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Automated FMEA based diagnostic symptom generation.

Neal Snooke1,∗, Chris Price

Department of Computer Science
Aberystwyth University
Penglais, Aberystwyth

Ceredigion, SY23 3DB, U.K.

Abstract

The comprehensive on-board diagnosis of faults in many aerospace and other engineered systems requires
real time execution using limited computational resources, and must also provide verifiable behaviour. This
paper shows how a diagnostic system satisfying these requirements can be automatically generated from the
model based simulation used to produce an automated Failure Modes and Effect Analysis (FMEA). The
resulting diagnostic system comprises a set of efficiently evaluated symptoms and their associated faults.
The symptoms are complete in that they include all necessary observations required to determine applicable
system operating states, unlike other work that finesses this problem by having models for each operating
state and producing diagnostics for each operating state separately. The symptoms are also efficient because
they abstract complex system behaviour based on observations available to the diagnostic system and only
preserve sufficient symptom detail to isolate faults given these available observations.

This work has been done in the context of diagnosing autonomous aircraft, and is illustrated with examples
from that domain. The models used as a basis for automated generation of diagnostics were originally
produced to automate the production of a FMEA report, and the paper also considers the relationship
between FMEA and diagnostics that provides verification of the failure effects predicted by the simulation
and hence validation of the generated symptoms.

Keywords: Qualitative reasoning, Automated FMEA, Symptom generation, Diagnosability analysis

1. Introduction

1.1. Context
This paper describes research carried out on

the ASTRAEA project, a pioneering £32 million
aerospace programme which is addressing key tech-
nological and regulatory issues in order to open up
non-segregated airspace to unmanned autonomous
aircraft [9]. In order to operate autonomous aircraft
safely in normal airspace, a high degree of confi-
dence is needed in the capability of the aircraft to
accurately carry out prognosis and health manage-
ment (PHM). A key part of the PHM task is the
ability to identify problems on board the aircraft
and to diagnose those problems correctly.
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cjp@aber.ac.uk (Chris Price)
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The on-board diagnosis of complex vehicle sys-
tems is a challenging task, and qualitative model
based diagnosis has been successfully applied to
produce on-board systems that assist in the detec-
tion and isolation of faults [26, 4, 7]. The major-
ity of these systems use executable models of the
systems (either with or without fault models) sim-
ulated in parallel with the working system. The
model is supplied with the actual inputs to the sys-
tem and abductive reasoning is performed based on
discrepancies between the predicted and observed
system behaviour [8]. The reasoning approaches
utilised to perform fault candidate generation from
the discrepancy between predictions and observa-
tions are categorised in [6].

A second approach that has been adopted is to
use the same type of model-based analysis as above,
with a defined set of possible component faults, to
generate a set of candidate component faults for ev-
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ery possible system failure. This information forms
the basis of an FMEA, for example earlier circuit
based work by the authors in[21]. Indeed, any sys-
tem that is capable of the necessary nominal and
failure behavioural predictions can potentially be
used to provide the data for symptom generation,
for example the qualitative deviation model ap-
proach of [24]. That approach does not however
provide any particular advantage with respect to
efficiency of the FMEA production since the devi-
ations do not replace the absolute model for the
FMEA task[23].

There is some similarity to the ‘association based’
category of reasoning described in [6] whereby
discrepancies are matched with stored symptom-
failure associations. The significant differences in
the present work are that possible discrepancies are
precomputed (optimised) and the symptom-failure
associations are generated automatically from the
system description removing any maintenance is-
sues. There are a number of advantages to the Au-
tomated FMEA based approach:

• The diagnostic system’s capabilities can be
characterized before deployment. Specifically,
the scope and accuracy of the diagnostics can
be checked and verified. This is important in
our context, as stringent certification and reg-
ulation approval requirements exist.

• The technical challenges associated with exe-
cution of complex models and model accuracy
checking is done off line, in advance, and once
only and therefore the on board detection of
faults is efficient allowing guaranteed response
times.

• Additional symptoms that do not come from a
model of the system can be used to augment
the model-based diagnostics.

• The diagnostic weight of each symptom can be
calculated to reflect reliability.

Component fault models and the identification of
the operating states in which each component fault
can be detected are required in order to produce
good results. It is not sufficient merely to test pres-
sures or voltages in a system, as such symptoms
are often state-dependent — problems can only be
observed when the system is in specific operating
modes. Practical applications of this technology
often link hand generated symptoms to component

faults in order to produce efficient on-board diag-
nostic symptoms.

The research described in this paper improves the
efficiency and consistency of this second approach
in three ways. Firstly, it integrates the model-
based diagnosis with model-based failure modes
and effects analysis (FMEA): this means that all
included component failures have been considered
and agreed by engineers using the existing design
process. Secondly, it provides algorithms for pro-
ducing state-based symptoms that comprehensively
characterise the observable failures in the system.
Finally, it determines whether all system failures
can be observed with the existing sensors, and in-
dicates which component failures can be isolated
with existing sensors.

Section 2 describes the overall structure of the
process of producing useful symptoms, and section
3 explains the structure of the output of a model-
based FMEA report.

Section 4 provides an efficient algorithm for the
selection of symptomatic observations from a large
set of possible candidates.

Section 5 addresses the problem of generalising
observations from a representative set of system
states to all possible states.

Section 6 outlines how the generated symptom-
fault sets can be used to create a diagnostic system,
followed in the final section by the results of apply-
ing the symptom generation technique to realisti-
cally sized systems.

2. Background

Figure 1 illustrates the main steps in the process
of producing detectable symptoms for the on-board
diagnostic system. The shaded items represent pre-
viously existing data and analysis.

Model-based generation of FMEA. This has
been well-documented in previous papers [16]
and is in daily use in industry to produce
FMEA reports on automotive electrical sys-
tems. It simulates the qualitative system be-
haviour for all potential component failures,
and uses functional reasoning [14] to abstract
the high level consequences for each possible
failure. The consequences of every failure are
reported to the designers, and they can decide
the steps needed to improve the safety and re-
liability of the system.
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Figure 1: Model-based On-board Symptom Generation

Symptom generation. This is the main contri-
bution of this paper. The FMEA results pro-
vide a link between the system failures and the
component faults that caused them. For ser-
vice bay diagnostics, these links can be used to
find the cause of a problem with the system.
However, in on-board diagnosis, the known in-
formation is limited to sensor values and sys-
tem state, and it is necessary to decide how
and when to use observable behaviour both to
decide that there is a problem, and to deduce
the root cause of that problem. Sections 4 and
5 of this paper describe how to use automated
FMEA results to generate a set of character-
istic symptoms to be monitored that will pro-
vide the maximum information about the state
of the system.

On-board diagnostic system. One of the limi-
tations of model-based reasoning is that it can
only deal with problems that are within the
scope of the modelling. For example, if prob-
lems are caused by cross-component interac-
tions that are not modelled, then they would
not be included in the set of symptoms to mon-

itor [11]. The generated set of symptoms to be
monitored can be augmented by further symp-
toms that compensate for the limitations of the
chosen modelling. In our solution, all of the
symptoms are included in an existing propri-
etary Bayesian network based diagnostic sys-
tem developed by BAe Systems [19]. The pro-
cess of using qualitative symptoms within this
system is outside the scope of this paper, how-
ever several key features are provided in section
6 of this paper.

Coverage analysis. Ideally, the on-board diag-
nostic system would be able to detect and iso-
late every possible component fault that could
occur. In practice, on-board systems have a
limited set of sensors, and those sensors are of-
ten decided before an on-board diagnostic sys-
tem is planned. It is however easy to modify
the visibility of any model parameter or simu-
lation variable in the system model. We have
developed a tool that exploits this to allow in-
vestigation and analysis of the relationship be-
tween measurement availability and diagnos-
ability, presenting the information to the engi-
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neer as a visual cluster matrix together with
summary information. These techniques and
tools can be used during early design to quickly
assess the impact of different sensor selection
strategies and are the subject of a separate pa-
per [22].

There are several specific advantages of this pro-
cess for the applications and case studies targeted
by this work :

• The simulation effort need be carried out once
only as part of existing design analysis require-
ments, and does not need to be done on the
on-board hardware. This means that the di-
agnostic system requires relatively simple on
board processing.

• The ability to supplement the symptom set
used for on-board diagnosis is valuable for sev-
eral reasons. Symptoms can be included based
on specialist sensors outside of the modelling
domain of the system to be included, such as a
temperature sensor measuring electrical com-
ponent temperatures. In addition, outputs of
components or subsystems that include their
own black box diagnostic capabilities that can-
not be modelled can be included in the diag-
nostic system. Fault prognosis tends to require
specialist techniques and sensors to identify
system degradation; if these exist then symp-
toms can be included that convert these as-
pects into a diagnostic output. In these cases
the fault is not a hard fault but a degradation
or future failure prediction, and the measure-
ments and observations may include outputs
from the specialist sensors or software. Finally,
further symptoms can be included (or possibly
excluded) where for pragmatic reasons mod-
elling simplifications exist in the models used
for the design analysis.

• Existing experience can be included if a
Bayesian version of the on-board diagnostic
system is used by allowing adjustment of the
weighting of symptoms to reflect any uncer-
tainty regarding the applicability of a symp-
tom, for example where measurements might
be considered less reliable.

• The diagnostic system’s capabilities can be
characterized in advance, and the sensing re-
quirements and cost weighed against the di-
agnostic and fault isolation capability of the

system. An engineer can experiment with sen-
sor selection and assess the capability of the
resulting diagnostic system [22].

3. Characterising FMEA Descriptions

The basis of the state-based symptom generation
work is the application of the simulation results ob-
tained during the generation of an FMEA. These
simulations drive the system to explore a broad
range of nominal and failure operating states.

This section provides a formal description of the
process of generating a model-based FMEA report
abstracted by function. This will then be used as a
basis for the novel method of symptom generation.

A trivial electrical system comprising several
lamps, switches and connecting wires are depicted
in figure 2 will be used as a running example
throughout the paper to illustrate the notation, al-
gorithms and results. Only wire fracture faults will
be included, and the system will be instrumented
with the current flow in each wire as a basis for
symptom generation. For reasons of space, results
extracts will be used in the paper; the complete
auto-generated results for the example are available
as supplementary material with the online version
of the paper.

3.1. FMEA generation
An FMEA report is produced by comparison of

system function and behaviour for nominal and
failure mode operation. The system is exercised
through a number of states using a scenario de-
fined by an engineer that (in general) activates each
of the system functions and major functional oper-
ating modes. The following paragraphs develop a
notation for the FMEA results to be used for symp-
tom generation.

OBS is defined as a finite set of first order sen-
tences representing all measurements (outputs or
inputs, or observable component states) available
from a target system. Some members of OBS may
be complex expressions, for example to create ‘vir-
tual sensors’, however the term measurement is
used to refer to a single sentence because the ma-
jority contain a simple proposition that compares
the value of a measurable quantity. Typical sen-
tences in the qualitative representation of the sys-
tem used in this work might be temperature = high

or switch.position = on although it could also be a
component state, software variable or any other ob-
servable.
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Figure 2: Simple electrical system

A scenario, SCN , will provide an ordered se-
quence of n input states for the system where
SCN n ⊂ OBS. That is, SCNn defines a set of
triggers. A simulation is performed for each SCNn,
and for systems that reach a steady state2, an ob-
servation is produced (containing all available mea-
surements). The notation OBSn is used to indi-
cate the subset of OBS produced (by simulation)
for SCNn with no faults present.

A target system is comprised of a set of constants
COMPS representing the components of the sys-
tem. Each component has a set of mutually exclu-
sive failure modes Modes(c) where c ∈ COMPS .
Single faults are generally used for FMEA genera-
tion, not only because of the effort involved in con-
sidering the results of multiple faults, but also be-
cause most design issues are highlighted from the
single fault cases [18]. The complete set of compo-
nent failure modes M for a system is thus:

M =
⋃

∀c∈COMPS

Modes(c) (1)

The simulation can support any number of simul-
taneous failures and on occasion an engineer may
decide to include specific categories of multiple fail-
ure. Throughout this paper, M is used to represent
a (simultaneous set of) component failures consid-
ered as a failure mode in an FMEA. M = ∅ is
considered as the no failure case, and usually M
contains a single component failure mode although

2Systems that do not achieve a steady state will produce a
sequence of observations, however we will not consider those
here.

generally M ⊆ M ensuring only one failure mode
from each component:

(∀m,∀n ∈M, n 6= m,∀c ∈ COMPS )
(m 6∈ Modes(c) ∨ n 6∈ Modes(c)) (2)

The notation OBSM is used to refer to the set of
observations obtained by simulation of the system
for SCN with faults M present and OBSM

n thus
provides concise notation for a failure mode ob-
servation, a single set of measurements for SCNn.

An example scenario with 8 steps for the running
example is shown in the top section of figure 33.
The engineer has exercised the white, red and green
lamps (lmp w, lmp r, lmp g) individually by chang-
ing switch settings. All other information presented
is derived automatically from the qualitative simu-
lation combined with a functional model considered
in the next section. In the lower part of the figure
the first component fault (M = {w1− fracture})
is shown for two scenario steps SCN5 and SCN8

because these were the only observations contain-
ing abnormal measurements for this fault. For the
purposes of FMEA the state of the Failure Mode
(abnormal function state) is the primary concern
and the detailed behaviour is usually hidden.

The functional model provides interpretation of
the simulation observations and also plays a role
in the symptom generation process and is therefore
described separately in the following section. The
electrical activity in the circuit is specified as ac-
tive or inactive as a direct result of the qualitative

3The complete FMEA for the example is available as sup-
plementary information with the online version of this paper.
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electrical simulation, and the risk factors (severity,
detectability and occurrence) are derived from the
functional and component models. For clarity, only
abnormal measurements are shown on the human
readable FMEA report however the nominal mea-
surements are captured thus providing an observa-
tion, for example OBS{w1−fracture}

5 . Further details
of the FMEA generation are contained in [15, 14].

3.2. Function model
A functional interpretation model is used to al-

low the results of a component based qualitative
simulation to be abstracted into effects meaningful
to an engineer for the purpose of FMEA generation
[14, 3]. The functional model also has a critical role
in the ability to generate diagnostics from the simu-
lation results produced during the FMEA because it
can determine the relevance of measurements by op-
erating state, thus allowing symptom generation us-
ing only the representative system states provided
by the FMEA.

An engineer describes the system functions, F
using a Functional Interpretation Language (FIL)
as detailed in [3], by defining the triggers required
to activate the function and the effects required for
the function to be considered as achieved. The trig-
gers and effects are linked to fragments of system
behaviour for any system that implements the func-
tion. For the purpose of this paper it is only neces-
sary to understand that each system function, fn ∈
F , can be in one of four possible states provided by
the predicates Ac(fn), In(fn), Fa(fn), Un(fn), that
represent the function having been Achieved, In-
operative, Failed or Unexpected. These function
states are defined in terms of trigger (Tr) and ef-
fect (Ef) propositions, grounded in a subset of the
possible system measurements within the FIL as
follows:

Ac(fn) ≡ Tr(fn) ∧ Ef(fn) (3)

In(fn) ≡ ¬Tr(fn) ∧ ¬Ef(fn) (4)

Fa(fn) ≡ Tr(fn) ∧ ¬Ef(fn) (5)

Un(fn) ≡ ¬Tr(fn) ∧ Ef(fn) (6)

Some intuition as to the type of knowledge cap-
tured by the functional model can be seen in fig-
ure 4 that defines the produce red light function for
the running example. The produce red light func-
tion provides a purpose named red to its external
environment and requires a trigger activate red and
effect red illuminated. There are similar definitions
for white and green functions for the system. Any

undefined identifiers are references to values pro-
vided by an associated system simulation. For ex-
ample the proposition sw lmp.Position == ‘on’ is as-
sociated with a switch input position and provides
part of the trigger for the function, and the obser-
vation lmp r.R1 == ‘active’ evaluates current flow in
the resistance representing a lamp and is associated
with the required effect (for pragmatic reasons, the
FIL uses == as the equivalence operator and = for
assignment).

Purpose information is not used in symptom
generation but captures the teleological intent of
the function within a deployment environment [5].
Generally the functional model will be a relatively
simple identification of each system function, how
it is activated and what effects are to be expected.
The formal details of the FIL can be found in [3, 1].

FUNCTION produce_red_light {

ACHIEVES red

BY activate_red TRIGGERS red_illuminated}

PURPOSE red {

DESCRIPTION ‘provide red light to the user’

FAILURE_CONSEQUENCE ‘user does not see any red light’

SEVERITY 5 DETECTABILITY 2}

TRIGGER sw_lmp.Position == ‘on’ AND sw_r.Position ==‘on’

IMPLEMENTS activate_red

EFFECT lmp_r.R1 == ‘active’

IMPLEMENTS red_illuminated

UNEXPECTED_CONSEQUENCE ‘unwanted red light’

SEVERITY 3 DETECTABILITY 1

Figure 4: FIL illustration

3.3. FMEA Abstraction
The engineer-level FMEA report is generated by:

• simulating the system with a variety of failure
modes M1, M2, ..

• evaluating the state of system functions for
each element in OBSMi

• reporting failed and unexpected functions us-
ing the definitions in equations 5 and 6.

The FMEA report for simulation step SCNn of
fault M will contain information relating to the fol-
lowing set of abnormal functional results:

RfnAbM
n = {fn | Fa(fn) evaluated for OBSM

n

∨Un(fn) evaluated for OBSM
n }
(7)

6



Figure 3: Automated FMEA fragment for circuit in figure 2
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In addition, the related sets of failed and achieved
functions are of interest for symptom generation:

RfnFaM
n = {fn |Fa(fn) evaluated for OBSM

n } (8)

RfnAcM
n = {fn |Ac(fn) evaluated for OBSM

n } (9)

The functional information provides adequate in-
formation to generate a traditional FMEA, however
specific issues can also benefit from additional ex-
planation with detailed behavioural abnormalities
identified by comparison of the nominal and failure
observations:

RobsAbM
n = {o ∈ OBSM

n | o 6∈ OBSn} (10)

The example, in figure 3 reports the failure mode:

RfnFaw1−fracture
5 = {produce red light}

and the behaviour comparison:

RobsAbw1−fracture
5 = { w1.flow : inactive,

w2.flow : inactive,
w5.flow : inactive,
w6.flow : inactive}

Once the FMEA results are considered acceptable
by an engineer, symptom generation can be carried
out. A prerequisite for FMEA production is that
there should be no abnormal functions in the ab-
sence of a failure:

(∀n)(RfnAb∅n ⇔ ∅) (11)

If proposition 11 is not satisfied for some OBS
then the system has failed to implement its func-
tion description and this design verification issue
should be addressed before any meaningful FMEA
or symptom generation can be produced. In figure
3, RfnAb∅ (no fault) results are shown in the sce-
nario section. Inoperative functions are not shown
on the report for clarity, and there are no abnormal
functions (Fa, Un) allowing symptom generation to
proceed for the example.

4. Symptom generation

At first glance the FMEA appears to directly
provide symptoms simply by associating abnormal
behaviour RobsAbn and failure modes M . While
this may sometimes provide a set of measurements,
E , that form a usable symptom, the majority of
RobsAbn measurements remain within the range of

values encountered during nominal operation for at
least one other non failure state. Therefore most
symptoms actually require one or more nominal
measurements in addition to a subset of RobsAbn

to provide a symptom that does not spuriously in-
dicate faults.

If engineers generate vehicle on-board diagnostics
by hand, they typically identify a sensor or set of
sensors to observe, and measurements that indicate
an operating state of the system in which the ob-
servations can be made. For example, in figure 2 if
there is no current flow at lmp w and sw w==‘on’,
then one possible fault is w3-fracture.

A fault may cause many abnormal observations
and since it is beneficial for |E| to be as small possi-
ble for a given level of diagnosability and fault isola-
tion, the abnormal observations in |E| may need to
be a subset of those available in a specific abnormal
observation. When manually creating symptoms
from a hand generated FMEA, an engineer would
make these selections and create conditional symp-
toms (discussed later) based on extensive system
knowledge. The work described here automates this
process and produces a consistent and comprehen-
sive set of symptoms.

The automated symptom generation technique
described in this paper does not require explicit ex-
ternal knowledge concerning the relevance of mea-
surements to either faults or functions to compen-
sate for the missing state information inherent in
the FMEA. Rather, this information is extrapolated
from analysis of behavioural consistency covering
all of the faults and all of the system states en-
countered during the entire FMEA. Given a reason-
ably comprehensive FMEA that exercises all sys-
tem functions and includes faults for the majority
of components, the aim is to produce symptoms
that are general enough to cover a great deal of
the system state that is not explicitly included in
the FMEA without producing spurious symptoms.
Failing to do this will mean that the diagnostic sys-
tem will only have the ability to diagnose faults in
a very limited set of operating modes of the device.
A typical example might be that diagnosis is only
possible when a single system function is operat-
ing. The functional model (also used to interpret
the FMEA) is the enabling concept that indirectly
provides abstract guiding knowledge facilitating ex-
trapolation of symptoms to system states that were
not present in the FMEA.

The symptom generation therefore comprises two
main parts as follows:

8



• Logical expressions on sets of observations
must be created that implicate faults. This is
essentially a search task that involves selecting
sets of observations that implicate the small-
est set of faults that do not occur in nominal
operation. Sections 4.1-4.3 develop this task.

• Detailed behavioural information is only avail-
able for a representative set of system states
and therefore some generalisations must be
made. Section 5 develops a method that
utilises functional information to produce gen-
eralised symptoms.

4.1. Identification of symptomatic measurements

This section provides an efficient algorithm for
the selection of symptomatic observations from the
candidates obtained from the FMEA. The algo-
rithm generates a complete symptom set for a sys-
tem where every possible state was encountered in
an FMEA.

A symptom is defined as a tuple S = (E,F )
such that E is a first order sentence referred to
as a symptom expression that when satisfied
indicates F = {M1, M2, ...} as symptom faults.
A set of satisfied symptoms forms the diagnosis
candidates D ⊂ M. E(s) evaluates E on a spe-
cific system state s ∈ OBS . The term simpler
symptom is used to refer to a symptom that has
fewer measurements required to evaluate E. A
more complex symptom requires a greater num-
ber of measurements than a simpler one. In this
paper E is always a simple conjunction of equiv-
alence propositions that represent measurements,
and we use E to represent these individual mea-
surements and therefore the simplicity measure for
any symptom is |E|. For example if E = (sw w ↔
‘on’ ∧ lmp w.flow ↔ active) then E = {sw w ↔
‘on’, lmp w.flow ↔ active} with |E| = 2. If |F | is
smaller for symptom S1 than S2 then we refer to
S1 as more specific than S2 and S2 as more gen-
eral then S1.

The aim of the symptom generation is to produce
a symptom set S = {S1, S2, ...} that will provide a
diagnosis as a set of possible faults D, such that
if M is a given failure mode, then M ∈ D while
avoiding spurious diagnoses M 6∈ D ∧ D 6= ∅. In
addition the general principle used is to generate
the simplest symptoms that provide a given level of
fault detection/isolation to avoid redundant mea-
surements forming part of a symptom. No diagnosis

of a fault D = ∅ is preferable to a spurious diagno-
sis but given a fault M , the more operating time or
states that D 6= ∅ the more powerful the fault detec-
tion, and the smaller |D| the better the diagnostic
system fault isolation. These constraints define the
basic goals of the symptom generation technique.

Every component fault M considered by an
FMEA results in several sets of measurements
OBSM

n as a response to the steps in the scenario.
One or more measurements from OBSM

n may be
conjoined to form a symptom, however they must
satisfy two constraints. Firstly, a symptom should
only be present when the associated fault is present.
Secondly, it is desirable to detect as many faults
as possible in as many operating states as possible.
This implies symptoms should be general and there-
fore contain the fewest measurements, such that the
first constraint is satisfied.

Given a failure mode observation, s ∈ OBSM ,
the aim is to find sets of measurements, E ⊆ s,
where |E| is minimised, such that:

E = {R ⊆ s | @n : R ⊂ OBSn} (12)

For each fault observation OBSM
x related to a fail-

ure mode M , a set N is defined that itself contains
sets of measurements that are abnormal with re-
spect to each of the nominal observations. Each
failure mode is considered individually so the fault
mode superscript is omitted from the notation of N
in the following description.

Nx = { OBSM
x \OBS 1, OBSM

x \OBS 2,

.. , OBSM
x \OBS |SCN |}

(13)
where |SCN | is the number of distinct steps in the
scenario.

Any symptom must contain at least one measure-
ment from every element of N to satisfy the re-
quirement that the symptom does not contain only
measurements that exist during nominal operation.
Definition 12 can thus be written:

Ex = {R ⊆ OBSM
x | ∀N i ∈ N : ∃o ∈ N i ∪R} (14)

To efficiently select measurements, an index is as-
signed to each member of OBSM according to
which members of N it appears in. N is consid-
ered as an ordered set and each member is assigned
an index value from a power 2 sequence. This facil-
itates a tree structured search that locates simple
symptoms rapidly and allows the majority of longer
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symptoms to be ignored. Each measurement o is
assigned its index in the following way:

index(o) =
∑

i=1..|N |

{
2i−1, if o ∈ N i

0, otherwise
(15)

Figure 5 illustrates the assignment of indices for
a small example with 3 scenario states and 6 pos-
sible measurements a-f. The nominal observations
are shown at the top of each column representing a
scenario state and the possible failure observations
for the failure are shown below.

N i for a specific failure observation is generated
by removing the nominal mode observations for sce-
nario step i from the given failure observations.

The ordering of the measurements is depicted by
a matrix using rows to represent measurements and
columns to represent each element of N . The sum
of the abnormal observation set indices for each row
provides the order to search the measurements.

Since |N | = |SCN | and is related to the num-
ber of system functions, the index values have been
small enough to compute explicitly for the systems
we have applied the method to. A sorting algorithm
that performs a sequence of partial sorts of s based
on membership of each element in N would be
equivalent for larger scenarios, however it is doubt-
ful that an FMEA with such an excessive number
of scenario steps would be useful, and a better so-
lution might be to divide the analysis into subsys-
tems. The case where index(m) = index(n) for two
measurements is considered in section 4.2.

The symptoms are now generated by traversing
the ordered list of measurements, including addi-
tional measurements until a symptom is formed
that includes at least one measurement from each
set of N :

1. Initially set k = |N |
2. Each measurement mp contained in Nk is con-

sidered as part of a new potential symptom
expression, Ep. Consider each Ep in turn:

3. Completed symptoms check. If Ep contains at
least one element from every set in N (i.e.∑

(∃m∈Ep)(m∈Ni)
i = 2|N |−1 then Ep is a com-

pleted symptom. Ep is converted into a symp-
tom expression by conjoining all the elements
E =

∧
∀m∈Ep

m. Consider any remaining Ep
possibilities.

4. An N index, j, is chosen for Ep such that 1 ≤
j < k and (∀m ∈ Ep)(m 6∈ N j). In addition

if j < i < k, then (@i)(∀m ∈ Ep)(m 6∈ N i).
That is, N j must be the next element in N
not already represented by the symptom being
constructed.

5. Dead end symptom check. If no j can be found
that satisfies the constraints in step 4 then Ep
cannot form a symptom and is removed from
consideration. Consider any other Ep possibil-
ities.

6. If the |Ep| has not equaled any completed
symptom, it is used as the basis of a new
sets of partial symptoms Ep′ , by adding an ad-
ditional measurement, Ep′ = Ep ∪ mq where
min(index(mq)) such that mq 6∈ Ep∧mq ∈ N j .
That is, the lower ranking measurement not al-
ready forming part of the partial symptom in
N j . For each Ep′ , recursively apply from step
3 setting Ep = Ep′ , and setting k = j.

Only the simplest symptoms are required and
the breadth-first strategy ensures all equally sim-
ple symptoms are located first thus terminating the
search. Also contributing to the efficient selection is
the characteristic that measurements contributing
to the greatest number of remaining N elements are
always earlier in the sequence, and because these
are the measurements that distinguish the failure
state from the maximum number of nominal mea-
surements, they are the best candidates to form
completed symptoms using fewest measurements.

The ordering of the selection from the |N | sets
making up N is arbitrary, but once an order is cho-
sen, it determines the indices of the actual measure-
ments, and must then be applied consistently. The
reason for ordering measurements and then select-
ing sets of measurements in this way is to produce
symptoms that are guaranteed to not be part of any
set of nominal observations.

The lower part of figure 5 illustrates the process.
For OBSM

1 in the leftmost column, two symptoms
are generated with two measurements required for
both. Two initial partial symptoms (b, {M}) and
(d, {M}) are possible as the initial nodes in the
search tree. The measurement with the highest
rank of 6 is b, and provides two elements {N3, N2}
from N , requiring only measurements from N1 to
complete N and produce a symptom. The search
from b is continued by traversing further down the
measurements list for measurements involving N1.
d is the next candidate and completes the set N .
The completed symptom is therefore (b ∧ d, {M}).

For the second of the initial symptoms the next
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Figure 5: Symptom Search

element of N required is N2. Considering remain-
ing measurements in N2, b, f are possibilities, and
f also completes N for the symptom resulting in
the additional symptom (d ∧ f, {M}). The d then
b is abandoned without further searching since if
at all, it would provide complexity>2 and simpler
symptoms have already been found for the obser-
vation.

The second failure mode measurement OBSM
2

produces N1 = ∅ and hence no symptoms are pos-
sible because all of the measurements are seen in
N1 and manifests as an empty matrix column for
N1 in the figure. OBSM

3 produces a single symp-
tom, because those starting d and a are abandoned
at N2 on complexity measure. Finally, the symp-
toms generated from each observation are added to
an ordered tree of measurements to allow the com-
plete set of faults related to each symptom to be
captured.

Using the running example we find that sce-

nario step 5 provides the first symptoms for fault
w1.fracture as shown in figure 6. The 8 scenario
steps lead to N1−8 (this is notated ND0-ND7 by
the software implementation). Clearly sw r.Position
is only on in step 5 of the scenario (figure 3), and
therefore belongs to all groups except N5 (i.e ND4).
w2.flow is abnormally inactive in step 5 but would
normally be active in step 7 and therefore belongs
to ND4 and ND6. The symptom tree firstly selects
the top ranking measurement containing ND0. This
is the sw r measurement. Since this also includes
ND1-ND3 another measurement is sought from the
list that includes ND4. This is the w2 measurement
and completes the full set ND0-ND7 and comprises
a complete symptom: S1 = (sw r.Position:on ∧
w2.flow:inactive, {w1.fracture}). The process contin-
ues until no more symptoms are found.

It is desirable that symptoms are complete so
that a valid symptom should indicate all detectable
faults. Therefore given S = (E,F ) is a symptom
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ORDERED 
MEASUREMENTS:

sw_r.Position:on
w2.flow:inactive
w1.flow:inactive
sw_g.Position:off
w8.flow:inactive
w7.flow:inactive
lmp_g.illuminated:off
w6.flow:inactive
w5.flow:inactive
lmp_r.illuminated:off
sw_lmp.Position:on
sw_w.Position:off
w4.flow:inactive
w3.flow:inactive
lmp_w.illuminated:off

FAULT: w1-fracture step 5

    LEVEL: 1 [ND0, ND1, ND2, ND3, ND5, ND6, ND7] 
    sw_r.Position:on NOMINAL

        LEVEL: 2 [ND4, ND6] 
        w2.flow:inactive *LEAF* ABNORMAL
        w1.flow:inactive *LEAF* ABNORMAL

        LEVEL: 2 [ND4]  
        w6.flow:inactive *LEAF* ABNORMAL
        w5.flow:inactive *LEAF* ABNORMAL
        lmp_r.illuminated:off *LEAF* ABNORMAL

TOTAL SYMPTOMS FROM OBSERVATION: 5
SHORTEST SYMPTOM: 2

Failure w1.fracture step 5
RANK:

239
80 
80 
64 
64 
64 
64 
16 
16 
16 
7 
2 
2 
2 
2

N

[ND0, ND1, ND2, ND3, ND5, ND6, ND7]
[ND4, ND6]
[ND4, ND6]
[ND6]
[ND6]
[ND6]
[ND6]
[ND4]
[ND4]
[ND4]
[ND0, ND1, ND2]
[ND1]
[ND1]
[ND1]
[ND1]

SYMPTOM TREE

Figure 6: First w1-fracture observation producing symptoms

and E(OBS) is the result of evaluating E on a set
of observations:

(∀OBSM
n )((M ∈ F )⇔ E(OBSM

n )) (16)

This leads to an additional element in the symp-
tom generation. Each completed symptom must
be compared with the observations associated with
all other failure mode observations and additional
faults included in the symptom to ensure constraint
16 is satisfied. In practice this is a case of merging
the symptom trees produced from each observation.

4.2. Equivalent measurements
It is common for several different measurements

to have equivalent diagnostic power within a symp-
tom produced from a single fault observation. A
simple concrete example is provided by two wires
connected in series; a lack of current flow in either
one will indicate the same faults. The presence of
equivalent observations leads to more than one mea-
surement with identical index(o) values in equation
15. These symptoms can be handled in two ways.
Either symptoms must contain disjunctive expres-
sions that allow for any one of a number of mea-
surements to be used, or several independent symp-
toms are generated, one for each of the equivalent
measurements. The symptom generation algorithm
therefore simultaneously includes all measurements
with the same index number as mp at step 2 and 6.

4.3. Fault exoneration
The diagnostic symptoms as generated in the pre-

vious sections should not be negated to perform
fault exoneration - a symptom expression evaluat-
ing to false does not necessarily indicate fault ab-
sence. For example consider a lamp with a plausible
symptom:

S = (lamp↔ inactive ∧ switch↔ on,
{lamp blown, switch corroded, wire fractured})

If the switch is off then switch↔ on is false resulting
in a false symptom expression, but this does not
imply the lamp is OK - it could be blown.

Manually crafted symptoms are often condi-
tional so that ¬E will exonerate all of the faults
in F . This is because engineers consider the im-
plication of not seeing the symptom as well as its
presence. The Bayesian net based diagnostic sys-
tem for which the symptoms are being generated
requires that symptoms can exonerate faults and
therefore (∀M ∈ F,∀n)(¬E(OBSM

n ) =⇒ M 6∈ D).
This also allows better fault detection by allowing
evidence from nominally operating parts of a sys-
tem to contradict evidence from general symptoms,
hence reducing the set of possible faults.

Assigning Ec ≡ switch ↔ on and Eo ≡ lamp ↔
inactive, the earlier example can be reformed (Ec ∧
Eo, {lamp blown, switch corroded, ...}) and (¬(Ec →
Eo), {¬lamp blown,¬switch corroded, ...}). The sepa-
rate conditional part Ec must be satisfied for the
symptom to be valid. Any valid symptom that is
not satisfied (i.e. Ec ∧ ¬Eo) can be used to exon-
erate the associated faults. For the example if the
switch is on and the lamp is active then we can pre-
dict that the lamp is not blown, the switch contact
is not dirty, and the wire to the lamp is not frac-
tured. A valid symptom that is satisfied implicates
the associated faults. A symptom that is not valid
provides no information.

To ensure negatable symptoms, E is partitioned
to produce Ec and Eo to ensure the symptom is ei-
ther satisfied or invalid for any observation OBSM
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where M ∈ F . That is, a symptom expression must
not exonerate a fault for an observation where the
fault exists. Therefore if S = (Ec, Eo, F ) measure-
ments must be included in Ec to ensure:

(∀M ∈ F,∀n, @OBSM
n )(Ec ∧ ¬Eo) (17)

For symptoms formed as a conjunction of measure-
ments, E = {m1, m2, ...} then ¬E = ¬m1 ∨ ¬m2...
That is, if one of the measurements in the (pro-
posed) symptom is not present in any of the obser-
vations for the fault(s) indicated by the symptom,
then the symptom cannot be negated to exonerate
the fault. To satisfy sentence 17 the symptom gen-
erator therefore partitions E for each symptom by
finding candidate conditional measurements as fol-
lows: Ec′ = {o ∈ E | ∀M ∈ F,∀n : o 6∈ OBSM

n }.
Because |Ec′ | ≤ |E| and E is very small (section 4),
a simple breadth first search rapidly finds all the
smallest subsets of Ec′ that satisfy proposition 17.
Finally, Eo = E \ Ec is obtained.

Figure 7 contains the full set of symptoms gener-
ated for the running example. These symptoms will
correctly diagnose the system provided we only en-
ter the states provided in the FMEA. To remove
this restriction, the next section will modify the
symptom generation by restricting the measure-
ments available based on function state.

Using all of these candidate conditional measure-
ments is often over cautious, and may lead to the
inability of some symptoms to exonerate faults, par-
ticularly when nominal output measurements form
part of the symptoms. As a result an initial re-
finement was made that restricts the measurements
available for symptom generation. s is thus rede-
fined as a subset of OBSM

n to include only abnor-
mal measurements plus triggers associated with the
failed functions (defined in equations 7-9).

s = {(RobsAbM
n }∪{T(fn))|fn ∈ RfnFaM

n }∩OBSM
n

(18)
This was the measurement selection used for the

ASTRAEA project to generate symptoms for a twin
engine aircraft fuel system. For that system this
simple approach worked well primarily because it
was relatively easy to exercise all of the function
permutations that could be encountered during op-
eration. For the running example it does not change
the symptoms generated, since no nominal mea-
surements are selected by the generation algorithm.

Subsequent experiments for complex systems
where operating modes combining multiple func-
tions were restricted in the scenario, together with

experience from systems where it is infeasible to
exercise all potential function permutations, identi-
fied the need to be more selective than the simple
approach in equation 18 and is the subject of the
next section.

5. Observation selection strategies

This section details the use of functional infor-
mation to produce generalised symptoms from an
FMEA analysis which does not exercise all system
states, or even all permutations of possible system
functionality. Generalisation enables a set of symp-
toms with good coverage to be produced.

The symptom generation presented in section 4 in
effect generalises symptoms because not all system
states are available in the FMEA. However this gen-
eralisation is somewhat arbitrary. Symptoms may
include measurements that are not causally relevant
to a fault, simply because there was no state that
provides a counter example. Such symptoms often
are not applicable to states outside of those encoun-
tered in the FMEA. To relieve this difficulty more
steps might be inserted in the scenario, however
this typically leads to less simple, equally limited
symptoms. Thus, a simple search for symptoms
will produce either very limited coverage of oper-
ating modes or possibly artifactual symptoms for
realistic FMEA scenarios, due to incorrect assump-
tions on unobserved state. To address these issues
there are two possibilities:

• Ensure the necessary states are provided by
the FMEA. As noted previously, adding steps
to the scenario simply shifts the problem, and
ultimately a complete attainable envisionment
[10] is required. In addition a great deal of in-
sight is required to determine which additional
steps are required. For these reasons this ap-
proach is infeasible for most real systems.

• Constrain the search based on states related
to structural and behavioural and functional
interactions that have been encountered during
the FMEA.

The second approach has produced the required re-
sults and is based on extracting the association be-
tween components and function from the FMEA,
and is the focus of section 5.1.

The associations produced allow exclusion of
measurement m during the generation of symptoms
for a state OBSM

n for which there is no evidence
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Figure 7: Symptoms generated for running example system

in the FMEA that m is related to the affected
functions RfnFaM

n and is the subject of section
5.2. Where components implement several func-
tions there are implications for the states required
in the FMEA to ensure generated symptoms are
not too specific leading to symptoms that not ap-
plicable for function combinations not available in
the FMEA. Essentially this means that the mea-
surements associated with multiple functions place
additional constraints on the functional states that
must exist in the FMEA if they are to be used.

5.1. Avoiding over generalisation

There are two parts to the process of restricting
the measurements available for symptom genera-
tion based on the associated function states.

• Identify which measurements are behaviourally
associated with each function. This is de-
scribed in section 5.2.

• Select the available measurements for symp-
tom generation based on the failure state of
functions for each observation. This is de-
scribed in sections 5.2.1 and 5.2.2

Clearly measurements referred to in the functional
model trigger and effect expressions notated (T(fn)
and E(fn)) are associated to the function, however
most measurements that might be used for diagno-
sis are not contained in these expressions. In ad-
dition those measurements used in triggers and ef-
fects are often not directly available to a diagnostic

system, particularly an on-board system, where in-
direct measurements of the inputs and outputs are
required.

The concept of a function associated mea-
surement(FAM) is used to indicate a measure-
ment has some behavioural or structural ‘causal’
relationship to a function based on evidence from
the FMEA. The measurements associated with fn
are denoted by the relations Ab(fn) and Nom(fn)
that provide respectively, the abnormal and nomi-
nal measurements associated with a function. Of-
ten these will simply be different value measure-
ments from the same sensor however this is not as-
sumed.

5.2. Associating measurements to functions
Measurements are associated with system func-

tions based on the achievement and failure of func-
tions across the entire FMEA. Given a comprehen-
sive set of failures this provides a simulation de-
rived description of which functions each compo-
nent/measurement affects. This in turn allows an
assessment of the relevance of measurements associ-
ated with a fault; This technique ensures that irrel-
evant measurements are not included in symptoms,
and hence that symptoms are as general as possible.
Conversely the decision as to which measurements
are relevant is derived from the entire set of fail-
ure and non failure states encountered during the
FMEA.

Given a comprehensive component fault list, al-
most all diagnostically interesting measurements
(with the exception of externally controlled trig-
gers) will be affected by at least one of the failure
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modes of the system. By associating these abnor-
mal measurements with functions that simultane-
ously fail we build up a FAM mapping. Even mea-
surements structurally adjacent to external triggers
will be affected by faults in the connecting compo-
nents. For example switch.position↔ on is a trigger
however the current flow through the switch.contact

will be affected by faults such as the contact be-
ing stuck or wiring faults in the switch circuit and
could be used as diagnostic measurements.

It is normal practice to exercise each function in-
dividually4 during an FMEA and therefore abnor-
mal measurements are available for each isolated
function. Computing Ab(fn) from an FMEA using
the definition of RfnAb and RobsAb from equation
7 and 10 is a matter of aggregating all of the the
abnormal observations that occur during states in
the FMEA where single functions fail:

Ab(fn) =
S

∀M,∀n≤|SCN|

(
RobsAbM

n , if c

∅, otherwise

c = RfnFaM
n ↔ {fn}

(19)
Nom(fn) are the measurements in the nominal

state minus the nominal measurements from the
failure state.

Nom(fn) =S
∀M,∀n≤|SCN|

(
OBSn\(OBSM

n \RobsAbM
n ), if c

∅, otherwise

(20)

Generally this produces a set of measurements that
agree with engineering expectation of the compo-
nents used to implement each function. However
even if this is not clear, there must be a structural or
behavioural relationship between the function and
the measurement, as required for measurement se-
lection.

Notice that m ∈ Ab(fn) specifies only that m
can be affected by a failure of fn in at least one
state and not that it will necessarily occur in all
states when fn fails. Therefore in general Ab(fn)∩
Nom(fn) 6= ∅. Table 1 contains Ab(fn) and Ab(fn)
for the running example.

Several variations of measurement selection are
possible that trade the simplicity of measurement

4It is not always possible to exercise each function in-
dividually, however this also makes these operating modes
impossible during nominal operation, and therefore the asso-
ciated measurements can simply be captured for the required
groups of functions

selection against the power of the symptom and the
possibility of spurious symptoms. All variations re-
define the measurement selection s in equation 12
to provide a restricted set of measurements.

5.2.1. Selection based on function associated mea-
surements

Using the FAM to provide tighter selection of the
abnormal measurements, s, gives better protection
against spurious symptom generation, when the fi-
nal system will exercise function combinations not
found in the FMEA scenario:

s = {(Abn(fn) | fn ∈ RfnFaM
n } ∪ T(fn)) ∩OBSM

n

(21)
Allowing nominal observations in addition to

triggers will increase the range of symptoms that
can be generated:

s = {(Abn(fn) ∪Nomn(fn)) | fn ∈ RfnFaM
n }

∪ T(fn) ∩OBSM
n

(22)
In particular, for systems where a fault only causes
artefacts in part of the affected function(s) be-
haviour, it allows symptoms to be generated that
identify the internal inconsistency in the function.
For example if one branch of a parallel circuit (pro-
viding a single function) fails then symptoms are
generated that measure nominal flow in one branch
and abnormal in another. It is thus important that
the major sub-states of the function are exercised,
such as any available control of the branches of a
parallel circuit, particularly if ‘fully instrumented’
systems are being investigated as a prelude to sen-
sor selection.

Fully instrumented systems make large numbers
of observations available for symptom generation,
and many alternative symptoms can be generated
representing alternative combinations of internal
measurement inconsistencies. An engineer can then
use external information and diagnosability tools
[22] to select the most convenient measurements to
achieve the required diagnosability, for example.

5.2.2. Selection based on shared function measure-
ments

Measurements selected using equation 21 and 22
can still lead to spurious diagnoses for novel func-
tional combinations that share components due to
false exoneration. To illustrate the issue, figure 8
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Function, fn Function associated nominal measurements, Nom(fn)

produce red light lmp r.illuminated:on, w1.flow:active, w2.flow:active, w5.flow:active, w6.flow:active
produce green light w1.flow:active, w2.flow:active, lmp g.illuminated:on, w7.flow:active, w8.flow:active
produce white light lmp w.illuminated:on, w3.flow:active, w4.flow:active,

Function associated Abnormal Measurements, Ab(fn)

produce red light lmp r.illuminated:off, w1.flow:inactive, w2.flow:inactive, w5.flow:inactive, w6.flow:inactive
produce green light lmp g.illuminated:off, w1.flow:inactive, w2.flow:inactive, w7.flow:inactive, w8.flow:inactive
produce white light lmp w.illuminated:off, w3.flow:inactive, w4.flow:inactive

Table 1: FMEA derived function associated measurements for the running example

Vcc gnd

w1

w2 sw1

Symptom  when sw1=closed: w1=inactive  indicates  w2.fracture

Function A:  sw1=closed  triggers  l1=active 

l1

sw2

Function B:  sw2=closed  triggers  l2=active 

Symptom generated if A and B not exercised 
concurrently in scenario. Will provide false 

exoneration of w2 when both switches closed

l2

Figure 8: False exoneration caused by a limited FMEA scenario

depicts a simple circuit that implements two func-
tions A and B that share some components in-
cluding w1. Assume the functions A and B were
(for reasons explained in section 5.2) not exer-
cised simultaneously during the FMEA. The symp-
tom shown in the diagram is generated because
in all scenario states where the fault exists and
sw1=closed then w1 is inactive, and both measure-
ments will clearly be associated with the failed func-
tion. This symptom exonerates the fault when
both functions are triggered because the symptom
is valid (sw1=closed ) but w1 is active allowing the
symptom to evaluate false.

One solution is to exercise both of the functions
simultaneously in the scenario, thereby creating a
state where w1 is active when sw1=closed (because
current will flow for function B when A fails) forc-
ing the symptom generation to include additional
measurements in the symptom, for example the po-
sition of switch sw2. As described previously, for
some systems it is possible to activate all of the
system functions simultaneously in the FMEA sce-
nario, however complex systems often have limita-
tions on the combinations of attainable functions
precluding this approach, and in some cases spe-

cific combinations of functions may be required. A
‘safe’ solution is therefore to disallow measurements
associated with several functions if any of the func-
tions is In or Un.

If ASh is defined as the abnormal measurements
that are not shared with inactive function combina-
tions and given fn ∈ RfnFaM

n and fs ∈ (RfnInM
n ∪

RfnUnM
n ), the measurement selection in 21 be-

comes:

ASh = {x | x ∈ Abn(fn) ∧ x 6∈ Abn(fs)}

s = ({x ∈ ASh | fn ∈ RfnFaM
n } ∪ T(fn)) ∩OBSM

n

(23)
Similarly for the nominal measurements NSh, the
measurement selection in 22 is modified to:

NSh = {x | x ∈ Nomn(fn) ∧ x 6∈ Nomn(fs)}

s = ({x ∈ (ASh ∪NSh) | fn ∈ RfnFaM
n }

∪ T(fn)) ∩OBSM
n

(24)
This may prevent some faults being diagnosed,
and a reduction in the number of operating states
where faults are diagnosable. If a significant dif-
ference in the diagnosability of the system exists
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between equations 24 and 22 the function combina-
tions causing measurements to be abandoned based
on function sharing can be reported and the sce-
nario can then be extended. Alternatively in some
situations, for example where functions are mutu-
ally exclusive (activated by different positions of a
switch), they can be included in a list of allow-
able unexercised function combinations for shared
measurements. There may be scope for determin-
ing mutually exclusive functions from the function
model, but this has not been investigated because
in practice the issue has not arisen.

Neither of the measurement selection mecha-
nisms above make any use of unexpected function
achievement to produce symptoms. This is for two
reasons.

• Symptoms based on unexpected functions
would require the absence of trigger measure-
ments in an observation to be included as part
of the symptom expression making it necessary
to identify the sets of mutually exclusive mea-
surements that form ¬T(fn) to allow suitable
measurements to be selected that represent the
trigger absence.

• Since Nom(fn) are required for Un(fn), it is
necessary to ensure that all abnormal (failed
and unexpected) functions present in an ob-
servation also exist in their achieved form in
the nominal observations. Failing to do this
would allow symptoms based on nominal mea-
surements of function combinations that have
not been observed in the nominal state.

To complete the running example, we can see from
table 1 that w1 and w2 have measurements shared
between the red and green functions. The effect of
this on symptoms generated using measurement se-
lection in equation 24 is to remove symptoms 4-7
from those in figure 7. In addition no w1 and w2
faults are diagnosed by the remaining symptoms.
This is because these components are shared be-
tween two functions that were never exercised si-
multaneously in the scenario. To allow these com-
ponents to be diagnosed, and also for their mea-
surements to be usable, the scenario is extended to
include the state where both red and green func-
tions are activated (the symptom generator can ad-
vise which shared measurements are unusable and
which function combinations are required to allow
them). The functional model also indicates there
is a dependency between these functions because

they share the sw lmp.Position on trigger, therefore
the state where sw lmp.Position on, sw r.Position off,
sw g.Position off is also included in the scenario.

The resulting symptom set in figure 9 provides
no spurious diagnoses in any system state. An ex-
haustive analysis of the evaluation of the symptom
set for all of the 16 possible states of the system
reveals that these symptoms place the actual fault
in the top rank set for each fault as shown in fig-
ure 10. The two numbers a/b in each cell of the
table indicate that the inserted fault was in the top
ranking set of faults (a=1) and the how many other
faults b, were contained in the top ranking diag-
nosis. The ranking used is simply a count of the
symptoms indicating the fault minus symptoms ex-
onerating the fault. For example, the state repre-
senting all switches on (rightmost column) shows
1/2 for the w1.fracture fault the because the diag-
nosis included this fault in the top ranking faults,
of which there were two. The additional informa-
tion F6 S10 for this entry indicates that there were
a total of six positively ranked faults and ten symp-
toms that were valid (either for fault indication or
exoneration).

6. Diagnosis framework

The symptom set can be used to analyse diag-
nosability and fault isolation for a given set of mea-
surements. The symptoms are qualitative in nature
and an engineer must determine thresholds or ap-
ply additional techniques for these values if they are
to be used for an on board diagnostic system. One
application where the symptoms are used as the
measurement-fault mapping of a Bayesian network
could adjust the symptom weights based on a fuzzy
description of the qualitative values for example.

For systems with a well defined set of sensor out-
puts, the diagnosable components and states can
be determined by simple analysis of the symptoms
generated. In another application the task is to de-
termine the best n measurements that can diagnose
the maximum number of faults. Since it is trivial
to generate symptoms based on any set of system
variables it is possible to use the symptoms to assist
in the selection of potential sensors. One tool to do
this was described in [22].

The ASTRAEA target application uses the gen-
erated symptoms in a Bayesian network to produce
final diagnoses by adding probabilities to the symp-
tom elements;
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Figure 9: Enhanced Symptoms generated for running example system

• The component fault prior probability de-
scribes component reliability.

• The symptom leak probability captures the
probability that the symptom is observed even
though there is actually no fault.

• Fault symptom conditional probability cap-
tures the probability that when the symptom is
observed it is due to the fault indicated rather
than any other fault. This can be useful for
noisy signals for example.

The probabilities allow for intermittent or unreli-
able measurements to be used. They also allow the
characteristics of the mapping between quantita-
tive measurements and qualitative values (e.g. nu-
merical thresholding) to be taken into account as
a certainty measure on the symptom for numerical
measurement ranges that cannot be clearly mapped
to the qualitative values used.

For the purposes of investigating the diagnosabil-
ity properties of a system and validating symptoms
at the qualitative level, another tool (figure 11) al-
lows the system to be exercised interactively, and
any combination of faults inserted. The figure uses
the symptoms from figure 9. The system can be

exercised in the top section of the tool interface,
measurement visibility selected in the center left
section. The diagnosis is presented in the lower
section, with the valid symptoms that implicate or
exonerate faults. The ‘I/E’ column is shown ticked
if the symptom indicates its associated faults and
not ticked if it exonerates them. The faults impli-
cated by any symptom can be shown by selecting
it (S12 in the figure), and finally a fault ranking is
given based on number of satisfied and exonerated
faults.

6.1. Multiple faults
The diagnostic system can only explicitly diag-

nose multiple faults if a multiple fault FMEA is
performed. Previous work has described how a mul-
tiple fault FMEA can be efficiently performed using
this technology [18, 17, 14], and so there is no con-
ceptual barrier to diagnosing multiple faults. Mul-
tiple fault FMEA analysis can by run for example
by selecting only combinations of faults with higher
combined component failure likelihoods. The mul-
tiple faults are then considered as a single com-
pound fault within symptoms. If f12 represents si-
multaneous occurrence of two failures f1 ∈ M and
f2 ∈ M, the symptom set could be modified by
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Elements are shown as fault-group rank/equivalent-rank-faults
F indicates total number of positively implicated faults S indicates total number of activated and satisfied symptoms
SETTING:
sw_w.Position  'off'  'on'  'on'  'on'  'on'  'on'  'on'  'on'  'on'
sw_lmp.Position  'off'   'on'  'on'  'on'  'on'  'on'  'on'  'on'  'on'
sw_g.Position  'off'   'on'  'on'  'on'  'on'  'on'  'on'  'on'  'on'
sw_r.Position  'off'   'on'  'on'  'on'  'on'  'on'  'on'  'on'  'on'
 Nominal                                 
w1.fracture              1/4  F4 S5  1/4  F4 S5      1/4  F4 S5  1/4  F4 S5      1/2  F6 S10  1/2  F6 S10 
w2.fracture              1/4  F4 S5  1/4  F4 S5      1/4  F4 S5  1/4  F4 S5      1/2  F6 S10  1/2  F6 S10 
w3.fracture    1/2  F2 S3    1/2  F2 S3    1/2  F2 S3    1/2  F2 S3    1/2  F2 S3    1/2  F2 S3    1/2  F2 S3    1/2  F2 S3 
w4.fracture    1/2  F2 S3    1/2  F2 S3    1/2  F2 S3    1/2  F2 S3    1/2  F2 S3    1/2  F2 S3    1/2  F2 S3    1/2  F2 S3 
w5.fracture                      1/4  F4 S5  1/4  F4 S5      1/2  F2 S9  1/2  F2 S9 
w6.fracture                      1/4  F4 S5  1/4  F4 S5      1/2  F2 S9  1/2  F2 S9 
w7.fracture              1/4  F4 S5  1/4  F4 S5              1/2  F2 S9  1/2  F2 S9 
w8.fracture              1/4  F4 S5  1/4  F4 S5              1/2  F2 S9  1/2  F2 S9 

Figure 10: Exhaustive validation of symptoms for running example

multiple fault FMEA in one or more of the follow-
ing ways:

1. A unique symptom, SNEW = (E, {f12}) is pro-
duced that would allow the multiple fault to be
isolated.

2. A symptom, Sn = (E, {f3, f12}), is produced
that is identical to the symptom for a different
fault.

3. Symptoms are produced that are the same as
some or all of the individual faults. Sn =
(E, {f1, f12}) or Sn = (E, {f2, f12}) or Sn =
(E, {f1, f2, f12}) .

4. The multiple fault case produces no symptoms.

Without using multiple fault FMEA, we find em-
pirically for the systems tested, the most common
effect of multiple faults is that all or some of the
individual faults appear in the highest rank of pos-
sible faults (case 3 above). For case 1 and 4 above
the multiple fault is not diagnosed. If only case 4
occurs then the multiple fault is not diagnosable,
this could be two faults that negate each other and
provide no overall effect on the system.

Case 2 is the only one where the multiple fault
could lead to a spurious diagnosis; f3 would be diag-
nosed if f1 and f2 occurred simultaneously. Empir-
ically we have found that the most likely situation
is a case of fault masking where all the faults are
associated to the same function and f3 masks the
multiple fault. Parsimonious principles dictate that
the diagnosis f3 would be a preferred initial diag-
nosis, and is the result provided by the symptoms
produced without multiple faults. Once f3 is ex-
onerated, by exercising additional faults or includ-
ing additional measurements, without the multiple
fault simulation the fault could not be diagnosed.
For example, if two lamps wired in parallel both
fail: the effect is the same as the main supply fail-
ing, and given that it is impossible to distinguish

these faults the single fault is more likely unless the
supply can be exonerated.

7. Example systems

We present the results of the symptom generation
for two case studies.

The Aircraft Fuel system was a test system used
as a technology demonstrator, and had the advan-
tage of a laboratory based physical model that in-
cluded all of the relevant tanks, pumps and valves
including various fault injection mechanisms, allow-
ing a physical validation of the diagnosis. For this
system, the sensors were already defined and there-
fore there was a relatively small number of mea-
surements to be made available for symptom gen-
eration. The task was to produce symptoms that
indicated faults, rather than perform sensor selec-
tion based on likely diagnosability.

The Automotive example was an electrical exte-
rior day time running lighting system (DTRL). We
use this example to illustrate the ability to generate
diagnostics from an FMEA that did not exercise all
function combinations, and indeed did not exercise
one entire function, demonstrating that the result-
ing diagnosis is able to diagnose all faults except
those related to the implementation of the disre-
garded function. This example was also used to
illustrate symptom generation based on ‘high ob-
servability’ by allowing the current flow in every
wire component to be used to generate symptoms.

For both systems the symptom generation pro-
cess takes a tiny fraction of the processing time that
the FMEA generation takes. The simulation and
symptom generation is coded in Java and has not
been optimised in any sense. A 2.4Ghz Core 2 lap-
top completes FMEA generation for either system
in around 2-30s per fault for a sensible scenario re-
quiring of the order of an hour in total. The symp-
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Figure 11: Tool interface used to manually investigate diagnosability of the example system

tom generation takes less than a minute in total for
either system. Evaluating the symptom set for a
specific set of observations requires evaluation of a
small number of simple logical and arithmetic ex-
pressions and is extremely fast (milliseconds), re-
quires only a few hundred lines of code, and has
minimal memory requirements. The running exam-
ple system takes around 5s to produce the FMEA
and 2s to produce the symptoms, but most of this
time is initialising the Java virtual machine.

From an engineers perspective the major inputs
to the system are a system schematic (components
and connections) and a set of qualitative component
models that define the structure and behaviour of
the components. Component models may comprise
a resistance network connecting component termi-
nals, and state machines that describe higher level
behaviour or non linear behaviour aspects. Such
models are usually obtained from a library, and the
qualitative nature of the modelling allows gener-
alised modelling of component classes. One possi-
ble modelling approach for electrical systems [20]
has been extended to allow modelling of systems

from other domains such as hydraulic, fluid flow and
thermodynamic by utilising generalised power and
energy flow models using a qualitative approach re-
lated to the well known Bond graph theory.

For non switching systems qualitative distinc-
tions may appear too coarse to capture the required
behaviour, however this is not necessarily the case.
Additional techniques such as exaggeration reason-
ing [25] may be used to define faults. For example in
a fluid flow system a leak in a pipe may not produce
a qualitatively significant change in flow, however if
we treat the extreme case of the leak as a fracture
then the flow in the system will have changed qual-
itatively. The FMEA (and subsequent symptoms)
can therefore report that a potential symptom for
the leak may be high or low flow in the relevant
parts of the system.

The qualitative modelling and resulting symp-
toms provide comprehensive analysis of the system
covering all qualitatively distinct regions of nominal
and failure behaviour. The main requirement for
successful FMEA and symptom generation is that
the qualitative values utilised in the system simula-
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tion description are able to represent the significant
system states and failure effects.

The second task for the engineer is to capture
the system functions in the functional model out-
lined in section 3.2. These models identify the trig-
gers and effects that relate to each system func-
tion and can usually be defined with a set of rel-
atively simple logical expressions relating system
inputs to expected outputs. Where necessary, the
functional model can be sophisticated, involving hi-
erarchical functional structures with propositional
logical (and temporal logic) expressions to define
the required behaviour [2].

A scenario is provided by exercising the system
functions, allowing an FMEA is automatically gen-
erated and considered by engineers as per usual
practices. No further input is required to produce
the symptoms which are generated for any abnor-
mal behaviour that has qualitatively significant be-
havioural deviations. The simulation and FMEA
techniques have been widely used for electrical sys-
tems with switching behaviour [13] where a quali-
tative order of magnitude approach [21, 12] allows
distinctions between power circuit and signal circuit
behaviour to be made for example. Recently, fluid
flow systems have also been successfully modelled,
and the energy flow based structural modelling pro-
vides an expectation that the methods will be ap-
plicable to other domains also.

7.1. Aircraft fuel system technology demonstrator
The system in figure 12 comprised approximately

98 components with failure modes, including 4
tanks, 8 multiway valves and 7 pumps. There
were 239 faults considered in the FMEA includ-
ing full and partial blockages, leaks, valve stuck
failures, tank leaks, and pump failures. Measure-
ments included values from several pressure and
flow sensors, valve position actuator request and
microswitch tell-back values, and tank level mea-
surements. The difference between the number of
symptoms using abnormal measurements only (64)
and the symptoms generated using both abnormal
and nominal measurements (104) is not so marked
with this system, due to the relatively small quan-
tity of measurements available. An example of part
of the symptom expression set is shown in figure
13. PT refers to pressure transducer measurements,
TVL are multiway valves, and CP are pumps. This
system required no more than two measurements
to form any symptom and each symptom is asso-
ciated with between 1 and 40 faults (not shown).

The colon symbol is used to separate the symptom
condition from the main observations. The symp-
toms containing only a condition are effectively not
negatable and cannot exonerate faults, since it is
valid and considered satisfied when all of the mea-
surements are observed, and can never be valid and
unsatisfied.

Figure 14 shows a breakdown of the number of
faults that can be diagnosed in 17 of the main op-
erating states of the system. These are 6 major
functions available based on various valve config-
urations, and it is clear that there is one major
operating state for each function that allows the
majority of the faults for that function to be diag-
nosed. The other operating states for each func-
tion are where valves have been configured but the
pumps are not activated, and as expected many
faults cannot be detected in these states. The
columns representing the number of faults in each
state are subdivided according to the number of
other faults that ranked equal top in the diagnosis.
Given the limited amount of sensing available for
the system, there are inevitably significant num-
bers of faults that are indistinguishable from the
measurable observations; the diagram however only
considers individual states, some faults can be iso-
lated by switching states, for example components
that contribute to several functions can be isolated
this way. Finally the symmetrical structure of the
system is revealed by the symptom set; the system
has left and right halves and the ability to feed ei-
ther engine from either wing tank. It is no surprise
that the diagnosability of left and right, normal and
cross fuel feed is similar.

7.2. Daytime running lights system
This system was supplied by Sumitomo Electri-

cal Wiring Systems Europe Ltd and comprised 166
electrical components, including several multiple
contact switches, lamp clusters and splices. 63 com-
ponent faults were considered for the analysis com-
prising mostly of wire fractures since these provide
good coverage of the circuit topology. The current
flow in all wires was made available as a measure-
ment, together with the components that normally
produce an input or output such as switches and
lamps. The system is designed such that the high
beam can be activated if the main switch is in the
any position, the sidelights are activated if the main
switch is in the sidelights position, and the dip and
main beam are both available when the main switch
is in the mainlights position dependent on the dip
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switch position. The FMEA activated the fol-
lowing function states: off-dipbeam, off-highbeam,
sidelights-dipbeam, mainlights-dipbeam. The day-
time running function was not activated for the pur-
poses of illustration. The number of symptoms gen-
erated depends on the measurement selection strat-
egy and is shown in table 2.

The diagnostics were verified by running the sim-
ulation for each fault for a set of operational states.
These states included the two major operational
states that were missing from the original scenario:
sidelights-highbeam, mainlights-highbeam. These
are highlighted in table 2 which summarises the
results of testing the diagnostic system for each
of the symptom generation strategies from selec-
tion strategies in equations 18-24. The table shows
the number of correctly detected faults (inserted
fault was in the top or equal top ranking predicted
faults), with the number of incorrectly identified
faults (higher ranking than the actual fault) in
square brackets. For this system the real fault was
never worse than second ranking, with between 25
and 2 higher equal ranking predicted faults.

It is clear in column 18 that simply using ab-
normal measurements and triggers leads to incor-
rect fault identification when the system enters new
states that were not exercised in the FMEA sce-
nario, as expected. Allowing FAM associated with
failure of the function significantly reduces the num-
ber of symptoms and also reduces the number of
mis-identification of faults (column 21). Allowing
FAM associated with nominal operation maintains
the reduction in mis-diagnoses, however it increases
the number of symptoms by allowing abnormal re-
lationships within function activity to be used as
symptoms. This will provide more flexibility in the
choice of measurements that might be used (since
the final diagnostic system will not have the abil-
ity to monitor every wire). A tool to display the
measurement-symptom-fault relationships visually
is described in [22]. The final two columns show
the effect of excluding all measurements associated
with shared functions that have not been activated
simultaneously for the same setup as 21 and 22 re-
spectively. The two faults that were mis-detected
due to spurious fault exoneration no longer exist,
however the total number of faults that can be di-
agnosed is also reduced. The diagnosis generator
reports that some measurements were unable to be
used because the scenario found no instances where
the sidelights function and highbeam function were
failed or achieved together. This then would pro-

vide a direct indication to the engineer that this op-
erating mode could be added to the scenario to im-
prove the symptom set, since the failure behaviour
of the system shows that they share components/or
behaviour and could therefore interact.

Some of the faults could not be detected at all
because part of the circuit functionality was not
exercised in the FMEA. This is to be expected for
any fault in the FMEA that has the report“No ex-
ternal behaviour or functional effects”. There were
15 such faults in the FMEA and therefore the max-
imum number of faults that could be expected to
be detected based on the FMEA information is 48.
Figure 15 shows a breakdown of the number of
faults that can be diagnosed in the 6 main operating
states of the system using measurement selection
methods in equation 23 (or 24) and full measure-
ment visibility. State 4 and 6 were not exercised in
the scenario but clearly produce good fault detec-
tion. The columns are subdivided according to the
number faults that ranked equal top with the actual
fault in the diagnosis. In this system the maximum
number of faults that cannot be distinguished is 9.
A selection of these were analysed in detail and are
generally wire failures in series circuit elements that
could not be isolated further without external inter-
vention. There were no faults in the first operating
state because activating the dipbeam function with
the ignition off results in no electrical change in the
circuit and merely a change to the switch position.

8. Conclusion and future enhancements

The initial concept for this work was to replace
the use of manual FMEA as the input to a Bayesian
network based diagnostic system with an auto-
mated FMEA. It rapidly became clear that the
comprehensive nature of an automated FMEA ac-
tually makes the identification of general symptoms
more time consuming - although the resulting diag-
nostic system is more powerful. Automation of the
generation of the symptoms was an obvious next
step, although emulating the selectivity and addi-
tional knowledge imparted by an engineer proved
to be a challenge, and was finally addressed by the
use of the functional model that already plays the
role of interpreting detailed behaviour into a more
meaningful abstracted description.

An unexpected - and for the ASTRAEA project
an exciting possibility - was the ability to gener-
ate symptoms based on all potentially measurable
quantities in a system. The resulting large set of
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Measurement selection strategy
18 21 22 23 24

Symptoms Generated 1014 72 968 52 828
Total diagnosable faults 48 48 48 46 46

Operational State

dipbeam 0 0 0 0 0
highbeam 13 13 13 11 11
sidelights-dipbeam 31 31 31 29 29
sidelights-highbeam 13[25] 36[2] 36[2] 36 36
mainlights-dipbeam 17 17 17 15 15
mainlights-highbeam 20[4] 22[2] 22[2] 22 22

Table 2: Fault detection for DTRL system (63 faults available in the FMEA)

symptoms (1000+ for typical automotive system
examples) paves the way for a sensor selection tool
that allows an engineer to quickly analyse which
measurements may be most useful for a given set
of ‘diagnosability’ criteria. The potential diagnos-
ability of a system can therefore be investigated in
broad qualitative terms early in the design, possibly
leading to alternative solutions that build diagnosis
into preliminary design rather than as a retrofit ac-
tivity. An early version of this tool is documented
in [22].

Currently, symptoms are based on qualitative
system states and do not include sequences of states
in the description of behaviour that may indicate a
fault; however, fault isolation may be carried out
by considering symptoms related to multiple sys-
tem states. Systems that include internal (hidden)
state that affects fault behaviour will result in no
symptom being generated for affected faults in the
relevant operating modes due to a lack of observa-
tions able to distinguish the faults. These can then
be highlighted to the engineer and if necessary some
mechanism for providing the additional state to the
diagnostic system can be included.

The technique is applicable to any system for
which the automated FMEA can be generated
[14, 15, 24]. Applicable systems have behaviours
and faults of interest that can be represented qual-
itatively and these types of systems tend to be
topologically complex with component behaviours
represented by a relatively small number of lin-
ear behaviour regions. This allows the symptoms
produced to cover qualitative regions of behaviour.
Systems where the behaviour is highly nonlinear at
the level of abstraction required or where the mea-
surements required for diagnosis are not qualita-
tively significant, will not be amenable to the anal-

ysis because the system behaviour does not form a
reasonable finite state description.

The functional model had not yet been utilised to
its full potential in symptom generation. For sys-
tems with complex functional dependencies such as
warning, fault mitigating, interlocking, recharging
functions that may be described in the FIL, as well
as functions that share triggers and effects we be-
lieve the functional model can provide additional
information to ensure the FMEA scenario includes
the worst case faults and effects, and also ensure the
relevant states are included that allow a compre-
hensive set of symptoms to be generated. Further
investigation is planned in this area.

In summary, this paper demonstrates the gener-
ation of a diagnostic system from the results of an
automated FMEA. We have deployed software us-
ing the algorithms described here on several real
systems including an aircraft fuel system that was
the main diagnostic case study for one of the AS-
TRAEA [9] project. The focus of this work was
on single component failure modes, however many
multiple failure modes are completely or partially
diagnosed and possibilities are available to extend
the analysis into multiple failure modes if required
at the computational expense associated with ad-
ditional simulation.
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Generic fuel system schematic 
Figure 12: Fuel system schematic
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Figure 13: Example of symptom expressions generated for fuel system
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Figure 14: Quantity of faults diagnosable for major operating fuel system states
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Figure 15: Quantity of faults diagnosable for major DTRL operating states
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