaged thrust coefficient (C̄T ) generated by the different parts of the fish
models. (St = 0.5, Re = 2100).

TK DF AF CF Total

M1 1.375 0.136 0.136 2.048 3.695
M2 1.316 - - 1.852 3.168
M3 - - - 1.858 -

Table 4. Cycle-averaged power coefficient (C̄P ) generated by the different parts of the fish
models. (St = 0.5, Re = 2100).
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in the both cases are very close during the stroke. From table 4, the cycle-averaged power
coefficients are 1.852 and 1.858 in M2 and M3, respectively. This implies that trivial extra
hydrodynamic power is needed for the CF’s 29.8% trust gain due to the presence of TK.
In summary, both body-fin and fin-fin interactions could result in remarkable hydro-

dynamic benefits in terms of propulsive force production and body drag reduction. First,
the body drag is found alleviated by 20% comparing the body-median fin model and the
body-only model. Second, the caudal fin thrust is found a 29.8% increase by comparing
the body-caudal fin model and the caudal fin-only model. Third, the caudal fin thrust
production by the full body-fin model is found to be 13.4% higher than that produced
by the body-caudal fin model.

4.3. Vortex dynamics Analysis

In this section, we aim to understand the mechanisms of the above performance enhance-
ment by analyzing the flow structures of the three models. Figure 10 and figure 11 show
the comparison of instantaneous wake structures during the leftward flapping and right-
ward flapping, respectively. Plots associated with M1, M2 and M3 are placed in the left
column (labeled as a1-c1, see also supplementary movie 2), middle column (a2-c2) and
the right column (a3-c3), respectively. The major vortical structures are also labeled in
these two figures. The superscripts “l” and “r” represent the vortices generated during
the leftward flapping and rightward flapping, respectively.

4.3.1. Formation of major vortices

In case M1, PBVs are generated periodically by the upper and lower edges of the
posterior body. Taking the upper edge as an example, at t/T = 0.17 (figure 10 a1), a
fully developed PBVl tube is found attaching with the body. Later on, this vortex tube
is separated from the body and moves downstream slightly (figure 10 b1 ). At the end
of the leftward flapping (figure 10 c1), a new vortex tube (PBVr), which has opposite
direction compared to the previous PBVl, is formed. The major feature of PBVs in the
present study is similar to the body vortices generated by a larvae fish (figure 2 in Li
et al. (2016)), which exploits the body vortices to produce thrust. It can also be seen that
the strength of the PBVs in M1 case is much stronger than that formed in M2 (figure
10). This would lead large instantaneous pressure difference between the left and right
side of the fish body in M1. The comparison of the resulting surface pressure distribution
between M1 and M2 will be discussed in the later section.
A recent numerical study by Borazjani & Daghooghi (2013) reported that attached

LEVs were formed in caudal fins undergoing fish-like flapping kinematics. Our simula-
tions confirm the existence of LEVs in carangiform swimming. At the early stage of the
rightward flapping, for example, at t/T = 0.58 (figure 11a), rudiments of the LEVs are
found to be attached to the leading edges of CF. At (t/T = 0.67), two obvious LEV tubes
are formed (see LEVr in figure 11b). At this moment, the thrust force reaches a peak
value as shown in figure 9(a). This is because of the high pressure difference between the
left side and the right side of CF generated by the LEVs. When CF flaps rightwards,
the LEVs become larger and are about to be shed (figure 11c). At this moment, the
whole left-side surface of the CF is covered by the LEVs. At the end of this half stroke,
the LEVs move downstream along with the fin surface, and eventually merge with the
vortices generated by the trailing edge. It forms a big TEV and this TEV sheds from the
trailing edge of the CF after the stroke reversal (figure 10a). This TEV together with the
previous shed TEV, forms a vortex ring and then convects downstream (figure 10b, c).
The latest vortex rings are labeled as R1 and R2 in figure 10 and figure 11, respectively
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(a3)

(b3)

(c3)

TEVl

PBVl

PBVl

PBVl

PBVr

TEVl

R1

R1

(a1)

(b1)

(c1)

(a2)

(b2)

(c2)

t/T=0.17

t/T=0.31

t/T=0.46

TEVl

PBVl

PBVl

PBVr

Figure 10. 3D wake structures in M1 (left column), M2 (middle column) and M3 (right column)
at (a) t/T = 0.17; (b) t/T = 0.31; (c) t/T = 0.46. The wake structures are visualized by the
isosurface of λi. |λi| = 5.6 is for the isosurface in white and |λi| = 11.2 highlights the vortex
core in blue. The arrows indicate the directions of the vortex tubes or vortex rings. The CF is
flapping leftwards in this figure.

(we do not label R1 in case M1 and M2 in figure 10 for they are blocked by other smaller
vortical structures).

4.3.2. Interactions between PBVs and LEVs

As the PBVs move downstream, they will inevitably interact with the aforementioned
vortices produced by the caudal fin. For instance, at the middle of rightward flapping
in M1 (figure 11 b1), the CF flaps through the PBVl so that the PBVr is cut into two
parts, the downstream part and the upstream part. We label these two parts in figure
12 (see PBVl

Down and PBVl
Up), which shows the flow structures from the right-side view

at the same moment as figure 11 b1. The downstream part (PBVl
Down) is on the right

side of the CF and merges with the TEVr. Later on, it will shed from the trailing edge.
However, the upstream part (PBVl

Up) gets around the leading edge and moves towards
the left side. It will be further stretched and elongated as the CF keeps flapping leftwards
(figure 11 c1). At t/T = 0.79 (figure 11 c1), we can observe four PBV tubes on the left
side of CF. In the following leftward flapping, these vortex tubes will shed into the wake
behind CF. Similar flow features can be seen in M2 with much weaker PBVs than those
observed in M1. This indicates a weaker wake capture between the CF and the PBVs in
M2.
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Figure 11. 3D wake structures in M1 (left column), M2 (middle column) and M3 (right column)
at (a) t/T = 0.58; (b) t/T = 0.67; (c) t/T = 0.79. The wake structures are visualized by the
isosurface of λi. |λi| = 5.6 is for the isosurface in white and |λi| = 11.2 highlights the vortex core
in blue. The arrows indicate the directions of the vortex tubes or vortex rings. CF is flapping
rightwards in this figure.

PBV
l

Up
PBV

l

Down

Figure 12. PBVl is cut into two parts at t/T = 0.67. PBVl
Up and PBVl

Down are upstream
part and downstream part, respectively. The CF is flapping rightwards.
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An obvious feature of this interaction is that the upper and lower PBVs are compressed
towards the root region of CF when they propagate downstream after shedding from DF
and AF. This is mainly because of the narrowing of the posterior body. Those PBVs will
merge with the LEVs near the root region of CF. Similar vortex compression of the PBVs
can be found in Zhu et al. (2002) (e.g., figure 8 in their paper), in which a potential flow
model was used.

In order to better illustrate the compounding vortex interactions near the root region
of the CF, we use two different slices (vertical and horizontal) to cut the flow field near
this region. Figure 13 and figure 14 show the contour of ωx and ωy on the two slices,
respectively. Comparison of the corresponding circulations is shown in figure 15.

Figure 13 shows four snapshots of the contours of ωx on a vertical slice (slice 1) during
rightward flapping for model M1 (left column), M2 (middle column) and M3 (right
column). In all cases, the strength of the vorticity ωx of LEVr first increases (see figure
13 a-c) and then decreases in the late stage of this stroke (see figure 13 c-d). However, the
difference of ωx development between these models is more obvious, which indicates the
effect of the body-caudal fin interaction on the streamwise vorticity near the root region.
At the early stage, besides the LEVs, we can also observe two concentrated vortices on
the right side of CF in both M1 and M2. These two vortices are the PBVs generated
by the previous leftward flapping (see PBVl in figure 13 a1, a2). As discussed in section
4.3.1, after detaching from the body, those PBVs will propagate downstream and soon
shed into the wake behind the tail, which is the reason that those two PBVs become
much weaker at t/T = 0.67 (figure 13 b1, b2). But the newly generated PBVs (PBVr) in
the present stroke are also propagating downstream. When they pass the CF root region,
they will enhance the LEV by merging into it. This explains the much higher strength
of LEVr in M1 compared with that in M3 at t/T = 0.79 (see figure 13 c1, c3). Since the
PBVs in M2 are not as strong as those in M1, the strength of LEVs in M2 is in between
M1 and M3 (see figure 13 c2). Later on, however, the PBVr will separate with LEVr

before the stroke reversal (see figure 13 d1). During the stroke reversal of M1, the LEVr

is diminishing, leaving the PBVr on the left side of the tail. And then a new LEVl will be
generated, which is like figure 13(a1) but is a left-right reflection. It should be noted that
the streamwise vorticity enhancement of LEV is mainly due to the interaction between
the LEV and PBV generated by the same stroke (LEVr and PBVr).

The dynamics of the vorticity ωy near the CF root region are also examined. We
plot a series of vorticity ωy contours on a horizontal slice (slice 2) shown in Figure 14.
Vorticity ωy of PBVs in M1 is much stronger than that in M2 by comparing the left
column and the right column in this figure. This is consistent with the comparison of
the 3D flow structures between these two models. It should be noted that the PBVs in
M1 could remain their strength after shedding from the posterior body. As a result, a
LEV enhancement mechanism that the CF captures the vorticity from the upcoming
PBVs in case M1 can be found in this figure (see Figure 14a1, b1). However, unlike the
enhancement of ωx, strength increase of ωy is due to the interaction between the LEV

generated in this stroke (LEVr) and the PBV generated in the previous stroke (PBVl).
In model M2 and M3, aforementioned interactions in M1 are not seen. This is because
the ωy of PBVs in M2 is too weak (Figure 14 a2-c2) and the CF in M3 experiences a
uniform incoming flow (Figure 14 a3-c3).

To quantify the circulation of the vortices, we first visualize the vorticity field using
contour lines. After each vortex is identified, a closed contour line is generated around
this vortex with a specified vorticity level (10% of the maximum vorticity was chosen in
this paper), and then the circulation is computed along this line. Figure 15 shows the
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Figure 13. Contour of ωx on a vertical slice (slice 1 whose position is shown by the red lines on
the top of this figure) cutting through the flow field of case M1 (left row, a1-d1), case M2 (middle
row, a2-d2) and case M3 (right row, a3-d3). (a) t/T = 0.58; (b) t/T = 0.67; (c) t/T = 0.79; (d)
t/T = 0.94.

comparison of the strength of both ωx (figure 15a) and ωy (figure 15b) among the three
models during rightward flapping. It is found that the circulations of both vorticities in
model M1 are always higher than those in M2 and M3. According to figure 15(a), even
at the early stage of the rightward flapping, circulation of ωx in M1 is already stronger
than those in M2 and M3. This result explains why the CF thrust in M1 is the highest
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Figure 14. Contour of ωy on a horizontal slice (slice 2 whose position is shown by the red lines
on the top of this figure). Left column (a1-c1): model M1; middle column (a2-c2): model M2;
right column (a3-c3): model M3. (a) t/T = 0.56; (b) t/T = 0.625; (c) t/T = 0.69.

Figure 15. Circulation (Γ) of (a) vorticity ωx on slice 1 and (b) vorticity ωy on slice 2 of the
LEVr labeled in figure 13 and figure 14, respectively. The circulation is normalized by UL and
only the results during rightward flapping of CF is shown.

among all three cases. The circulation of the ωy component of the LEVs in M2 has the
similar strength as that in M3 (see figure 15b), however, the streamwise component in
M2 is significantly higher than that in M3. As a result, the CF thrust in M2 is in between
those of the other two cases.
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Figure 16. Surface pressure of M1 (left column) and M2 (right column) at t/T = 0.25. (a1,
a2) show the left side of fish model from a perspective view; (b1, b2) show the right side from
another perspective view. The pressure coefficient is defined as p̃ = (p − p∞)/0.5ρU2 , where
p∞ is the pressure in the freestream. Red and blue contours mean higher and lower pressure,
respectively, relative to p∞. These two colors indicate pushing (red) and suction (blue) forces
acting on the body surface, respectively.

4.4. Surface pressure and thrust distribution

In this section, we first briefly introduce the pressure distribution on the body to show
how the body drag is reduced by DF and AF, and then focus on the thrust distribution
on the caudal fin to explore the thrust enhancement mechanism.
The pressure coefficient is defined as p̃ = (p−p∞)/0.5ρU2, where p∞ is the pressure in

the freestream. Figure 16 shows the comparison of pressure distribution on fish surface
between M1 and M2 at t/T = 0.25, at which a big valley of the body drag occurs.
According to this figure, the anterior bodies in both cases do not exhibit a big pressure
difference between the left and right sides, but we do find a significant pressure difference
in the posterior body. This is mainly because of the formation of the PBVs, which is
consistent with the findings in Li et al. (2016). The low and high pressure acting on
the body surface will result in suction and pushing forces, respectively. Apparently, the
pressure difference between two sides in M1 is higher than that in M2. This suggests that
a higher forward force component is generated in M1 and as a result, the drag force is
reduced.
The mean thrust distribution on the caudal fin surface is also calculated and is shown

in figure 17(a-c). It indicates that most of the thrust is generated by the leading edge
region of the caudal fin, which suggests that the LEVs is directly responsible for most of
the thrust production. By comparing figure 17(a), (b) and (c), it’s found that M1 model
generates much higher thrust over a flapping cycle than the other two. This is consistent
with the strongest LEVs found in M1 as discussed in previous section.
We also note that the upper half of CF generates slightly more thrust than the low

half of the fin, especially in M2 and M3 as shown in figure 17b, c. It is because of the
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Figure 17. Distribution of the cycle-averaged thrust (C̄T ) on the caudal fin. (a) M1, (b) M2,
and (c) M3.

dorsoventral asymmetry of CF oscillating motion, in which the upper half has a slightly
higher amplitude. Unlike M2 and M3, the thrust production in M1 is more symmetric.
This is because the height of the AF is about 25% larger than that of DF, which results
in a stronger interaction between AF and CF. This improves the thrust production on
the lower half of the fin in M1 and results in a more balanced thrust distribution on
the upper and the lower half of CF than those in M2 and M3. This even distribution
observed in full body-fin also implies a more stabilized swimming motion by reducing
the pitching moment generated by the asymmetry of the force distribution on CF found
in M2 and M3.
In summary, our results demonstrate that the interaction between the PBVs and LEVs

enhances the strength of the LEVs, thus improving the thrust production of CF.

4.5. Effects of key flow parameters

In this section, we examine the effects of the St and Re, which are important to the
hydrodynamic performance during fish swimming. For a range of each parameter, the
body drag and tail-generated thrust among the three models are compared. Only major
conclusive results are listed below.

4.5.1. Strouhal number effect

First, we focus on the effect of the Strouhal number, St. For this analysis, the Re is
fixed at 2100. Figure 18(a) shows the variation of the mean body drag coefficient (C̄D)
with St changing from 0.3 to 0.6. It is found that body C̄D in M2 does not change
too much with St, while in M1 it decreases monotonously with an increasing St. At
a relatively low St, the body drag reduction of body-dorsal/anal fin interaction is not
significant at this Reynolds number (Re = 2100). In particular, at St = 0.3, the body
drag coefficients in M1 and M2 are the same. But as the St increases, the body drag
reduction becomes more and more significant.
Figure 18(b) shows the cycle-averaged CF thrust coefficients (C̄T ) of the three mod-

els versus St. As St increases, the CF thrust coefficients in all models are increasing
monotonously. Among these three models, M1 always has the largest CF C̄T within the
St range examined here. And the total thrust enhancement of the fin-fin interaction and
body-caudal fin interaction is always significant by comparing M1 with M3. However,
the body-caudal fin interaction results in more thrust increase (comparison between M2
and M3) than that of fin-fin interaction (comparison between M1 and M2). This re-
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Figure 18. (a) Variation of mean body drag coefficients and (b) variation of mean CF thrust
coefficients with St in three models. Re = 2100 for all cases.

sult demonstrates that the fin-fin interaction plays an assistant role in the CF thrust
enhancement compared with the body-caudal fin interaction.

4.5.2. Reynolds number effect

The hydrodynamic performance of the three models with Re changing from 500 to
8000 are studied in this section. For this analysis, St is fixed at 0.5. The variation of
mean body drag coefficients of M1 and M2 with Re is shown in figure 19(a). It is found
that the body drag is decreasing as Re increases, which is mainly because a higher Re
case has smaller viscous drag. Also visible is that among all Re examined in this study,
M1 always experiences lower body drag force than M2. And this body drag reduction is
more significant at high Re cases. According to this trend, a larger benefit due to body-
dorsal/anal fin interaction could be predicted in medium- to large-sized fish swimming
at a higher Re (e.g., Re > 104).
Figure 19(b) shows the comparison of the mean CF thrust coefficients (C̄T ) among

the three models with a changing Re. It’s found that for all three models, the CF thrust
coefficients are increasing as the Re increases. Not only the thrust coefficient, the Froude
efficiency is also increased as Re increasing. For instance, ηf = 16% in M1 at Re = 2100
while it increases to ηf = 21.7% at Re = 8000 (not shown in the figure).
By comparing M1 with M2, the fin-fin interaction leads to the increase of the CF thrust

production only at Re > 1000. Furthermore, this enhancement becomes larger when Re
is higher. Also found is that, by comparing M2 with M3, the thrust enhancement in M2
reaches a maximum value when Re = 500 among all the cases tested in this study. These
results indicate that the thrust enhancement due to body-caudal fin interaction is more
pronounced in relatively low Re flows (Re < 1000), while the fin-fin interaction is much
significant in high Re flows (Re > 4000). In addition, the total increase of both fin-fin
and body-caudal fin interactions as shown in figure 19(b) remains a constant value when
Re > 4000.

5. Conclusions

Numerical simulations have been used to study the hydrodynamics associated with a
carangiform fishlike model during undulatory swimming. The body and fin kinematics
were reconstructed from experimental measurement using a set of high-speed photogram-
metry system. The focus of the current paper was to examine in detail, the production of
forces by the body and fins, the three-dimensional vortex dynamics, and body/fin surface
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Figure 19. (a) Variation of mean body drag coefficients and (b) variation of mean CF thrust
coefficients with Re in three models. St = 0.5 for all cases.

force distribution in intermediate Reynolds number flows to understand fish propulsion
mechanisms in body-fin and fin-fin interactions.
The simulations revealed that the morphology and motion of fish body and fins (in-

cluding median fins and the caudal fin) are highly coordinated. Comparisons were made
using three different models containing different combination of the fish body and fins
to quantitatively measure the performance enhancement and illustrate the associated
3D vortex dynamics. Simulations indicated that both body-fin and fin-fin interactions
could result in remarkable hydrodynamic benefits in terms of propulsive force produc-
tion and body drag reduction. First, the body drag was alleviated by 20% comparing the
full body-fin model (with median fins) and the body-caudal fin model (without median
fins). Second, the caudal fin thrust was increased by 29.8% comparing the body-caudal
fin model and the caudal fin-only model. Furthermore, the caudal fin thrust production
by the full body-fin model was found to be 13.4% higher than that produced by the
body-caudal fin model.
Detailed vortex dynamics analysis has shown that the motion of the fish model cre-

ates a number of distinct vortex structures including leading-edge vortices (LEVs) and
trailing-edge vortices (TEVs) produced by the caudal fin, and posterior body vortices
(PBVs) produced by the posterior part of the fish body including the dorsal fin and the
anal fin. These vortices convect into the downstream and interact with each other in the
wake to create a complex vortex-ring structure. Detailed analyses of the body/fin motion,
vortex dynamics, and the surface force distribution indicate that during caudal fin un-
dulatory motion, the formation of a strong and long-lasting attached LEV is responsible
for producing most of the thrust. These vortices could be strengthened by capturing the
upstream vorticity of the posterior body vortices (wake capture mechanism). Meanwhile,
the low pressure field resulted from the PBVs on the fish body helps with the alleviation
of the body drag. The appearance of the median fins further strengthens the PBVs and
caudal fin wake capture mechanism.
Simulations from a wide range of Strouhal numbers and Reynolds number have shown

that the body drag reduction is more significant at high St cases, while the enhancement
of caudal fin thrust production due to both the body-caudal fin and fin-fin interaction
is consistently significant at all St numbers. The magnitude of body drag reduction
due to body-median fin interaction is more pronounced as Reynolds number increases.
Meanwhile, the increase of caudal fin thrust production is nearly constant when Reynolds
number is greater than 4000.
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