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s u m m a r y

Biological soil crusts (BSCs) are formed by aggregates of soil particles and communities of microbial
organisms and are common in all drylands. The role of BSCs on infiltration remains uncertain due to
the lack of data on their role in affecting soil physical properties such as porosity and structure. Quanti-
tative assessment of these properties is primarily hindered by the fragile nature of the crusts. Here we
show how the use of a combination of non-destructive imaging X-ray microtomography (XMT) and Lat-
tice Boltzmann method (LBM) enables quantification of key soil physical parameters and the modeling of
water flow through BSCs samples from Kalahari Sands, Botswana. We quantify porosity and flow changes
as a result of mechanical disturbance of such a fragile cyanobacteria-dominated crust. Results show sig-
nificant variations in porosity between different types of crusts and how they affect the flow and that dis-
turbance of a cyanobacteria-dominated crust results in the breakdown of larger pore spaces and reduces
flow rates through the surface layer. We conclude that the XMT–LBM approach is well suited for study of
fragile surface crust samples where physical and hydraulic properties cannot be easily quantified using
conventional methods.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Biological soil crusts (BSCs) are formed by an intimate associa-
tion between soil particles and cyanobacteria, green algae, micro-
fungi, bacteria, lichens and bryophytes which live within or
immediately on top of the uppermost millimeters of soil (Belnap
and Gardner, 1993). Due to their low moisture requirement and
tolerance to extreme temperature and light, they dominate the
ground cover in many dryland systems which cover more than
one-third of the global land area (Belnap, 2003). For example, in
undisturbed areas of Kalahari Sand soils in Botswana, BSCs cover
reaches 95% of the soil surface (Dougill and Thomas, 2004). Multi-
ple classification systems are available based on appearance, bio-
mass, and species composition of BSCs (Belnap, 2003). For
instance, Thomas and Dougill (2007) used surface characteristics
to classify BSCs from Kalahari Sands and linked this to their
strength, erosivity and organic carbon content (Berkeley et al.,
2005).
ll rights reserved.
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BSCs play vital hydrological, geomorphological and ecological
roles in drylands (Evans and Johansen, 1999; Viles, 2008). Several
studies have demonstrated their roles on controlling soil carbon
cycling process including regulation of both photosynthesis activ-
ity and soil respiration (Housman et al., 2006; Lange et al., 1998;
Thomas and Hoon, 2010), nitrogen fixation (Belnap, 2002; Büdel
et al., 2009; Wu et al., 2009), soil aggregation (Belnap, 2006; Zhang
et al., 2006), and soil erosion prevention (Belnap, 2006; Eldridge
et al., 2000; Ram and Aaron, 2007).

However, the influence of BSCs on hydrological processes such
as infiltration remains uncertain and controversial (Belnap, 2006;
Evans and Johansen, 1999) due to the lack of measurements of
key physical measurements which determine the flow through
the surface crust. Warren (2003) analyzed previous studies on
infiltration and found that out of 24 field-based studies on infiltra-
tion, seven showed that the presence of biological crusts increased
infiltration, six showed no effect, and 11 showed decreased infiltra-
tion. Warren (2003) concluded that the presence of crusts de-
creased infiltration as sand content increased (>66%) and
increased infiltration as clay contents increased (>15%). However,
it is well established that other soil physical properties such as soil
structure, porosity and pore characteristics (size, shape, connectiv-
ity, tortuosity) significantly influence water flow through soil and
these have not been measured in crust hydrology studies to date.
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Fig. 1. Photographs showing various crusts Types (1–3) found in Kalahari. The
order of their fragility is Type1 > Type2 > Type3. The Types 2 and 3 were used for
this study.
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Data on these underlying soil physical parameters would form a
stronger physical basis and help interpret the infiltration data
and ascertain the role of BSCs on crusts on infiltration (Belnap,
2006). However, measurement of structure or porosity without
disturbance to the crusts is a methodological challenge, especially
when dealing with fragile samples like BSCs.

In addition to porosity and pore characteristics, infiltration or
run off are also affected by several other properties of the BSCs
such as pore clogging or hydrophobicity, depending on the type
and the amount of organisms in the crust (Belnap 2006). Most
organisms have the ability to swell upon wetting contributing to
hydrophobicity and the clogging of soil pores (Verrecchia et al.,
1995; Kidron et al., 1999). Similarly, when BSCs are disturbed
mechanically, infiltration can be significantly affected (Eldridge
et al., 2000) due to the changes in structure, porosity and pore
characteristics. The effect depends fundamentally on the type of
crust, the amount of force applied and initial moisture conditions.
The effect of mechanical disturbance on infiltration can be only ex-
plained with the help of porosity or bulk density changes before
and after the application of force and as yet no studies quantify
the impact of mechanical disturbance on structure and porosity
of fragile dryland soil crusts.

In order to establish the influence of BSCs on infiltration, we
need to develop and apply non-destructive quantification of poros-
ity and structure and an independent assessment of flow which is
based on key soil physical properties and not affected by field dis-
turbance or properties of crusts such as hydrophobicity or pore
clogging. Given this, we formulated the following objectives for
this study:

(1) to quantify and assess porosity and structure of different
types of BSC from a study site in the Kalahari using non-
destructive X-ray microtomography (XMT) and the model-
ing of flow using Lattice Boltzmann method (LBM) and

(2) to assess the impact of mechanical disturbance (vertical
impact) on the porosity of, and flow through, a cyanobacte-
ria-dominated BSC.

2. Methods

2.1. Sample collection and preparation

BSC samples were collected from a southern Kalahari location
near Tsabong (26�3’S–22�27’E), Botswana where a series of ongo-
ing studies are assessing the biological and biogeochemical make
up of crusts (Berkeley et al., 2005; Thomas and Dougill, 2007;
Mager, 2010; Thomas and Hoon, 2010). Kalahari sand soils are
typically 96–98% fine sand and are found across an area of over 2
million km2 of southern Africa (Wang et al., 2007). The mean an-
nual rainfall of the study site is c. 320 mm. The BSCs of Kalahari
are classified into three types based on their form and morphology
(Dougill and Thomas, 2004), as represented in Fig. 1. Type 1 BSCs
represent the early stage of crust formation indicated by a delicate
and thin layer of aggregated sand materials on the surface, often
buried under aeolian deposits with no distinct colouration. Type
2 crusts are a few millimeters thick with speckles of colouration,
whereas Type 3 crusts are dark brown or black in colour with a
clear surface microtopography. Both Types 1 and 2 are cyanobacte-
ria-dominated whereas Type 3 crusts are made up of both cyano-
bacteria and surface lichen communities (Thomas and Dougill,
2007). The order of their fragility (measured in terms of crust
strength with a portable needle penetrometer) is Type 1 > Type
2 > Type 3 and the reverse order is true for their structural devel-
opment and surface microtopography/roughness (see Thomas
and Dougill, 2007). Intact soil cores and crust samples were col-
lected in small petri dishes and wrapped in cotton. Cyanobacterial
Type 2 and mixed cyanobacteria–lichenous Type 3 samples were
able to be packed and transported to the laboratory without break-
ing up and as such were used for this study. Type 1s (early devel-
opment-stage cyanobacterial crusts) were not studied due to their
very low compressive strength, making intact transit to a distant
imaging facility was difficult to ensure.

2.2. XMT imaging

X-ray microtomography (XMT) is a non-destructive 3D imaging
technique widely used for visualization and quantification of inner
structure (for soil applications see review by Taina et al., 2008)
without tedious sample preparation. The high resolution images
obtained using XMT typically show spatial arrangement (struc-
ture) of solid particles and pores in space. The facility consists of
an X-ray source, a detector and the sample in between. The XMT
scanner (Phoenix Nanotom 160 NF) used for this study has a
nano-focus X-ray tube, capable of producing a spot-size (akin to
aperture in pin-hole imaging) of less than 1 lm, up to 180 kV tube
voltage and 880 lA tube current, giving a 15 W power output. De-
tail detectability can go down to 200–300 nm. The CCD X-ray
detector array has 2304 � 2304 pixels.
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Given a fixed X-ray detector size, image resolution is inversely
proportional to the sample size used. Therefore, we used a small
piece of crust (approximately 5 mm diameter) in order to achieve
a resolution of 2–3 lm and to study the crust micro-structure
and to model water flow. We scanned two Type 2 samples and
one Type 3 sample. We chose one Type 2 sample to study the influ-
ence of mechanical disturbance on soil structure and permeability.
To apply disturbance, the sample was vertically arranged in a plas-
tic sample holder, with the surface layer at the top. A force was ap-
plied by dropping a weight of 200 g from a distance of 1 cm to
simulate the impact of trampling. The sample was imaged before
and after disturbance to study porosity and structural changes
directly.

The scan data was imported using DigiUtility – an in-house code
for processing and visualizing volumetric datasets. For the simula-
tions reported here, it was used for cutting out a sub-section from
the full scan volume, scaling down the resolution, saving it in a for-
mat recognisable by the LBM code.

In order to understand pore size distribution of the 3D volumes,
we also calculated mean empty space (MES), which is a size mea-
sure of the pore space. This was done by picking at random a pore
(empty) site and measure from this point the dimensions of the
Table 1
Model parameters and their description with units.

Parameter type with units Value

f (pressure gradient) 0.001
s (relaxation number) 1
mphys (kinematic viscosity of water), [m2 s�1] 1 � 10�6

b (resolution) [pixels per meter] 1 � 105

ba

Fig. 2. (a and b) Two examples of 2D cross-sections of Type 2 crusts with 3 lm resoluti
large voids in the structure and the dotted white circle shows the aggregation. The sampl
is sandwiched between two coarse sand grains.
pore space along X, Y and Z axes. The procedure is repeated for a
large number (65,500) of random points and the averages are
taken.

2.3. LBM modeling

The Lattice Boltzmann method (LBM) offers numerical solu-
tions for simulating flow in and through complex porous media
using high resolution 3D structure obtained via XMT (Succi,
2001; Sukop and Thorne, 2006). LBM offers quantification and
visualization of superficial velocity (equivalent to Darcy hydraulic
conductivity) based on the porosity and pore characteristics. The
advantages of LBM over conventional computational fluid dynam-
ics (CFD) approaches are mainly its simplicity, the possibility to
use larger datasets or images of complex geometry, and its speed
(particularly when the meshing requirement of conventional CFD
approaches is taken into account). A detailed description of the
method can be found in monographs elsewhere (Succi, 2001; Suk-
op and Thorne, 2006; Wolf-Gladrow, 2000) together with its
capability to model permeability through porous media obtained
using XMT (Selomulya et al., 2006; Videla et al., 2008; Zhang
et al., 2005).

All inputs and outputs to LBM are customarily in lattice units.
For length scale, one lattice unit is the linear size of one grid cell
(lu); for time, it is one time step (ts). Both are set to have a nominal
value of 1. Velocity is given in units of lu ts�1, and kinematic vis-
cosity in lu2 ts�1. To convert superficial velocity U from lattice units
to physical ones, it is assumed that the value of the Reynolds num-
ber, Re ¼ UL

m , remain the same in both lattice and physical worlds,
thus
Coarse  
texture 

Coarse 
 texture 

Fine 
 texture 

on (image dimensions: 6576 � 2700 lm). The white ellipses in the left image show
e was clearly showing texture variations within the sample, i.e. a fine textured sand
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Fig. 3. An example 2D view of Type 3 crusts with 3 lm resolution (image
dimensions: 5805 � 2700 lm) with denser layer at the top with a loose structure at
the bottom. The biological tissues were seen at the top of the crusts. Aggregated
regions (dotted circles) are clearly visible.

Fig. 4. (a and b) Images showing Type 2 crust with 2 lm resolution before (a) and after (
was 3978 � 1800 lm (a) and after the impact was 1906 � 2008 lm (b). The mechanical i
length). Most of the large voids (ellipses) found in prior to the disturbance were almost
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Uphys ¼
mphys

Lphys
Relattice ¼

mphys

Lphys

UlatticeLlattice

mlattice
¼ 6mphysUlatticeb

2s� 1
ð1Þ

where L is a characteristic length, s a relaxation parameter used as
input to LBM, m kinematic viscosity of fluid (water), and b resolution
given in pixels per meter. Values of these parameters and of the
LBM calculated superficial velocity are summarised in Table 1.
The final superficial velocity in physical units is equivalent to Darcy
hydraulic conductivity. We use the superficial velocity throughout
this paper.

2.4. Porosity measurement of BSCs using stereopycnometer

In order to compare the porosity obtained from XMT with more
conventional approaches, we also measured porosity in an engi-
neering soils laboratory using a Helium gas Quantachrome stereo-
pycnometer (model SPY-2) to determine porosity of BSCs (Lowell
et al., 2004).

3. Results

In this section, we present the images obtained on BSC Types
structure using the XMT method including pre– and post-
disturbed samples, followed by results from LBM simulations
comparing both the two types of crust sampled and also the
impacts of disturbance on the cyanobacterial crust.

3.1. Micro-structural features of the crusts

Figs. 2 and 3 show example cross-sectional slices gained
through XMT scanned 3D crust structures. Several hundreds of
these ‘digital’ slices can be made in any direction (XY or XZ or YZ)
b) a simulated mechanical impact, the dimensions of the sample prior to the impact
mpact has significantly compacted the samples (approximately 50% reduction in the
disappeared after the mechanical impact, reducing the total porosity.
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to virtually navigate through the sample to enable improved under-
standing and quantification of the inner structure. The slices shown
here are from middle part of the crust sample. The grey objects in
Figs. 2 and 3 represent sand particles and black indicates voids.
These images show the presence of macropores (solid ellipses)
and aggregation (dashed circles) revealing the important micro-
scale soil structural heterogeneity within crusts examples of which
are highlighted in the figures. The particle size distribution within
cyanobacterial Type 2 crusts (Fig. 2) shows that fine textured sand
grains are typically sandwiched between coarse textured grains.
Many macropores appear long and continuous which will signifi-
cantly influence the flow through the crusted layer. Clusters of sand
grains/aggregates are also visible in many parts of the samples
which are most likely due to the aggregation effects caused by
sticky extracellular polysaccharide compounds produced by BSCs
(Mager, 2010) as illustrated in earlier publications using electron
microscopy (see Belnap, 2006; Zhang et al., 2006).

The presence of additional biological tissues (notably lichens),
especially on the upper part of the sample, can be clearly seen in
the images of the Type 3 crust (Fig. 3). Type 3 crust revealed a
much more compacted top layer with a relatively loose bottom
layer. Example images (such as in Fig. 3) showed large voids in
the samples, typically towards the middle to bottom part of the
sample.
Fig. 5. Flow rate distributions of Type 2 (a and b) and Type 3 (c and d), simulated using
Warm colours represent areas with relatively higher flow rates. Due to the large voids and
be observed. The sample size is 2500 � 1800 lm.
Fig. 4a shows the second sample of cyanobacterial Type 2 sam-
ple prior to the mechanical impact. Both samples (Figs. 2 and 4a)
fall under same Type of crusts, yet differ significantly in their struc-
ture. For example, the first sample (Fig. 2a and b) showed several
macropores and channels, whereas the second sample a few mac-
ropores (Fig. 4a). Fig. 4b shows the crust after the mechanical im-
pact. Macropores are visible prior to the impact (Fig. 4a), but
disappeared after the mechanical impact. The vertical disturbance
significantly reduced the crust dimensions (compaction) and re-
sulted in a more uniform packing of sand grains.

3.2. LBM simulation

We modeled flow using 3D BSC structures obtained (including
the post-disturbed sample) via XMT. The XMT datasets, which
originally had 3 lm per voxel (volumetric pixel) resolution, were
scaled down to 10 lm per voxel to enable a larger (and more rep-
resentative) sample volume to fit in the available RAM for LBM
simulations. For simulations, top denser parts of crusts were
chosen.

The flow in the simulation is from the crust surface down so as
to simulate the infiltration process. Fig. 5 shows examples of
cross-sectional views of the LBM simulated velocity distribution
in Types 2 and 3 crusts respectively. Warm colours indicate higher
LBM (DigiFlow). Solid phase (sand particles and tissues) areas are given as white.
channels in the structure of Type 2, more flow strands (green and red colours) could
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superficial velocity. Figures illustrate how structure and porosity is
influenced by structure porosity of the medium. Similarly, Fig. 6
shows the flow distribution in 3D in two examples slices of cyano-
bacterial Type 2 crusts before (a) and after (b) the disturbance. The
number of flow strands was significantly fewer prior to the distur-
bance of crusts compared to post-disturbance as mechanical dis-
Fig. 6. (a and b) Flow rate distributions in three dimensions of a fragile
cyanobacterial dominant crust before (a) and after (b) disturbance in 3D. The
colours represent flow strands in 3D in the solid volume (black). Prior to the impact,
the flow was confined to a few pores (a). Mechanical disturbance disrupted the
existing flow strands and pores to numerous finer ones, subsequently reducing the
superficial velocity of the crust (b). The sample sizes were 2500 � 1800 � 1800 lm
for (a), 960 � 1800 � 1800 lm for (b).

Table 2
The porosity (%), pore size fractions (%) and superficial velocity of BSCs obtained from XM

Type of crust Sample size (lm) Total porosity (vol.%

Type 2 sample 1 2500 � 1800 � 1800 47.4
Type 2 sample 2 2500 � 1800 � 1800 34.1
Type 3 sample 1 2500 � 1800 � 1800 30.9
Type 2 sample 2 (post-disturbed) 960 � 1800 � 1800 30.4
turbance increased the number of flow strands, resulting in a
more uniform flow pattern.

LBM simulated superficial velocity is given in Table 2 along with
porosity (by volume) obtained by XMT. The superficial velocity is
the function of porosity. Even within the same type of crust a sig-
nificant variation in porosity was found (Type 2 samples 1 and 2).
Comparing the reduction of porosity and superficial velocity of pre
and post-disturbed samples it was found that the mechanical im-
pact has caused a reduction of c. 10% in the total porosity resulting
in 36% reduction in superficial velocity. The porosity of the Type 3
crust was thus comparable to the post-disturbed Type 2 sample
(Table 2).
3.3. Porosity and pore size distribution

The porosity of Types 2 and 3 samples measured in the labora-
tory using stereo pycnometer were 32.39 ± 3.28% (mean ± standard
error) and 35.02 ± 5.24% by volume, respectively. The measure-
ments were in good agreement with the porosity of most samples
obtained via XMT.

Table 2 shows the pore size distribution (micro, meso and
macro pores) based on MES calculations from each crust type. Type
2 sample 1 had the highest proportion (95%) of macropores among
all samples. The pore size distribution of Type 3 sample was in
between two Type 2 samples. As a result of mechanical impact,
marginal increase in mesopores (3%) was observed.
4. Discussion

This study provides a first quantitative micro-scale assessment
of how dryland BSCs influence soil physical properties such as
porosity, structure and water flow by using the non-invasive imag-
ing and modeling of different soil crust types and assessment of the
impacts of disturbance of a crust. Previously using scanning elec-
tron microscopy (SEM), researchers have published images (2D)
of BSCs (e.g. Belnap 2006; Zhang et al., 2006; Thomas and Dougill,
2007) to show aggregation of sand particles by sticky extracellular
polysaccharides secreted by crust organisms. The XMT method
used here enables the further study of the interior structure and ra-
pid quantification of porosity for BSCs and will enable more de-
tailed experiments to be designed to examine the controls that
crusts exert on surface infiltration across the worlds drylands.

The XMT images showed micro-scale heterogeneity in the dis-
tribution of sand particles and of pores in BSCs. The total porosity
and pore sizes were quantified using image analysis tools on a vol-
ume basis and showed heterogeneity within the same Type of crust
(Type 2 – cyanobateria-dominated crusts). XMT measurements
also showed that porosity of Type 3 (lichen-dominated crust) sam-
ples was lower than cyanobacteria-dominated Type 2 crusts. The
difference is most likely due to the presence of the lichenous tis-
sues within the better developed crusts. The porosity measure-
ments of samples were in good agreement with porosity
measured in the laboratory using a stereo pycnometer. Porosity
of unconsolidated Kalahari Sand can be as high as 49% (Wang
et al., 2007) and most of the crust samples analyzed (using XMT
T digital images and LBM simulations.

) Pore size fractions (%) Superficial velocity

630 lm 30–50 lm P50 lm Ulattice Uphys (ms�1)

2 3 95 2.19 � 10�3 1.31 � 10�3

11 12 76 5.34 � 10�4 3.20 � 10�4

9 10 81 3.41 � 10�4 2.05 � 10�4

10 14 76 3.40 � 10�4 2.04 � 10�4
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or stereopynometer) had far lower porosity than this, indicating
the impact of crust in reducing total porosity.

Images presented here also showed that crust structure varies
significantly within and between the samples. The internal struc-
ture of crust is known to be influenced by the amount and type
of micro-organisms in crusts which typically shows a high degree
of spatial heterogeneity (Belnap, 2006).

Another significant advance provided by this study is the appli-
cation of LBM to predict flow of BSCs based on 3D physical struc-
ture including the links between physical and hydraulic
properties. LBM provides an opportunity to visualize the flow dis-
tribution (Fig. 5), where difference in the flow rates can be found
within the same sample. The results (Table 2) show how the struc-
ture and porosity influence water flow patterns in different BSCs.
Within the same Type 2 cyanobacteria-dominated crusts, we ob-
served an order of magnitude difference in superficial velocity be-
tween the two samples, primarily due to the large difference in the
total porosity and the pore size distribution (Table 2).

Field studies from the same location using a double ring infil-
trometer show that hydraulic conductivity of cyanobacteria (Type
2) crusts were an order of magnitude higher (10�4 ms�1) than bet-
ter developed and lichenous Type 3 (10�5 ms�1). Similar order of
magnitude and trends were also observed by Veste et al. (2001)
for cyanobacterial crust dominated crusts and the lichen-domi-
nated crusts of the Negev, Israel. The lack of in situ soil physical
measurements in previous studies impose difficulties in how to
interpret and compare with our results, although trends in super-
ficial velocity and hydraulic conductivity measurements are
broadly comparable with cyanobacteria-dominated crusts being
more permeable than lichen-dominated crusts.

The difference between the simulated superficial velocities and
field experiments is also contributed by some properties of the
crusts such as hydrophobicity, surface sealing and clogging of
pores upon wetting as a result of swelling and expansion of bio-
mass within BSCs (Campbell, 1979; Eldridge and Greene, 1994;
Verrecchia et al., 1995; Kidron et al., 1999). This is especially true
for lichen-dominated crusts. These properties significantly contrib-
ute to the underestimation of the infiltration rates for better devel-
oped lichenous crusts.

For the first time, we also quantified the impact of disturbance
on porosity and flow patterns of a cyanobacterial soil crust. XMT–
LBM approaches demonstrated (Figs. 4 and 6) the changes in the
porosity and flow patterns in pre- and post-disturbed crusts. At
the micro-scale, a force applied on the crust in the vertical direc-
tion significantly reduces the modeled flow rate. The large voids
(Figs. 4a and b) and channels diminished and flow strands were
uniformly distributed after disturbance, which resulted in a greater
reduction in the superficial velocity in the post-disturbed sample.
Experiments conducted in the field conditions with simulated dis-
turbance on Type 2 crusted surfaces also showed similar trend, i.e.
a decrease in hydraulic conductivity as a result of disturbance. The
modeled results are also in good agreement with field measure-
ments of infiltration rates for Kalahari sand soils (Dougill et al.,
1998).
5. Assessment of the XMT–LBM approach

For fragile soil surface samples such as BSCs, the combination of
XMT and LBM provides a non-destructive, faster and, most impor-
tantly, robust approach that allows the micro-structure of soil
crusts to be visualized. The XMT was particularly successful to im-
age ‘the whole structure’ of crusts. XMT images can be used for
visualization and quantification of porosity as well, without cum-
bersome sample preparation. LBM was found particularly useful
to simulate the flow using 3D structure. This study also illustrated
the possibility to use these methods to study structural changes as
demonstrated by our simulated mechanical impact study on
cyanobacterial Type 2 crusts. Most available methods do not allow
a pre and post-assessment of structure using visualization and
quantification at the same time. Another use of LBM results is
the visualization and characterization of flow pathways. As illus-
trated in Fig. 5, similar-sized pores that appear in a cross-section
do not necessarily make similar contribution to flow resistance.

XMT facilities are expensive and not as accessible as other
(more conventional) measurement facilities, which limits the
number of samples can be studied. Given the small sample size,
for the results to be truly representative, it may be necessary to
analyze several samples using XMT to be able to examine spatial
variability between and within Types of crusts across dryland
regions.
6. Conclusions

This study has demonstrated the use of XMT and LBM to over-
come one of the major methodological constraints to study physi-
cal and hydrologic properties of fragile BSCs that cover much of the
worlds dryland soil surface. Using these methods, we were able to
interpret flow characteristics based on physical properties. XMT
yields high resolution images of various crusts types, which is use-
ful to quantify porosity and understand innate structure of these
crusts. We have also demonstrated how mechanical impact could
affect the crust porosity and flow in this paper. For the future,
we need more comprehensive studies in order to account the het-
erogeneity of samples.
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