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Abstract 

This paper presents the environmental, climate and vegetation changes reconstructed for the last 14.6 

kyr cal BP from the Marboré Lake sedimentary sequence, the highest altitude record (2612 m a.s.l.) in 

the Pyrenees studied up to date. We investigate the sensitivity of this high altitude site to vegetational  

and climate dynamics and altitudinal shifts during the Holocene by comparing palynological spectra of 

the fossil sequence and pollen rain content from current moss pollsters. We hypothesize that the input 

of sediments in lakes at such altitude is strongly controlled by ice phenology (ice-free summer months) 

and that during cold periods Pollen Accumulation Rate (PAR) and Pollen Concentration (PC) reflect 

changes in ice-cover and thus is linked to temperature changes. Low sedimentation rates and low PC 

and PAR occurred during colder periods as the Younger Dryas (GS-1) and the Holocene onset (12.6- 

10.2 kyr cal BP), suggesting that the lake-surface remained ice-covered for most of the year during 

these periods. Warmer conditions are not evident until 10.2 kyr cal BP, when an abrupt increase in 

sedimentation rate, PC and PAR occur, pointing to a delayed onset of the Holocene temperature 

increase at high altitude. Well-developed pinewoods and deciduous forest dominated the mid montane 

belt since 9.3 kyr cal BP till Mid-Holocene (5.2 kyr cal BP). A downwards shift in the deciduous forest 

occurred after 5.2 kyr cal BP, in agreement with the aridity trend observed at a regional and 

Mediterranean context. The increase of herbaceous taxa during the Late Holocene (3.5 kyr cal BP-

present) reflects a general trend to reduced montane forest, as anthropogenic disturbances were not 

evident until 1.3 kyr cal BP when Olea proportions and other anthropogenic indicators clearly expand. 

Our study demonstrates the need to perform local experimental approaches to check the effect of ice 

phenology on high altitude lakes sensitivity to vegetation changes to obtain more realistic 

reconstructions of mountain vegetation belts dynamics. 

 

Key words: Lake ice-cover, moss pollster, vegetation dynamics, Central Pyrenees, Last deglaciation, 

Holocene 
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1. Introduction 

Current landscapes have been shaped by long-term climatic, environmental and cultural processes. 

Particularly, alpine ecosystems are among the most sensitive and fragile to Global Change (Krajick, 

2004) and their geological archives offer a great opportunity to understand recent changes in 

mountain ecosystems in the context of past environmental and climate dynamics. Recent studies have 

detected a gradual transformation of mid-latitude high mountain plant communities due to the ongoing 

climate change in several mountain ranges, including the Pyrenees (Gottfried et al., 2012; García et 

al., 2016). This gradual transformation encompasses both substitutions of cold-adapted plant 

communities by more thermophilous ones (Gottfried et al., 2012) and treeline altitudinal shifts 

(Camarero and Gutiérrez, 2004; García-Ruiz et al., 2015; García et al., 2016). Alpine ecosystems 

show an intense and fast response to recent global warming (Camarero et al., 2015) and land-use 

changes (Battarbee et al., 2002; Cunill et al., 2012; Geantă et al., 2014; García-Ruiz et al., 2015). 

Addressing the response of these ecosystems to changing environmental and climate conditions in 

the past helps to better constrain the role of different forcings controlling the current climate change 

processes and impacts. Mountain vegetation has been shown to be particularly sensitive to climate 

variability (Birks and Ammann, 2000; González-Sampériz et al., 2006; Magny et al., 2013; Pérez-Sanz 

et al., 2013; Thöle et al., 2016) and particularly at higher altitudes (Birks and Ammann, 2000). In this 

sense, remote mountain lakes have high potential as past climate and vegetational change archives 

(Battarbee et al., 2002; Catalan et al., 2002; Ilyashuk et al., 2011). However, interpreting pollen 

sequences from high altitude sites has some specific challenges, as pollen percentages do not reflect 

vegetation cover, some taxa are over-represented (pines) and values are highly influenced by 

sedimentation rates which are likewise influenced by ice-cover season. Alpine lakes can be ice-

covered for about 10 months or more, strongly dependent on climate variability (Brown and Duguay, 

2010; Sánchez-López, 2016) and since changes in ice-cover timing directly affect sedimentation 

dynamics, all fluxes associated to environmental proxies are affected too (Catalan et al., 2002; 

Thompson et al., 2005; Ojala et al., 2008; Tomkins et al., 2009). In order to have a better control on 
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pollen representation in fossil sequences we use the absolute amount of pollen deposition per unit 

area and time (Pollen Accumulation Rate, PAR). This is frequently a more precise index than the more 

commonly used pollen percentages, particularly when addressing vegetation changes in high altitude 

lakes to minimize the effect of variable sedimentation rate in a frequent ice-covered lake (van der 

Knaap et al., 2001; Tinner and Theurillat, 2003; Seppä and Hicks, 2006; Matthias and Giesecke, 

2014).  

The other limiting factor in high-altitude pollen –based reconstruction is related to the variable intensity 

and source of the pollen rain. Thus, as pollen produced in lowlands is easily lifted by vertical air-mass 

movements and deposited at subalpine and alpine zones, it may obscure the local vegetation signal, 

especially in treeless sites where local pollen production is low, complicating the vegetation history 

reconstruction (Barthelemy and Jolly, 1989; David, 1993; Birks and Birks, 2000; Tinner and Theurillat, 

2003; Ortu et al., 2006; Seppä and Hicks, 2006). To tackle this problem, modern pollen rain is usually 

characterized along an elevation gradient and it is used as a tool to refine past vertical shifts and 

changes in vegetation composition (Ortu et al., 2006; Canellas-Bolta et al., 2009; Birks and Bjune, 

2010; de Nascimento et al., 2015; Garcés-Pastor et al., 2016, 2017). 

Comparisons between fossil and current palynological content, using pollen percentages, PC and 

PAR values is needed to obtain more accurate interpretations in high altitude settings (Seppä and 

Hicks, 2006). Finally, factors determining the vegetation response to past environmental change are 

also obscured at times by the interaction of climate and human activities. While lowlands have often 

been disturbed by human activities, the high elevation sites have been less affected until recent times 

(Catalan et al., 2013; Pérez-Sanz et al., 2013; González-Sampériz et al., 2017). Alpine pollen 

sequences, usually less affected by human activities, represent therefore good archives for the study 

of past climate changes (Ortu et al., 2006; Pérez-Sanz et al., 2013) with lower human interaction. 

Many studies have been carried out in lakes at different mountain ranges in the Iberian Peninsula (e.g. 

Moreno et al., 2011; Jiménez-Moreno and Anderson, 2012; Morales-Molino et al., 2013; Muñoz 

Sobrino et al., 2013). Unfortunately, most of the studied Pyrenean sequences cover only part of the 
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Holocene (e.g. Pla and Catalan, 2005; Miras et al., 2007; Pèlachs et al., 2011; Pérez-Obiol et al., 

2012; Pérez-Sanz et al., 2013; Pérez-Díaz et al., 2015; Garcés-Pastor et al., 2016, 2017) and few of 

them include the Late Glacial-Holocene transition (LGH) (Montserrat-Martí, 1992; González-Sampériz 

et al., 2006, 2017; Gil-Romera et al., 2014; Rius et al., 2014) a key interval to provide contrasting 

boundary conditions for terrestrial ecosystems, particularly at high altitudes (Brisset et al., 2015).  After 

alpine glacier retreat, new environmental conditions developed on freshly ice-free valleys, profoundly 

modifying mountain landscapes (e.g. Tinner et al., 1996; Heiri et al., 2003; Lotter and Birks, 2003). 

Defining the timing and dynamics of these changes  is crucial for a better understanding of thresholds 

in the Earth's climatic system (Brisset et al., 2015) particularly in regions (the Pyrenees and the 

Mediterranean Mountains) were records are relatively scarce.  

We present here a reconstruction of the palaeoenvironmental and vegetational dynamics of the last 

14.6 cal kyr BP at Marboré Lake (2612 m a.s.l.) located at the Central southern Pyrenees. To ensure a 

robust interpretation of past vegetation changes at these high altitude environments we use pollen 

accumulation rates (PAR), pollen concentration (PC), pollen percentages and data from current pollen 

rain along an altitudinal gradient. We particularly focus on 1) the timing and dynamics of vegetational 

shifts in the Pyrenees and their relationship with climate variability, 2) the role of ice-cover on PAR and 

PC changes and how it compares with pollen percentages and sediment deposition rates; 3) testing 

how well current vegetation is represented in pollen spectra at an altitudinal gradient, and 4) 

discussing the role of human activities shaping the mountain landscapes. 

2. Study area 

2.1. Geographical settings 

The Pyrenees are an alpine range lying in Northeastern Iberia for about 450 km length from the 

Cantabrian to the Mediterranean Sea (Fig. 1a). Marboré Lake (42°41'44.27"N, 0° 2'24.07"E) is and 

alpine glacial lake located at 2612 m a.s.l. (Fig 1b, e) in the central part of the Pyrenees within a 

glacial cirque limited by the Tucarroya Peak (2818 m a.s.l.) to the north and the Monte Perdido (3355 
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m a.s.l.) and Cilindro de Marboré (3328 m.a.s.l.) to the south (Fig.1 d). The cirque opens towards the 

east and ends at the Balcón de Pineta, as a hanged valley to the Pineta glacier Valley (Fig. 1d). 

 

Fig.1. a) Location map of Marboré Lake in the Pyrenees together with nearby Pyrenean records 
discussed in the study. b) Detailed topographic map of the area where the lake is located.  c) 
Temperature and precipitation maps of the Pyrenees. d) Ortophoto of the Marboré Lake and 
surrounding area. e) Photography of the Marboé Lake and its nearby area (September 2013). f) 
Bathymetry of the Marboré Lake with the coring sites for this study.  
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Marboré Lake is located in a syncline within the Upper-Cretaceous (Campanian-Maastritchian) 

Marboré sandstone formation composed of sandy limestones and fine-grain sandstones cemented by 

a carbonatic matrix (Souquet, 1967). The lake measures ~500 m along the WNW-ESE syncline axis 

and ~200 m across, with a maximum water depth of 30 m (Fig.1e, f). The outflow of the lake is the 

headwaters of the Cinca River. The southern limit of the basin includes the remnants of the Monte 

Perdido and Marboré glaciers, but there are no direct surface connections between the glaciers and 

the lake basin as they are separated by a topographic high (Fig. 1e) (Garcia-Ruiz et al., 2014). 

Most Pyrenean glaciers have been affected by a significant retreat since the Little Ice Age and many 

of them have even disappeared from 1850 to 2005 (López-Moreno et al., 2016). The Monte Perdido 

glacier (Fig. 1d) is the third largest glacier still remaining in this mountain range. Recently Garcia-Ruiz 

et al., 2014 have reconstructed the Late Holocene evolution with a glacier expansion at ca 5.1 kyr BP, 

probably associated with the Neoglacial period (Davis et al., 2009), followed by a later retreat at 3.4 

and 2.5 kyr BP, synchronous with the Bronze/Iron Ages, another glacial advance phase during the 

Dark Ages (1.4-1.2 kyr BP) and finally, two pulses during the Little Ice Age (LIA), the early 18th century 

and between 1790-1830 AD. The current shrinkage of the Monte Perdido Glacier began at the end of 

the LIA and has clearly accelerated after 2000 AD (López-Moreno et al., 2015, 2016).   

2.2. Climate and vegetation 

The Central Pyrenees encompasses, in a relatively small area, the transition between Mediterranean 

and Atlantic climate regimes which are mainly different in terms of precipitation amount and 

seasonality. These mountains are thus affected by both rainfall regimes and they present vegetation 

communities from both domains. The mean annual temperature during 1982-2011 for Góriz -the 

nearest meteorological station located at 2220 m a.s.l. - is 4.9 ±0.5ºC. January is the coldest month 

with mean temperature of -0.7ºC and July is the warmest with 13ºC. Regarding precipitation, the mean 

annual value for Marboré Lake is ca. 2000 mm (Fig. 1c). Current ice-cover lasts on average 9-10 

months, from November-December to mid-July-August.  
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Locally, the altitudinal gradient from the valley bottoms to the Monte Perdido massif (3355 m a.s.l.) 

shows a typical vegetation zonation in alpine mountain environments (Fig. 2), where three main 

vegetation belts have been described: (1) the montane belt, below 1600 m a.s.l., is characterized by a 

mixed temperate and pine forest ; (2) the subalpine belt, below 2000 m a.s.l., is dominated by  Pinus 

uncinata communities and shrub patches and indeed nowadays the valley treeline  is  at 2000 m a.s.l. 

where P. uncinata is the main tree species); and (3) the alpine belt, above 2000 m a.s.l, where only 

some patches of annual and perennial alpine herbs, coping with harsh environmental conditions, are 

present. 

 

Fig.2. Simplified vegetation transect from the Pineta valley (1200m a.s.l.) to the Marboré Lake (2612m 

a.s.l.) with main vegetation communities and the vegetation belts defined. Red stars correspond to 

moss pollster sampling sites. 

 

3. Material and Methods 
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In August 2011, 3 piston cores (~7 m long each) and 16 short gravity cores (<1m each) were retrieved 

using an Uwitec platform and coring equipment of the Pyrenean Institute of Ecology (IPE-CSIC). All 

the cores were opened, photographed and sampled for biotic and abiotic analyses: radiocarbon 

dating, X-ray diffraction (XRD), X-ray fluorescence, Total organic (TOC) and inorganic (TIC) carbon 

analysis, quantitative values of elemental composition (ICP-OES), environmental magnetism 

measurements (u-channels), pollen and microcharcoal analysis. Sedimentological, geochemical and 

palaeomagnetism results, as well as details of the chronological model, have already been 

summarized in (Oliva-Urcia et al., submitted).  The composite sequence includes the long core 

(MAR11-1U-1A-1) and two short cores (MAR11-1G-1A-4 and MAR11-1A-1) correlated by the Pb 

content measured by ICP-OES at the Ionomic Laboratory of CEBAS-CSIC in Murcia.  The short core 

MAR11-1U-1A-4 was dated by 210Pb 137Cs techniques for the upper 17.5cm  (Oliva-Urcia et al., 

submitted). Due to the absence of large charcoal particles and terrestrial organic matter remains, 16 

bulk sediment samples were dated by 14C in the Direct AMS laboratory in Seattle (WA, USA) (Table 

1).  Radiocarbon ages were calibrated using CALIB Rev 7.0.4 (Stuiver and Reimer, 1993) and the 

INTCAL13 curve (Reimer et al., 2013). The comparison of the 14C and 210Pb dates allows calculating a 

reservoir effect of 2230 14C years which has been considered in the chronological model. Marboré's 

age-depth model was made with Clam 2.2 software (Blaauw, 2010), using 14C AMS dates and 2 tie 

points inferred from the correlation with Pb peaks (Oliva-Urcia et al., submitted and Fig. 5). 

Pollen analysis were carried out in 90 samples from core MAR11-1U-1A prepared using the standard 

chemical procedure following (Moore et al., 1991) but including Thoulet solution (2.0 g cm-3) for 

separation and Lycopodium clavatum spores to calculate concentration (Stockmarr, 1971). Pollen has 

been identified under a light microscope, and using the reference collection from the IPE-CSIC, 

determination keys and photo atlases (Moore et al., 1991; Reille, 1992). The mean of pollen grains 

counted was 353 per sample (Standard deviation (SD) of 35.2), and 69 different pollen and spore 

types were identified. Results are expressed in percentages, concentration (pollen grains g-1) and 

pollen accumulation rates (PAR, considered as number of pollen grains cm-2 yr-1), always excluding 
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hygrophytes, hydrophytes, Pteridophyta spores and non pollen palynomorphs (NPP) from the pollen 

sum. PAR values were calculated as a product of pollen concentration, sediment density (g cm-3) – 

measured as mass (g):volume (cm3)  ratio - and sedimentation rate (cm yr-1) in each sample. Pollen 

diagrams and cluster analyses were used to establish pollen zones and were performed with Psimpoll 

4.27 software (Bennett, 2009). 

In order to study pollen-vegetation relationships along the altitudinal gradient which influences 

Marboré's palynological content, a total of 12 vegetation surveys (MP-1 to MP-12) were performed, 

covering different vegetation communities from the Pineta's valley bottom (1282 m a.s.l., montane 

belt) to the Marboré Lake (2612 m a.s.l., alpine belt) (Fig. 2). Moss samples were used because of 

their known suitability as pollen traps and their frequent occurrence in the area. Furthermore, their 

pollen content is an average pollen assemblage of several years, as it occurs in sediments, and 

provide a good record of local vegetation (Räsänen et al., 2004, 2007; Wilmshurst and McGlone, 

2005; Mazier et al., 2006; Lisitsyna and Hicks, 2014). In each site, two moss pollsters were taken and 

mixed into a single sample. The vegetation surrounding the moss pollsters MP-1 to MP-11 was 

surveyed at north and south transects in intervals of 1, 2, 3, 4, 6, 8 and 10 m from the moss pollster. 

For each moss pollster a semi-quantitative vegetation survey was made based on cover estimation 

within 20m-diameter around each sample. The area surrounding the lake, corresponding to moss 

pollster MP-12, is mainly bare rock so, transects were not carried out although the few species that 

were present were described qualitatively. Results have been plotted in a stacked bar chart and 

classification was conducted with a cluster analysis.  

Moss samples were chemically processed including the standard procedure explained above (Moore 

et al., 1991) but including acetolysis. Pollen identification and results analyses were performed 

applying the same procedure than for the fossil samples. Pollen accumulation rates have not been 

calculated for moss pollster pollen samples as it has been demonstrated that these units may not be 

very reliable when working with moss samples (Lisitsyna and Hicks, 2014). However, pollen 
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concentrations for several pollen groups have been used in order to complement pollen percentages 

and to get more precise information for current pollen samples. 

4. Results 

4.1. Current vegetation and moss pollsters 

Current vegetation from Pineta valley (1282 m a.s.l.) up to Marboré Lake (2612 m a.s.l.) presents a 

strong altitudinal gradient. Fig. 3 shows a comparative stacked bar chart between the vegetation cover 

of a 20 m diameter around the moss pollster (Fig. 3a) and the pollen signal recorded in each of them 

(Fig. 3b). Plant cover for taxa such as Pinus (the most abundant arboreal taxon), Corylus (the principal 

taxon within the deciduous forest group) and Poaceae (an important component within the herbaceous 

group) has been compared with its representation in pollen percentages for each moss pollster (Fig. 

4). The plant cover distribution around each sample site shows a high agreement with the pollen 

abundances found on it (Fig. 3a, b). Both, pollen data and plant cover define a three-zone 

classification corresponding to: 

a) Montane belt (Zone I, up to 1600 m a.s.l.). This zone is a well-developed deciduous forest (~28%) 

(Fig. 3a) (sometimes mixed with conifers) with species like Corylus avellana, Fraxinus excelsior, Acer 

campestre, Betula pendula, Sorbus aria,  Fagus sylvatica and Pinus sylvestris with sparse shrubs  as 

Buxus sempervirens, Juniperus communis, Crataegus monogyna, Taxus baccata, Ilex aquifolium, or 

Rhamnus sp.,. Montane pastures appear within forest clearings (~50%) with, among others, Plantago 

sp., Fragaria vesca, Trifolium sp., Aconitum napellus, Viola sp., Ranunculus sp., Vicia sp., or Knautia 

and several Poaceae species. The lower part of the montane belt (Zone I-A, below 1400 m a.s.l) 

shows a better developed and denser deciduous forest (~30%), while in the upper part (Zone I-B, 

1400-1600 m a.s.l.) this proportion is lower (<10%), and montane pastures acquire more relevance. 

Pinus is the most frequent pollen type for the montane belt sites (Fig. 3b, Zone I), (~50-60%) and it is 

clearly over-represented since no pines are found around the sample sites (Fig. 3a, Fig. 4). On the 

contrary, deciduous forest pollen (~20%) dominated by Corylus, Fraxinus and Betula, among others 
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shows a good correlation with plant cover (Figure 4). Olea is also an over-represented taxon since it 

does not grow in this belt and always appears on the samples.  Herbs are under-represented in pollen 

content (~15%) as it can be seen for example with Poaceae (Fig. 4). 

 

Fig.3. Bar-chart comparison between a) vegetation cover (%) existing around moss pollsters and b) 

pollen rain captured (%) in each moss pollster. 

 

b) Sub-alpine domain (Zone II, 1600-2000 m a.s.l.). Arboreal communities are scarcer in this belt (Fig. 

3a), and Pinus uncinata is the principal species up to the treeline (2000 m a.s.l.). Shrubs such as 

Juniperus communis, Rhamnus alpina and Amelanchier ovalis appear sparsely. Herbs dominate the 

land cover (~80%) within this belt with species such as Potentilla alchemiloides, Galium sp., 

Campanula sp., and several Poaceae, forming extended sub-alpine pastures. However, herbaceous 

pollen group reach only around 25%. Pollen from deciduous taxa, Olea and other shrubs occur in 

lower percentages (~5%). Pollen from moss pollsters (Fig. 3b, Zone II) also show Pinus as the main 

taxon (~70%), clearly over-represented (Fig. 4). It is worth noticing that Pinus pollen could be 

produced by both Pinus sylvestris, occurring in the montane belt and P. uncinata, appearing in the 

subalpine belt and featuring the timberline and treeline.   
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Fig.4. Comparison between plant cover (%) of selected taxa (Pinus, Corylus and Poaceae) and its 

representation in pollen (%) for each moss pollster. Note the different x-axis scales, in the case of 

Pinus marked with red. 

 

c) Alpine belt (Zone III, 2000-2600 m a.s.l.). The vegetation at 2288 m a.s.l. (Fig 3a) represents the 

transition between the sub-alpine and the alpine belts but it already shows alpine characteristics as it 

is dominated by taxa from alpine meadows and rocky-environments as Saxifraga aizoides, 

Leontopodium alpinum, Globularia sp., Horminum pyrenaicum, Paronychia capella and Poaceae. The 

upper most sample, at 2612 m a.s.l., is located in bare ground but species as Galium pyrenaicum, 

Leucantemopsis alpina, Linaria alpina, Potentilla nivalis, Doronicum grandiflorum, amongst others 

were sparsely frequent. Pollen preserved in alpine moss pollsters (Fig. 3b, Zone III) shows the highest 

herbaceous elements percentages (~30 %) with a good representation of Poaceae (Fig. 4). Pinus 

pollen is still the principal taxon (~55%) despite does not grow at this altitude. Deciduous forest 

components are also present, but in low proportions. 
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4.2 Sedimentary sequence 

4.2.1. Sedimentology and Chronological model 

The Marboré Lake sedimentary sequence comprises laminated fine silts and silty clays with very low 

organic matter content (TOC values < 1%). The sequence has been divided into 4 main units: Unit 4 

(721-582 cm depth) is characterized by the lowest TOC values of the whole sequence and the 

presence of several TIC and Ca peaks. Relatively higher TOC, less defined lamination and the 

occurrence of associated Ca-Mn peaks defines Unit 3 (582-270 cm depth). Unit 2 (270-220 cm depth) 

is characterized by a decrease in TOC values and the increase in the magnetic properties of the 

sediments. Well defined laminations, relatively higher TOC and the occurrence of two Pb peaks 

characterized Unit 1 (220-0 cm depth) (Oliva-Urcia et al., submitted). 

The comparison between 210Pb and 14C chronologies for the upper part of the sedimentary sequence 

suggests an important 14C reservoir effect.  In order to estimate it, two cores were correlated using Pb 

(XRF counts) peaks and the 210Pb age markers from the MAR11-1G-1A core were transferred to the 

long core MAR11-1U-1A. The average sedimentation rate according to 210Pb chronology is 0.095 cm 

yr-1, providing an age of 340 cal yr BP for the base of the short core (32.5 cm depth). A 14C sample at 

that depth gave an age of 2570 cal yr BP, much older that the age provided by the 210Pb model. The 

14C reservoir effect was then calculated as 2230 years by subtracting both ages. Since we could not 

calculate reservoir effect for other periods, we had to assume a constant reservoir effect during the 

Holocene, and applied to all 14C dates (Table 1). Three radiocarbon dates have been excluded from 

the final depth age model as presented reversal ages (Table 1, Figure 5). According to this age model, 

the sequence covers the last 14.6 kyr cal BP. 

Although the assumption of a constant reservoir effect for the whole sequence is not supported by 

other absolute dating methods, several lines of evidence give credibility to this age model. The 

occurrence of Pb peaks is in agreement   with regional mining and metallurgic activities in Roman, 

Medieval and contemporaneous times. The age of the spread of Abies (5.8 cal yr BP) and Tilia (8 ky 
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cal BP) in the Marboré sequence are consistent with their timing for expansions in other Pyrenean 

records (González-Sampériz et al., 2006; Miras et al., 2007; Pérez-Sanz et al., 2013). According to 

this model, the mean sedimentation rate is 0.049 cm yr-1, with a sharp change at 10.2 kyr cal BP from 

0.0216 cm yr-1 to 0.061 cm yr-1 (Fig. 5).  

 

 

Fig.5. Depth-age model for the Marboré Lake sequence based on 13 AMS 14C dates and two Pb tie 

points (Oliva-Urcia et al., submitted). The spread of Abies and Tilia reinforces the model. 

4.2.2. Palynological sequence 
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According to the cluster analysis, 5 main vegetation zones (MAR-I to MAR-V) have been defined (Fig. 

6).  

MAR V, Sedimentary Unit 4 (721-582 cm depth; 14.6-9.3 kyr cal BP) 

Based on the fluctuations of Pinus and the deciduous forest pollen-group, 3 subzones have been 

defined: 

-MAR V-C, Sedimentary Units 4d, c (721-667 cm depth; 14.6-12.6 kyr cal BP) 

The beginning of this sub-zone (Fig. 6) is characterized by the highest proportions of NAP, mainly 

dominated by Artemisia, Poaceae, Chenopodiaceae and Lamiaceae; after 710 cm depth NAP sharply 

decreases and AP expands (~80%) through the rest of the sub-zone. Pinus is the principal taxon, 

although the deciduous forest is also well represented (20-30%), mainly by Corylus and in lower 

proportions by Betula, Ulmus, Alnus and Quercus. Juniperus is also present with percentages around 

5%. These percentages might suggest a forested landscape, but if we consider PC and PAR for all 

taxa (Figs. 7 and 8) the values are quite low with just small peaks at 678 and 667 cm depth (13.1 and 

12.6 kyr cal BP respectively).  

-MAR V-B, Sedimentary Unit 4b (667-622 cm depth; 12.6-10.2 kyr cal BP) 

Pinus and Corylus percentages sharply fluctuate while other taxa like Juniperus and NAP show lower 

values (Fig. 6). The PC and PAR values are the lowest of the whole sequence (Figs. 7 and 8) 

regardless of taxa. Some AP components such as Carpinus and Juglans are present, although 

anecdotally.  

-MAR V-A, Sedimentary Unit 4a (622-582 cm depth; 10.2-9.3 kyr cal BP) 

A slight decline in pine and a coeval increase in Corylus abundances occur while Artemisia, 

Chenopodiaceae and Lamiaceae decrease. Peaks with the highest PC and PAR values of the whole 

record occur at the top of the subzone (up to 116 103 grains cm-2 yr-1), generally in AP and NAP, and 

specifically in pines and Corylus (Figs.7 and 8). 
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MAR IV, Sedimentary Unit 3d, c, b (582-360 cm depth; 9.3-5.2 kyr cal BP) 

Similarly to previous unit, the fluctuations of Pinus and deciduous taxa group define 2 subzones: 
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MAR IV-B, Sedimentary Unit 3d, c (582-400 cm depth; 9.3-6 kyr cal BP) 

Pinus reaches its maximum abundance (up to 80%) but no major changes occurred in the NAP 

abundance (Fig. 6). Tilia appears continuously at 521 cm depth, 8kyr cal BP (Figs. 5 and 6) consistent 

with the other records in the Central Pyrenees (Montserrat-Martí, 1992; González-Sampériz et al., 

2006; Miras et al., 2007; Pèlachs et al., 2007; Pérez-Sanz et al., 2013). After 9.3 kyr cal BP (Figs. 7 

and 8) a correlation among PC, PAR and percentage trends is more consistent till the top of the 

sequence (Fig.7). Abies initially appearance occurs at 432 cm depth (6.4 kyr cal BP). 

MAR IV-A, Sedimentary Unit 3b (400-360 cm depth; 6-5.2 kyr cal BP) 

Arboreal pollen slightly declines in this unit (Fig. 6), due mainly to Pinus reduction (~ 45%), as 

deciduous forest pollen percentages and PAR values increase mostly due to Corylus and Alnus (Fig. 

7). Abies continues expanding from the base of this zone (400 cm depth, 6 kyr cal BP; Figs. 5 and 6) 

also coherent with its expansion inferred from other records from the region (Montserrat-Martí, 1992; 

González-Sampériz et al., 2006; Miras et al., 2007; Pèlachs et al., 2007; Pérez-Sanz et al., 2013).  

MAR III, Sedimentary Unit 3a (360-270 cm depth; 5.2-3.5 kyr cal BP) 

This vegetation zone is characterized by a Pinus recovery (~60%), and a deciduous forest group 

decrease both in abundances and PAR (Figs. 6 and 7). Abies continues expanding reaching its 

maximum abundance (18%) at the top of this zone. A rise in hygrophytes is mostly due to the increase 

of Myriophyllum. 

MAR II, Sedimentary Units 2, 1b (270-90 cm depth; 3.5-1.3 kyr cal BP) 

During this zone, the herbaceous taxa abundance expands progressively, dominated by Artemisia, 

Chenopodiaceae and Fabaceae, whereas AP experiments a continuous decrease due to the decline 

in Abies, Corylus, Tilia and Alnus. Among the shrubs, Ericaceae abundance increases towards the top 

of the sequence but the values never exceed 4% (Fig. 6). Fagus consistently appears in this zone, 

instead of causally as in previous sections (543 cm depth, 8.5 kyr cal BP). Both hygro-hydrophytes 
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groups also appear continuously with minor fluctuations and PAR values increase and reach their 

maximum for the sequence (except for unit MAR V-A) and coupled to percentage fluctuations (Fig. 7). 
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MAR I, Sedimentary Unit 1a (90-0 cm depth; 1.3-0 kyr cal BP) 

This zone is characterized by increasing Olea abundances and the significant and sharp decrease of 

Abies towards the top while Pinus declines, with some fluctuations. NAP abundance rises steeply (up 

to 30-35%) led by Artemisia, Poaceae, Chenopodiaceae and Fabaceae (Fig. 6). PAR for all these taxa 

present similar trends (Fig. 7). 

 

5. Discussion 

5.1 Keys to interpret the pollen sequence of Marboré Lake 

Two issues must be considered when interpreting a pollen sequence from a high altitude lake. First, 

the record might be more influenced by regional vegetation rather than local one, which is usually very 

scarce. Second, long periods of ice-cover in the lake may produce different responses of the 

sedimentation dynamics (eg. distinct sedimentation rate). Marboré record shows a complex pattern of 

pollen assemblage changes during the Late Glacial and Holocene (Figs. 6 and 7). The reconstruction 

of vegetation dynamics from pollen data obtained in high altitude sites needs to understand the 

source, transport and deposition of pollen grains in such settings. As during present times, it seems 

clear that the source area of arboreal pollen in Marboré Lake has always been regional and that the 

treeline did not reached the Marboré cirque during the last 14.6 kyr. The watershed has an abrupt 

orography, no well-developed soils and it is mainly dominated by bare rocks (Fig. 1). The lack of 

woody plant macrofossils representing local forest vegetation along the sedimentary sequence also 

favors this interpretation. Arboreal pollen in Marboré is a regional signal and interpreting the regional 

pollen signal implies understanding pollen-vegetation altitudinal correlations (Fig. 3) as well as 

depositional processes in the lake (sedimentation rates) and limnological features (ice-cover) that 

could influence pollen fluxes. 
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Our pollster transect shows an, unsurprisingly, relevant Pinus over-representation (Figs. 3 and 4). 

Pinus pollen in high-altitude environments has been shown to have a large source area (Sugita et al., 

1999; Tonkov et al., 2001; van der Knaap et al., 2001; Jensen et al., 2007; Canellas-Bolta et al., 2009; 

Birks and Bjune, 2010). On the other hand, we found a high correlation between the deciduous forest 

pollen group and its actual presence at the montane belt, where deciduous communities are abundant 

(Fig. 3). Deciduous pollen types are also frequent, but to a lesser extent, in moss pollsters at high 

altitude sites (~5%), where this vegetation is no longer present, proving some wind pollen drift uphill 

transport. As expected for anemophilous (wind pollinated) taxa as e.g. Corylus, Betula, Tilia pollen is 

long transported upwards in mountain regions (Canellas-Bolta et al., 2009).On the other hand, herb 

pollen types are under-represented (Fig. 3), as it has been documented in several studies and in 

agreement with data recorded in a similar moss pollster transects in the Pyrenees (Canellas-Bolta et 

al., 2009; Rieradevall et al., in press).  

In addition to pollen productivity, sources and transport processes, some physical features of water 

bodies located at high altitudes make the pollen-vegetation comparison even more challenging. 

Excepting subglacial lakes, lacustrine sedimentation requires ice-free conditions at least during some 

part of the year (Heiri et al., 2014). The catchment area of the lake needs to be also ice-free, as 

without water availability, there is no sediment input into the lake (including pollen transported within 

sediments). Lake-ice is sensitive to climate variability (Brown and Duguay, 2010; Sánchez-López, 

2016), as ice phenology has typically been associated with variation in air temperatures while ice 

thickness tends to be more associated to changes in snow cover (Brown and Duguay, 2010). The ice-

covered period has important implications in biological processes (e.g., diatom productivity) and also 

in sedimentation rate and all geochemical fluxes (Catalan et al., 2002). Diatom records and sediment 

pellets that have been used as indicators of changes in ice cover duration  (Lotter and Bigler, 2000; 

Smol et al., 2005; Ojala et al., 2008; Tomkins et al., 2009).  

The lower part of the Marboré palynological record shows abrupt changes in PC and PAR values that 

unlikely reflect rapid changes in regional pollen rain. We proposed during colder periods with a frozen 
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catchment area and no thawing of the lake ice-cover during several consecutive summers, pollen 

grains would have remained trapped on the lake ice cover and catchment area. Pollen deposition 

would have not occurred until complete thawing occurred, causing a higher pollen deposition in the 

lake and abrupt changes of PC and PAR. Abundances are affected by changes in differential pollen 

deposition and sedimentation rates that cannot be clearly traced with percentages as there is no 

absolute value of pollen production. PC and PAR are standardized measures by volume of sample 

and unit of time and thus sedimentation rate variations caused by ice-cover fluctuations during glacial 

or stadial periods can be identified. Therefore, we propose the existence of long-lasting ice-covered 

periods when low PC and PAR values occurred while high PC and PAR would indicate abrupt thawing 

and a subsequent sudden deposition of pollen accumulated during the ice-cover period. 

 

5.2 The deglaciation and the beginning of the Holocene (14.6-9.3 kyr cal BP)?  

Several studies (e.g. Sancho et al., 2003; Lewis et al., 2009; García-Ruiz et al., 2013) proved the 

maximum extent of glaciers in the Pyrenees  to have occurred during the Late Pleistocene, at about 

64 ± 11 kyr BP, not concurring with the timing for the global Last Glacial Maximum (LGM), 23-19 kyr 

cal BP (e.g. Mix et al., 2001; Clark et al., 2009). Sedimentation in the Marboré Lake started at least 

14.6 kyr ago, indicating that the Marboré cirque was at least partially deglaciated by that time (Oliva-

Urcia et al., submitted; Salazar-Rincón et al., 2013). Some studies carried on in the Mediterranean 

Alps, also attest that glacial cirques above 2000 m a.s.l. were deglaciated since the Bølling/Allerød 

(Brisset et al., 2015).  

Thus, during Greenland Interstadial (GI-1) (14.6-12.9 kyr cal BP) (Rasmussen et al., 2014), proglacial 

sedimentation characterized Marboré Lake deposition. Sedimentation rate is generally low during GI1, 

Greenland Stadial 1 (GS-1 or Younger Dryas) (12.9-11.7 kyr cal BP (Rasmussen et al., 2014) and the 

Holocene onset (HO). Both PC and PAR values also remain low during GI1 and even lower in the 

subsequent GS-1 and HO (Figs. 7 and 8).  The Thompson et al., (2005) ice-cover model indicates that 
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Fig.8. Inferences of the Marboré Lake ice-cover duration. a) Total pollen PAR values. b) Total pollen 

concentration (PC). c) Sedimentation rate. d) Temperature changes reconstructed from18O content 

in Greenland NGRIP core (Rasmussen et al., 2014). e) Summer insolation 42ºN curve calculated by 

means of PAST software  (Hammer et al., 2001). 

 under current temperatures the ice-cover duration for a lake located at 2600 m a.s.l. would be ~225 

days. Current observations carried out in the Marboré Lake confirm this figure and suggest that some 

years ice-cover can last even for ~245 days. According to this calibration model, an estimated Tª 

decrease of ~ 2ºC at ~2600 m a.s.l. during the GS-1 (Millet et al., 2012; Muñoz Sobrino et al., 2013; 

Bartolomé et al., 2015) would increase the ice cover duration of the lake in ~30 more days compared 

to current times. Thus during the GS-1 and HO complete ice-cover length could easily correspond to 

10-11 months, or even the whole year during some particularly cold years as well as a frozen 

catchment area. Sedimentological data from this time interval show the absence of the brown laminae 
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which has been linked to the summer season, suggesting that the lake would have been frozen most 

of the year and deposition dominated by fine clastic sedimentation (Oliva-Urcia et al., submitted).  

A sharp increase of sedimentation rate occurs from 10.2 cal Kyr BP onwards parallel to an increase in 

organic productivity in the lake and a change in lamination features (Oliva-Urcia et al., submitted). 

These limnological changes are concurrent with several abrupt PC and PAR peaks (Figs. 7 and 8) ca. 

9.8 and 9.5 kys cal BP, possibly linked to increasing productivity values as temperature rises. A 

chironomid-based July air-temperature reconstruction from a mountain lake in the Alps (2796m a.s.l.) 

reveals the highest temperatures for the Early Holocene during this time-interval (10-8.6 kyr cal BP) 

(Ilyashuk et al., 2011). The increase in sedimentation rate, PC and PAR values could be coupled to 

longer ice-free seasons with higher glacier meltwater, sediment availability and strengthen runoff 

processes. In agreement with these new data from Marboré record, a similar delayed response of 

Pyrenean and Mediterranean communities to the Early Holocene warmer and moister conditions has 

previously identified in several regional sequences (Morellón et al., 2009; Pérez-Sanz et al., 2013; 

Aranbarri et al., 2014; González-Sampériz et al., 2017).  

Maximum summer insolation during this period (Fig. 8) would have increased the number of years with 

a complete melt of the catchment area and the lake ice-cover during summer months, causing a 

sudden bottom lake deposition of the accumulated pollen on the lake surface during the previous 

years with limited ice cover thaw.  

This complex pollen deposition pattern during the proglacial phase of the lake adds potential artifacts 

to the interpretations of vegetation dynamics, especially if we only consider percentages from pollen 

content, which do not reflect reliable vegetation cover at a local or regional scale. To tackle this 

problem, common in high altitude records, we propose to use PAR and PC for periods with potential 

longer ice-cover seasons, which indicate a widely open landscape at high altitudes. Similar artifacts 

may have occurred in Marboré afterwards at centennial or decadal scales during Holocene cold 

periods (e.g., during the Neoglacial or the Little Ice Age-LIA) but our time resolution does not allow 

detect them. 
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5.3. An overview of Holocene vegetation dynamics in the Central Pyrenees 

From 9.3 kyr cal BP onwards sedimentation rate, PC and PAR experienced fluctuations but no abrupt 

shifts have been detected, suggesting that there were multi-annual periods with no ice-free summers. 

Most likely during the Holocene, the lake was free of ice lake for several months per year (probably 3-

4 months, similar to nowadays). Thus, during this period pollen percentages as well as PC and PAR 

can be used to interpret regional and local Holocene vegetation patterns (Fig. 7).  

5.3.1. Vegetation responses during the Early-Mid Holocene (9.3-5.2 kyr cal BP) 

Marboré Lake is strategically located in the Central Pyrenees to investigate changes in the extent of 

Atlantic versus Mediterranean influences during the Holocene along a West – East gradient. Many 

studies have demonstrated that vegetation responded differently during the beginning of the Holocene 

through the Iberian Peninsula, depending on their location relative to the Atlantic – Mediterranean 

gradient. More temperate and moister conditions were inferred from the Atlantic-influenced pollen sites 

(Muñoz Sobrino et al., 2005, 2007; Moreno et al., 2011; Iriarte-Chiapusso et al., 2016) where a rapid 

spread of deciduous forest occurred, while continental and Mediterranean sequences show high 

proportions of pines and/or junipers (Carrión et al., 2010; Rubiales et al., 2010; Morales-Molino et al., 

2013; Aranbarri et al., 2014, 2015), indicating still intense hydrological stress due to maximum 

seasonality during the Early Holocene.  

Pyrenean records show examples of both hydrological situations. In the easternmost sites (e.g., Miras 

et al., 2007; Pérez-Obiol et al., 2012) marked Mediterranean, more continental conditions with 

dominant coniferous communities prevailed, while westwards locations with a more Atlantic climate 

regime such as El Portalet (González-Sampériz et al., 2006; Gil-Romera et al., 2014) show a great 

and rapid expansion of mesophytes since the Bolling-Allerod transition and throughout the Holocene 

(Fig. 9f). The Central Pyrenees contains the boundary between both climate regimes and so, pollen 

sites could help to identify the history of the shifting boundary during the Holocene (Fig. 1). In La Basa 

de la Mora sequence (Pérez-Sanz et al., 2013), in a southeastern location of the Central Pyrenees 
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area and a relatively lower elevation (1914 m a.s.l), the high abundance of pines and junipers reflects 

a more Mediterranean-influence during the Early Holocene, and progressive changes into a more 

deciduous dominated landscape during the Early-Mid Holocene transition, suggesting more humid 

conditions (Fig. 9e). Interestingly, the Marboré sequence, located between El Portalet and Basa de la 

Mora and a higher altitude (Fig. 1), also presents a pine-dominated community, with P. uncinata (at 

treeline), and P. sylvestris (at the timberline), but the importance of the deciduous taxa (Fig. 9b) 

suggests  humid conditions, similar to Atlantic-influenced sites like El Portalet (Fig. 9f) during the Early 

Holocene. Atlantic influence would have been stronger in higher and northern areas in the Central 

Pyrenees during the Early Holocene, while lower elevations and more southern areas would already 

have been more affected by Mediterranean dynamics since the Early Holocene. 

Reconstructing both treeline and timberline shifts is hindered by the absence of macrofossils 

originating from trees and shrubs representing forest vegetation in the records (e.g. Tinner and 

Theurillat, 2003; Birks and Bjune, 2010). In the Pyrenees, a montane ratio based on pollen-vegetation 

relationships has recently been applied by Garcés-Pastor et al.,(2016, 2017) to detect vegetation 

altitudinal shifts during the Holocene. In Marboré, we establish a consistent pollen-vegetation 

relationship finding that changes in the deciduous montane belt position may be easier to infer as 

there is a good correspondence between deciduous taxa in current vegetation and pollen rain from 

moss pollsters (Figs. 3 and 4). Treeline is mainly influenced by summer temperatures (Körner, 2012) 

but, studies on the timberline and treeline response to climate and human impact in the Alps suggest a 

stronger sensitivity of the timberline than the treeline (Tinner, 2013), therefore supporting the 

relevance of high altitude sites as better sensors of montane  than alpine communities, that are 

generally less productive in terms of both biomass and pollen.  

Pollen assemblages from 9.3-5.2 kyr cal BP period show an average of 23.55% (6.95 SD) of 

deciduous forest pollen group (SI, Table 1). This pollen values would correspond to the modern 

montane belt at 1300 m a.s.l. where a 22% (3.05 SD) of deciduous forest pollen is represented in 

pollster sites (Figs. 3a and 3b). Nowadays the deciduous forest upper limit is ca. 1500 m a.s.l. thus,  
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Fig.9. Comparison of the Marboré Lake sequence (pollen-based ecological groups, PAR values and 

sedimentation rate) with selected records from the Pyrenees for the Holocene. a) AP PAR values for 

Marboré. b) Selected taxa for Marboré Lake (Deciduous forest pollen group includes: Betula, Corylus, 

Carpinus, Castanea, Acer, Salix, Alnus, Fraxinus, Fagus, Tilia, Populus, Juglans, deciduous Quercus, 

Ulmus and Sorbus). c) Marboré Lake sedimentation rate evolution. d) Monte Perdido Glacier 
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fluctuations (Garcia-Ruiz et al., 2014). e) Selected pollen taxa for Basa de la Mora (Deciduous forest 

pollen group includes: Betula, Corylus, Fagus, Tilia, deciduous Quercus, Alnus, Salix, Ulmus, Populus 

and Juglans (Pérez-Sanz et al., 2013). f) Selected pollen taxa for Portalet peatbog (Deciduous forest 

pollen group includes: Betula, Corylus, deciduous Quercus, Alnus, Ulmus, Acer, Salix, Tilia, Fraxinus, 

Populus, Fagus, Juglans and Castanea) (González-Sampériz et al., 2006; Gil-Romera et al., 2014). g) 

Simplified reconstruction of the variations in the Central Pyrenean deciduous montane forest altitudinal 

shifts. h) Simplified reconstruction of Alpine treeline variations in altitude (Tinner and Theurillat, 2003; 

Heiri et al., 2014). i) Simplified reconstruction of the altitudinal variations in the Carpathian treeline 

(Magyari et al., 2012; Geantă et al., 2014; Feurdean et al., 2016). j ,k)  Summer and winter insolation 

42ºN curve calculates by means of PAST software (Hammer et al., 2001). 

considering both current and fossil data, we suggest that between 9.3-5.2 kyr cal BP the deciduous 

forest shifted to higher altitudes, even reaching the subalpine belt. Basa de la Mora (Pérez-Sanz et al., 

2013) also reveals the highest abundance of deciduous forest between 8.1-5.7 kyr cal BP (Fig. 9e). In 

the Alps, in a lake situated at a similar altitude (Sshwarzsee ob Sölden Lake, 2796m a.s.l., Austrian 

Alps) show similar deciduous forest dynamics (Ilyashuk et al., 2011).  

Although no tree macrofossils were preserved both pine communities at the timberline (Pinus 

sylvestris) and treeline (Pinus uncinata) could have shifted a bit higher than nowadays In any case, 

the Central Pyrenean treeline would have always been below 2600 m a.s.l.  

Macrofossil-based estimation of treeline changes in the Swiss Alps show the highest treeline position 

during ~10-5 kyr cal BP, rising over 2100 m a.s.l. (Heiri et al., 2014) and reaching up to ~2500 m a.s.l. 

(Tinner and Theurillat, 2003) (Fig. 9h). Studies carried out in the Carpathian Mountains also show that 

both timberline and treeline were higher during warm early and mid-Holocene, being higher than today 

after 8.5 kyr cal BP (1900 m a.s.l.) (Magyari et al., 2012; Geantă et al., 2014; Feurdean et al., 2016) 

(Fig.9 i). 
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These data from Iberian, central and southern European mountain sites reflecting montane belt 

evolution suggest that the Early-Holocene increasing summer temperature would have favored fast-

growing, pioneering, thermophilous deciduous forest (Lotter et al., 2006; Wehrli et al., 2007) and both 

treeline and timberline expansion. 

5.3.2. Changing environments after 5.2 kyr cal BP  

Large landscape changes have been reported since ~ 6-5 kyr cal BP onwards in European mountains 

both related to climate and human action (Ilyashuk et al., 2011; Pérez-Obiol et al., 2012; Pérez-Sanz 

et al., 2013; Heiri et al., 2014; Feurdean et al., 2016; Thöle et al., 2016; González-Sampériz et al., 

2017; Oliva-Urcia et al., submitted). However, discerning climatic and human impact in these sites has 

always been a matter of discussion (Carrión et al., 2010; González-Sampériz et al., 2017). In the Alps, 

after 6 kyr cal BP  treeline and timberline shifted downhill, particularly after 4.5 kyr cal BP (down to 

~2000 m a.s.l.), and it has been primarily attributed to anthropogenic impact, with cooler climates 

playing a subordinate role (Tinner and Theurillat, 2003; Tinner, 2013; Heiri et al., 2014) (Fig. 9h). In 

the Carpathians, a thinning of the timberline found from ~4.9 kyr cal BP (Fig. 9j) has been interpreted 

as responding to cooler summers in the Northern Hemisphere (Berger and Loutre, 1991; Feurdean et 

al., 2016). In this area, clear evidences for the contribution of human activities to the decline of the 

treeline and timberline are not found until 3.5 kyr cal BP (Feurdean et al., 2016). 

Our study documents a large qualitative vegetation change from 5.2-3.5 kyr cal BP, marked by an 

important decrease of deciduous forest (Fig. 9b), reaching modern analogues values in the montane 

and sub-alpine transition belts (SI, Table1). During this period, deciduous forest belt shifted 

progressively to lower altitudes, although it would still be located at higher altitudes than nowadays. La 

Basa de la Mora (Fig. 9e) also presents this pattern. This change characterizes the Mid-Holocene in 

Mediterranean regions (e.g. Jalut et al., 2010; Roberts et al., 2011) and it has been interpreted as 

colder and/or drier conditions, although most authors do not discard a regional human impact 

intensification as indicated by the increasing openness of forest environments and the increase of 

pasturelands (Galop and Catto, 2014; González-Sampériz et al., 2017). 
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Geomorphological and climatic aspects could help to identify the human or climate origin of mid to late 

Holocene deciduous forest shifting in the Central Pyrenees (Fig. 9g). A glacial expansion occurred 

during the Neoglacial (5.1 kyr ± 0.1 kyr) as a large push moraine has been identified and dated at the 

Monte Perdido (Fig. 1; Fig. 9d) (Garcia-Ruiz et al., 2014). Radiocarbon ages from the Troumouse 

Cirque, located 9 km to the north on the French side of the Pyrenees, also revealed an intensification 

of glacial activity between 5190 ± 90 and 4654 ±60 yr BP (Gellatly et al., 1992), with glaciers larger 

than those developed during the Litlle Ice Age-LIA (1300-1850 AD). During this Mid-Holocene glacial 

reactivation worldwide new glaciers formed and/or advanced (Davis et al., 2009). In general terms, 

this cold period in the mountains coincided with an arid phase in the Western Mediterranean (Jalut et 

al., 2000, 2009). Changes in the magnetic properties of the sediments, the lamination patterns and a 

decrease in sedimentation rate in Marboré Lake (Oliva et al., submitted) occurred during this period 

(Fig. 9c). PAR (Fig. 9a), decreased to the lowest Holocene values. A coeval decrease, although 

shorter in time, is noticed in both PAR and sedimentation rate at around ca. 1.2-1.5 kyr cal BP during 

the Early Medieval times when, another stage of glacier expansion occurred in Marboré cirque 

(Garcia-Ruiz et al., 2014) (Fig. 9d) in response to relatively colder and more humid conditions of the 

Dark Ages (Moreno et al., 2012;  Morellón et al., 2011, 2012). No similar changes have been detected 

during the LIA. No clear evidences of increasing duration of the lake ice-cover have been detected for 

these cold pulses in comparison to the YD and HO, possibly because the shorter duration of these 

events and the resolution of our proxies.  

A clear human imprint is not recorded in the Marboré sequence between 5.2-3.5 kyr cal BP, although 

evidences of cultural landscape transformations have been detected in the lowlands since 4 kyr cal BP 

(i.e., Galop and Jalut, 1994; Bal et al., 2010, 2011; Rius et al., 2012). The first human-induced 

deforestations were detected at around 4 kyr cal BP in the Tramacastilla sequence (1380m a.s.l.) by 

Montserrat-Martí (1992), although the forest recovered afterwards. The decreasing trend observed in 

the PAR values of Marboré during ~5-4 kyr cal BP (Fig. 9a) could however be responding to first 

regional deforestations, similar to those recorded by Montserrat-Martí (1992). In agreement with 
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Montserrat's hypothesis, Marboré forest recovered in following centuries, as shown by the maximum 

values reached by PAR at around 2.5-2 kyr cal BP (Fig. 9a). However no other anthropogenic 

indicators are found during this period so, as previously mentioned, this decrease could also be 

associated with colder climatic conditions. 

Over the last 3.5 kyrs, herbs (mainly Artemisia, Chenopodiaceae, Fabaceae and Poaceae) 

progressively expanded indicating a more consistently open, landscape. In the literature, herbaceous 

pollen percentages greater than 30% have been interpreted as a treeless alpine environment (Tinner 

and Theurillat, 2003; Berthel et al., 2012; Geantă et al., 2014). AP tends to descend progressively 

(Fig. 9b) primarily because of the decline in the deciduous forest which is also visible in the PAR 

values (Fig. 9a), interpreted as a deciduous-montane belt shift downwards, or a greater reduction of 

this community in general terms (Fig 9g).  A similar trend has also been identified in many other 

Pyrenean sequences located at both high (e.g. Tramacastilla, Montserrat-Martí, 1992; Redón, Pla and 

Catalan, 2005; Burg, Pèlachs et al., 2011; Estanilles, Pérez-Obiol et al., 2012; Basa de la Mora, 

Pérez-Sanz et al., 2013), and low altitudes (González-Sampériz et al., 2017) and linked to the 

continuous spread of human impact. However,  increasing heliophytes may point to climatic drivers 

leading the landscape change  (Pérez-Sanz et al., 2013).  

 For instance, the rise of Artemisia in Basa de La Mora after 3000 cal BP (Pérez-Sanz et al., 2013) fits 

well with the results obtained in Marboré sequence, without any clear evidences of human 

perturbations in the nearby forests. The coeval decrease in humid-demanding taxa like Corylus and 

Abies, coupled with the rise in evergreen Quercus, indicate a drier climate background. Coherently, 

the geochemical data from Marboré sequence (Oliva-Urcia et al., submitted) show another major 

change characterized by an increase in most magnetic parameters and in Mn oxides which also 

indicates a generally drier period with a lower lake level.  

It is not until the last 1.3 kyrs, when Marboré records the spread of human activities at a regional-scale 

with, the noticeable rise of the NAP component in percentages and PAR (Fig. 9b). Artemisia continues 

as the main herb taxa, but followed by Cichorioideae, Chenopodiaceae, Ericaceae and Fabaceae 
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which suggest an intensification of landscape management. The rise in Poaceae points to the 

expansion of alpine meadows at high-altitudes as also shown in Basa de la Mora (Pérez-Sanz et al., 

2013) (Fig. 9e).  As a consequence AP from both Marboré (Fig. 9c) and Basa de la Mora (Fig. 9e) 

experienced an important reduction, more intense in the deciduous forest. As shown in SI, Table 1, 

deciduous pollen percentages reached the lowest values during this period, suggesting that the 

deciduous forest boundary would have stabilized at an altitude similar to the current one (~1500 m). 

The vegetation replacement during the last millennium seems linked to anthropogenic activities rather 

than climate drivers since the expansion of Olea cannot be explained exclusively by natural causes. In 

fact, the spread of olive cultivars in the lowlands has been widely documented in many pollen 

sequences (Morellón et al., 2011; Rull et al., 2011; Pérez-Obiol et al., 2012; Pérez-Sanz et al., 2013; 

González-Sampériz et al., 2017) and archaeobotanical studies at regional-scale (Alonso et al., 2014).  

In sum, high altitude pollen sequences in the Central Pyrenees are good archives for understanding 

the regional vegetation variability and the montane vegetation altitudinal shifts without any significant 

human imprint, at least until the last millennium. Due to the high sensitivity of these high altitude lakes 

to environmental change, and how strongly they affect sedimentological and biological processes and 

pollen transport and deposition in the lake, caution should be taken when interpreting pollen 

percentages where ice-cover may preclude pollen deposition over long periods of time during colder 

periods. 

6. Conclusions  

1. The Marboré sequence offers the opportunity to investigate the sensitivity of high altitude 

systems as archives of climate and environmental changes during the Late-Glacial and 

Holocene in Southern European mountains (last 14.6 kyr cal BP). 

2. The unique setting (high altitude, prolonged snow and ice – covered periods, varied pollen 

sources) possess some challenges to reconstruct past vegetation dynamics based on pollen 

records. A modern altitudinal transect of pollster pollen rain sites and the use of PC and PAR 
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instead of pollen percentages has helped to better constrain the vegetational history of the 

Central Pyrenees and the altitudinal shifts of the montane forest during the Holocene. 

3. Lower sedimentation rate, PC and PAR occurred in Marboré during colder periods of GS-1 and 

HO (~12.6-10.2 kyr cal BP) indicating longer ice-cover periods. Increasing sedimentation rate 

and the occurrence of several abrupt PAR peaks during Early Holocene (10.2-9.3 kyr cal BP) 

were caused by longer ice-free seasons due to higher temperatures.  

4. Pollen percentages for cold periods as ~12.6-9.3 kyr cal BP are not reliable as indicators of 

vegetation composition because of differential pollen deposition depending on the ice-cover 

duration. 

5. The comparison between current vegetation cover and modern pollen spectra shows a good 

correlation between deciduous pollen assemblage and actual plant cover. This fact enables us 

to infer altitudinal shifts of the deciduous forest timberline. Pinus pollen type is always the 

dominant taxa in moss pollster and it is always over represented in all samples. On the 

contrary, herbaceous taxa are generally under-represented.  

6. The lack of arboreal plant macrofossils along the whole sequence, suggest that the treeline 

never reached Marboré site (2600 m a.s.l.) for the last 14.6 kyr cal BP. However, the 

comparisons carried out with fossil pollen abundances and modern spectra from moss 

pollsters, suggest that the maximum altitude reached by deciduous-montane forest was quite 

higher (1600-1900 m a.s.l.) than nowadays (1500 m a.s.l.), reaching the subalpine belt 

between 9.3-5.2 kyr cal BP time period.  

7. A progressive decrease in deciduous forest, sedimentation rate and PAR values occurred 

around 5.2 kyr cal BP, primarily attributed to the colder climatic conditions of the Neoglacial. 

Similarly, both sedimentation rate and PAR slightly decrease during the colder Dark Ages. No 

evidences of longer ice-cover duration changes have been identified for either period, probably 

as a consequence of their short duration and the low resolution sampling. 
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8. The expansion of herbs started around 3.5 kyr cal BP  and intensified after 1.3 kyr cal BP. 

Coevally, an important reduction of AP occurred (especially in deciduous forest), which could 

be related to the intensification of human activities at lower altitudes as it has been 

documented regionally. A clear anthropogenic signal is not found until recent times ~700 kyr 

cal BP, with the expansion of Olea pollen content, suggesting the regional intensification of 

Olive groves in the lowlands. 
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Table 1. AMS radiocarbon dates from core MAR11-1U-1A and two tie points corresponding to the two 

Pb peaks. Note that rejected dates are indicated in italics. 

Direct 

AMS 

code 

Name 

Composite 

Depth 

(cm) 

Radiocarbon  

date 

(14C AMS yr) 

Age 

error 

(yr 

BP) 

Reservoir 

effect 

(substracted 

before cal) 

Calibrated 

age  

(2σ) 

(cal yr 

BP) 

Mean 

calibrated  

age 

(cal yr 

BP) 

- 

MAR11-1G-1A-

4 cm 6-

FirstPbpeak 

4 -16 2.76 0 - 
-16 

 

- 

MAR11-1G-1A-

4 cm 14 

SecondPbpeak 

14 89 7.62 0 - 89 

D-AMS 

1217-

203 

MAR11-1A-1U-

1 cm 8-10 
- 5771 46 2230 - - 

D-AMS 

001189 

MAR11-1A-1U-

1 cm 39-41 
37.2 2514 25 2230 353-435 383 

D-AMS 

1217-

204 

MAR11-1A-1U-

2 cm 53-56 
91.4 3611 28 2230 

1275-

1340 
1300 

D-AMS 

001190 

MAR11-1A-1U-

2 cm 142-144 
195.4 4820 28 2230 

2707-

2765 
2742 

D-AMS 

1217-

205 

MAR11-1A-1U-

3 cm 27-30 
- 5853 30 2230 - - 

D-AMS 

1217-

206 

MAR11-1A-1U-

3 cm 71-74 
286.1 5675 31 2230 

3632-

3828 
3704 

D-AMS 

001191 

MAR11-1A-1U-

3 cm 102-104 
325.5 6294 39 2230 

4429-

4646 
4554 

D-AMS 

1217-

MAR11-1A-1U-

4 cm 17-21 
402.2 7464 55 2230 

5909-

6129 
6000 
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207 

D-AMS 

001192 

MAR11-1A-1U-

4 cm 88-90 
480.1 8447 39 2230 

7006-

7133 
7111 

D-AMS 

1217-

208 

MAR11-1A-1U-

4 cm 139-141 
537 9787 43 2230 

8305-

8427 
8376 

D-AMS 

001193 

MAR11-1A-1U-

5 cm 27-29 
596.1 10852 47 2230 

9525-

9689 
9583 

D-AMS 

001194 

MAR11-1A-1U-

5 cm 53-55 
628.2 11434 47 2230 

10248-

10496 
10363 

D-AMS 

010873 

MAR11-1A-1U-

5 cm 82-86 
665.3 12945 56 2230 

12573-

12727 
12668 

D-AMS 

010100 

MAR11-1A-1U-

5 89-93 cm 
674 13269 46 2230 

12769-

13045 
12904 

D-AMS 

1217-

209 

MAR11-1A-1U-

5 cm 113-116 
703.6 11521 47 2230 - - 

D-AMS 

010101 

MAR11-1A-1U-

5 cm 124-128 
717.3 14656 50 2230 

14192-

14893 
14528 
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Highlights 

 Variations of a Pyrenees lake ice-cover duration have been inferred for the GS-1 and Holocene onset, 
based on sedimentation rate and Pollen Accumulation Rate (PAR) values.  

 The deciduous-montane forest is the community best reflected when comparing current vegetation 
and pollen from modern surface samples.  

 The deciduous forest reached the maximum altitude between 9.3-5.2 kyr cal BP likely spreading to the 
sub-alpine belt.  

 Human impact is not clearly identified at high altitudes until very recent times.  
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