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Abstract

In this paper, we propose a nearest neighbour algorithm that uses the lower
and upper approximations from fuzzy rough set theory in order to classify test
objects, or predict their decision value. It is shown experimentally that our
method outperforms other nearest neighbour approaches (classical, fuzzy and
fuzzy-rough ones) and that it is competitive with leading classification and
prediction methods. Moreover, we show that the robustness of our methods
against noise can be enhanced effectively by invoking the approximations of
the Vaguely Quantified Rough Set (VQRS) model.

Keywords: fuzzy rough sets, classification, prediction, nearest neighbours

1. Introduction

Fuzzy sets [42] and rough sets [28] address two important, complementary
characteristics of imperfect data and knowledge: the former model vague
information by expressing that objects belong to a set or relation to a given
degree, while the latter provide approximations of concepts in the presence of
incomplete information. A hybrid fuzzy rough set model was first proposed
by Dubois and Prade in [12], was later extended and/or modified by many
authors, and has been applied successfully in various domains, most notably
machine learning.

The K-nearest neighbour (KNN) algorithm [13] is a well-known classifi-
cation technique that assigns a test object to the decision class most com-
mon among its K nearest neighbours, i.e., the K training objects that are
closest to the test object. An extension of the KNN algorithm to fuzzy
set theory (FNN) was introduced in [24]. It allows partial membership of
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an object to different classes, and also takes into account the relative im-
portance (closeness) of each neighbour w.r.t. the test instance. However, as
Sarkar correctly argued in [33], the FNN algorithm has problems dealing ade-
quately with insufficient knowledge. To address this problem, he introduced
a so-called fuzzy-rough ownership function. However, this method (called
FRNN-O throughout this paper) does not refer to the main ingredients of
rough set theory, i.e., the lower and upper approximation.

In this paper, therefore, we propose a nearest neighbour algorithm based
on fuzzy-rough lower and upper approximations. We consider two variants of
this algorithm: one is based on the common implicator/t-norm based branch
of fuzzy rough sets introduced by Radzikowska and Kerre [32], while the other
uses the more recent Vaguely Quantified Rough Set (VQRS) model from [10].
The discerning feature of the VQRS approach is the introduction of vague
quantifiers like ‘some’ or ‘most’ into the approximations, which according
to [10] makes the model more robust in the presence of classification errors.
In this paper, we take up this claim by evaluating VQRS’s noise-handling
potential in the context of classification and prediction.

The remainder of this paper is structured as follows: Section 2 provides
the necessary background details for fuzzy rough set theory, while Section
3 and 4 are concerned with the fuzzy NN approach, and Sarkar’s fuzzy-
rough ownership function, respectively. Section 5 outlines our algorithm,
while comparative experimentation on a series of classification and prediction
problems is provided in Section 6, both with and without noise. The paper
is concluded in section 7. Finally, let us mention that a preliminary version
of some of the ideas developed in this paper appears in the conference paper
[20].

2. Hybridization of Rough Sets and Fuzzy Sets

2.1. Rough Set Theory

Rough set theory (RST) [29] provides a tool by which knowledge may be
extracted from a domain in a concise way; it is able to retain the information
content whilst reducing the amount of knowledge involved. Central to RST
is the concept of indiscernibility. Let (X,A) be an information system, where
X is a non-empty set of finite objects (the universe of discourse) and A is a
non-empty finite set of attributes such that a : X → Va for every a ∈ A. Va
is the set of values that attribute a may take. With any B ⊆ A there is an
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associated equivalence relation RB:

RB = {(x, y) ∈ X2|∀a ∈ B, a(x) = a(y)} (1)

If (x, y) ∈ RB, then x and y are indiscernible by attributes from B. The
equivalence classes of the B-indiscernibility relation are denoted [x]B. Let
A ⊆ X. A can be approximated using the information contained within B
by constructing the B-lower and B-upper approximations of A:

RB↓A = {x ∈ X | [x]B ⊆ A} (2)

RB↑A = {x ∈ X | [x]B ∩ A 6= ∅} (3)

The tuple 〈RB↓A,RB↑A〉 is called a rough set.
A decision system (X,A ∪ {d}) is a special kind of information system,

used in the context of classification or prediction, in which d (d 6∈ A) is a
designated attribute called the decision attribute. In case d is nominal (i.e.,
in a classification problem), the equivalence classes [x]d are called decision
classes; the set of decision classes is denoted C in this paper.

2.2. Fuzzy Set Theory

Fuzzy set theory [42] allows that objects belong to a set, or couples of
objects belong to a relation, to a given degree. Recall that a fuzzy set in X is
an X → [0, 1] mapping, while a fuzzy relation in X is a fuzzy set in X ×X.
For all y in X, the R-foreset of y is the fuzzy set Ry defined by

Ry(x) = R(x, y) (4)

for all x in X. If R is a reflexive and symmetric fuzzy relation, that is,

R(x, x) = 1 (5)

R(x, y) = R(y, x) (6)

hold for all x and y in X, then R is called a fuzzy tolerance relation.
If X is finite, the cardinality of A is calculated by

|A| =
∑
x∈X

A(x). (7)

Fuzzy logic connectives play an important role in the development of
fuzzy rough set theory. We therefore recall some important definitions. A
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triangular norm (t-norm for short) T is any increasing, commutative and
associative [0, 1]2 → [0, 1] mapping satisfying T (1, x) = x, for all x in [0, 1].
In this paper, we use TM defined by TM(x, y) = min(x, y), for x, y in [0, 1].
On the other hand, an implicator is any [0, 1]2 → [0, 1]-mapping I satisfying
I(0, 0) = 1, I(1, x) = x, for all x in [0, 1]. Moreover we require I to be
decreasing in its first, and increasing in its second component. In this paper,
we use IM defined by IM(x, y) = max(1 − x, y) (Kleene-Dienes implicator)
for x, y in [0, 1].

2.3. Fuzzy Rough Set Theory

Research on the hybridization of fuzzy sets and rough sets emerged in
the late 1980s [12] and has flourished recently (e.g. [10, 21, 22]). It has
focused predominantly on fuzzifying the formulas for the lower and upper
approximations. In doing so, the following two guiding principles have been
widely adopted:

• The set A may be generalized to a fuzzy set in X, allowing that objects
can belong to a given concept to varying degrees.

• Rather than assessing objects’ indiscernibility, we may measure their
approximate equality. As a result, objects are categorized into classes,
or granules, with “soft” boundaries based on their similarity to one
another. As such, abrupt transitions between classes are replaced by
gradual ones, allowing that an element can belong (to varying degrees)
to more than one class.

More formally, the approximate equality between objects with continuous
attribute values is modelled by means of a fuzzy relation R in X that assigns
to each couple of objects their degree of similarity. In general, it is assumed
that R is at least a fuzzy tolerance relation.

Given a fuzzy tolerance relation R and a fuzzy set A in X, the lower
and upper approximation of A by R can be constructed in several ways. A
general definition [32] is the following:

(R↓A)(x) = inf
y∈X
I(R(x, y), A(y)) (8)

(R↑A)(x) = sup
y∈X
T (R(x, y), A(y)) (9)
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Here, I is an implicator and T a t-norm. When A is a crisp (classical)
set and R is an equivalence relation in X, the traditional lower and upper
approximation are recovered. While this is often perceived as an advantage,
it also brings along some problems. In particular, the use of the inf and
sup operations makes (8) and (9) subject to noise just like the universal and
existential quantifier ∀ and ∃ do in the crisp case.

For this reason, the concept of vaguely quantified rough sets was intro-
duced in [10]. It uses the linguistic quantifiers “most” and “some”, as opposed
to the traditionally used crisp quantifiers “all” and “at least one”, to decide
to what extent an object belongs to the lower and upper approximation.
Given a couple (Qu, Ql) of fuzzy quantifiers1 that model “most” and “some”,
the lower and upper approximation of A by R are defined by

(R↓QuA)(y) = Qu

(
|Ry ∩ A|
|Ry|

)
= Qu


∑
x∈X

min(R(x, y), A(x))∑
x∈X

R(x, y)

 (10)

(R↑QlA)(y) = Ql

(
|Ry ∩ A|
|Ry|

)
= Ql


∑
x∈X

min(R(x, y), A(x))∑
x∈X

R(x, y)

 (11)

where the fuzzy set intersection is defined by the min t-norm.
Examples of fuzzy quantifiers can be generated by means of the following

parametrized formula, for 0 ≤ α < β ≤ 1, and x in [0, 1],

Q(α,β)(x) =


0, x ≤ α
2(x−α)2
(β−α)2 , α ≤ x ≤ α+β

2

1− 2(x−β)2
(β−α)2 ,

α+β
2
≤ x ≤ β

1, β ≤ x

(12)

In this paper, Q(0.1,0.6) and Q(0.2,1) are used respectively to reflect the vague
quantifiers some and most from natural language. As an important difference
to (8) and (9), the VQRS approximations do not extend the classical rough
set approximations, in a sense that when A and R are crisp, the lower and
upper approximations may still be fuzzy. In this case, note also that when

Q>xl(x) =

{
0, x ≤ xl
1, x > xl

Q≥xu(x) =

{
0, x < xu
1, x ≥ xu

1By a fuzzy quantifier, we mean an increasing [0, 1]→ [0, 1] mapping such that Q(0) = 0
and Q(1) = 1.
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with 0 ≤ xl < xu ≤ 1 are used as quantifiers, we recover Ziarko’s variable
precision rough set model [45, 47], and moreover when we use

Q∃(x) =

{
0, x = 0
1, x > 0

Q∀(x) =

{
0, x < 1
1, x = 1

we obtain Pawlak’s standard rough set model as a particular case of the
VQRS approach, assuming that R is a crisp equivalence relation.

As such, the VQRS model puts dealing with noisy data into an interest-
ing new perspective: it inherits both the flexibility of VPRS for dealing with
classification errors (by relaxing the membership conditions for the lower ap-
proximation, and tightening those for the upper approximation) and that of
fuzzy sets for expressing partial constraint satisfaction (by distinguishing dif-
ferent levels of membership to the upper/lower approximation). This model
has been employed for feature selection in [8].

Another approach that blurs the distinction between rough and fuzzy
sets has been proposed in [30]. The research was fueled by the concern that
a purely numeric fuzzy set representation may be too precise; a concept is
described exactly once its membership function has been defined (a similar
motivation to that of Type-2 fuzzy sets). This seems as though excessive
precision is required in order to describe imprecise concepts. The solution
proposed is termed a shadowed set, which itself does not use exact member-
ship values but instead employs basic truth values and a zone of uncertainty
(the unit interval). A shadowed set could be thought of as an approxima-
tion of a fuzzy set or family of fuzzy sets where elements may belong to the
set with certainty (membership of 1), possibility (unit interval) or not at all
(membership of 0). This can be seen to be analogous to the definitions of
the rough set regions: the positive region (certainty), the boundary region
(possibility) and the negative region (no membership).

Given a fuzzy set, a shadowed set can be induced by elevating those mem-
bership values around 1 and reducing membership values around 0 until a
certain threshold level is achieved. Any elements that do not belong to the
set with a membership of 1 or 0 are assigned a unit interval, [0,1], considered
to be a non-numeric model of membership grade. These regions of uncer-
tainty are referred to as shadows. In fuzzy set theory, vagueness is distributed
across the entire universe of discourse, but in shadowed sets this vagueness is
localized in the shadow regions. As with fuzzy sets, the basic set operations
(union, intersection and complement) can be defined for shadowed sets, as
well as shadowed relations.
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2.4. Fuzzy-Rough Classification

Due to its recency, there have been very few attempts at developing fuzzy
rough set theory for the purpose of classification. Previous work has focused
on using crisp rough set theory to generate fuzzy rulesets [19, 34] but mainly
ignores the direct use of fuzzy-rough concepts.

The induction of gradual decision rules, based on fuzzy-rough hybridiza-
tion, is given in [16]. For this approach, new definitions of fuzzy lower and
upper approximations are constructed that avoid the use of fuzzy logical con-
nectives altogether. Decision rules are induced from lower and upper approx-
imations defined for positive and negative relationships between credibility of
premises and conclusions. Only the ordinal properties of fuzzy membership
degrees are used. More recently, a fuzzy-rough approach to fuzzy rule in-
duction was presented in [38], where fuzzy reducts are employed to generate
rules from data. This method also employs a fuzzy-rough feature selection
preprocessing step.

Also of interest is the use of fuzzy-rough concepts in building fuzzy de-
cision trees. Initial research is presented in [4] where a method for fuzzy
decision tree construction is given that employs the fuzzy-rough ownership
function discussed in Section 4. This is used to define both an index of fuzzy-
roughness and a measure of fuzzy-rough entropy as a node splitting criterion.
Traditionally, fuzzy entropy (or its extension) has been used for this purpose.
In [21], a fuzzy decision tree algorithm is proposed, based on fuzzy ID3, that
incorporates the fuzzy-rough dependency function as a splitting criterion. A
fuzzy-rough rule induction method is proposed in [18] for generating certain
and possible rulesets from hierarchical data.

3. Fuzzy Nearest Neighbour Classification

The fuzzy K-nearest neighbour (FNN) algorithm [24] was introduced to
classify test objects based on their similarity to a given number K of neigh-
bours (among the training objects), and these neighbours’ membership de-
grees to (crisp or fuzzy) class labels. For the purposes of FNN, the extent
C ′(y) to which an unclassified object y belongs to a class C is computed as:

C ′(y) =
∑
x∈N

R(x, y)C(x) (13)

where N is the set of object y’s K nearest neighbours, obtained by calculating
the fuzzy similarity between y and all training objects, and choosing the
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K objects that have highest similarity degree. R(x, y) is the [0,1]-valued
similarity of x and y. In the traditional approach, this is defined in the
following way:

R(x, y) =
||y − x||−2/(m−1)∑

j∈N
||y − j||−2/(m−1)

(14)

where || · || denotes the Euclidean norm, and m is a parameter that controls
the overall weighting of the similarity. In this paper, m is set to the default
value 2. Assuming crisp classes, Algorithm 1 shows an application of the FNN
algorithm that classifies a test object y to the class with the highest resulting
membership. The idea behind this algorithm is that the degree of closeness
of neighbours should influence the impact that their class membership has
on deriving the class membership for the test object. The complexity of this
algorithm for the classification of one test pattern is O(|X|+K · |C|).

Algorithm 1: The FNN algorithm

Input: X, the training data; C, the set of decision classes; y, the
object to be classified; K, the number of nearest neighbours

Output: Classification for y
begin

N ← getNearestNeighbours(y,K)
foreach C ∈ C do

C ′(y) =
∑

x∈N R(x, y)C(x)
end
output arg

C∈C
max (C ′(y))

end

4. Fuzzy-rough Ownership

Initial attempts to combine the FNN algorithm with concepts from fuzzy
rough set theory were presented in [33, 37] and improved in [26]. In these
papers, a fuzzy-rough ownership function is constructed that attempts to
handle both “fuzzy uncertainty” (caused by overlapping classes) and “rough
uncertainty” (caused by insufficient knowledge, i.e., attributes, about the
objects). The fuzzy-rough ownership function τC of class C was defined as,
for an object y,
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τC(y) =

∑
x∈X

R(x, y)C(x)

|X|
(15)

In this, the fuzzy relation R is determined by:

R(x, y) = exp

(
−
∑
a∈A

κa(a(y)− a(x))2/(m−1)

)
(16)

where m controls the weighting of the similarity (as in FNN) and κa is a
parameter that decides the bandwidth of the membership, defined as

κa =
|X|

2
∑
x∈X
||a(y)− a(x)||2/(m−1)

(17)

τC(y) is interpreted as the confidence with which y can be classified to
class C. The corresponding crisp classification algorithm, called FRNN-O
in this paper, can be seen in Algorithm 2. Initially, the parameter κa is
calculated for each attribute and all memberships of decision classes for test
object y are set to 0. Next, the weighted distance of y from all objects in
the universe is computed and used to update the class memberships of y
via equation (15). Finally, when all training objects have been considered,
the algorithm outputs the class with highest membership. The algorithm’s
complexity is O(|A|.|X|+ |X| · (|A|+ |C|)).

By contrast to the FNN algorithm, the fuzzy-rough ownership function
considers all training objects rather than a limited set of neighbours, and
hence no decision is required as to the number of neighbours to consider. The
reasoning behind this is that very distant training objects will not influence
the outcome (as opposed to the case of FNN). For comparison purposes, the
K-nearest neighbours version of this algorithm is obtained by replacing line
(3) with N ← getNearestNeighbours(y,K).

It should be noted that the algorithm does not use fuzzy lower or upper
approximations to determine class membership. A very preliminary attempt
to do so was described in [5]. However, the authors did not state how to use
the upper and lower approximations to derive classifications. Also, in [2], a
rough-fuzzy weighted K-nearest leader classifier was proposed; however, the
concepts of lower and upper approximations were redefined for this purpose
and have no overlap with the traditional definitions.
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Algorithm 2: The fuzzy-rough ownership nearest neighbour algorithm

Input: X, the training data; A, the set of conditional features; C, the
set of decision classes;y, the object to be classified.

Output: Classification for y
begin

foreach a ∈ A do

κa = |X|/2
∑

x∈X ||a(y)− a(x)||2/(m−1)
end
N ← |X|
foreach C ∈ C do τC(y) = 0
foreach x ∈ N do

d =
∑

a∈A κa(a(y)− a(x))2

foreach C ∈ C do

τC(y)+ = C(x)·exp(−d1/(m−1))
|N |

end

end
output arg

C∈C
max τC(y)

end

5. Fuzzy-Rough Nearest Neighbours

In this section, we propose a fuzzy-rough nearest neighbours (FRNN) al-
gorithm where the nearest neighbours are used to construct the fuzzy lower
and upper approximations of decision classes, and test instances are clas-
sified based on their membership to these approximations. The algorithm,
combining fuzzy-rough approximations with the ideas of the classical FNN
approach, can be seen in Algorithm 3.

The algorithm is dependent on the choice of a fuzzy tolerance relation
R. In this paper, we construct R as follows: given the set of conditional
attributes A, R is defined by

R(x, y) = min
a∈A

Ra(x, y) (18)

in which Ra(x, y) is the degree to which objects x and y are similar for
attribute a. Many options are possible, here we choose

Ra(x, y) = 1− |a(x)− a(y)|
|amax − amin|

(19)
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Algorithm 3: The fuzzy-rough nearest neighbour algorithm

Input: X, the training data; C, the set of decision classes; y, the
object to be classified

Output: Classification for y
begin

N ← getNearestNeighbours(y,K)
τ ← 0, Class ← ∅
foreach C ∈ C do

if ((R↓C)(y) + (R↑C)(y))/2 ≥ τ then
Class ← C
τ ← ((R↓C)(y) + (R↑C)(y))/2

end

end
output Class

end

where σa
2 is the variance of attribute a, and amax and amin are the maximal

and minimal occurring value of that attribute.
The rationale behind the algorithm is that the lower and the upper ap-

proximation of a decision class, calculated by means of the nearest neighbours
of a test object y, provide good clues to predict the membership of the test
object to that class. In particular, if (R↓C)(y) is high, it reflects that all
of y’s neighbours belong to C, while a high value of (R↑C)(y) means that
at least one neighbour belongs to that class. A classification will always be
determined for y due to the initialisation of τ to zero in line (2).

To perform crisp classification, the algorithm outputs the decision class
with the resulting best combined fuzzy lower and upper approximation mem-
berships, seen in line (4) of the algorithm. This is only one way of utilising
the information in the fuzzy lower and upper approximations to determine
class membership, other ways are possible but are not investigated in this
paper. The complexity of the algorithm is O(|C| · (2|X|)).

When dealing with real-valued decision features, the above algorithm can
be modified to that found in Algorithm 4. This can be interpreted as a
zero order Takagi-Sugeno controller [36], with each neighbour acting as a
rule, and the average of the test object’s membership to the lower and upper
approximation as the activation degree. Rd is the fuzzy tolerance relation for
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the decision feature d. In this paper, we use the same relation as that used
for the conditional features. This need not be the case in general; indeed, it is
conceivable that there may be situations where the use of a different similarity
relation is sensible for the decision feature. Line (10) of the algorithm is
only meant to make sure that the algorithm returns a prediction under all
circumstances. Note that, with I = IM and T = TM , condition τ2 = 0 is
only fulfilled when R(y, z) = 1 for all neighbours z in N (total similarity
of the test object and the nearest neighbours), but Rd(z1, z2) = 0 for every
z1, z2 in N (total dissimilarity between any two neighbours’ decision values).

Algorithm 4: The fuzzy-rough nearest neighbour algorithm - predic-
tion

Input: X, the training data; d, the decision feature; y, the object for
which to find a prediction

Output: Classification for y
begin

N ← getNearestNeighbours(y,K)
τ1 ← 0, τ2 ← 0
foreach z ∈ N do

M ← ((R↓Rdz)(y) + (R↑Rdz)(y))/2
τ1 ← τ1 +M ∗ d(z)
τ2 ← τ2 +M

end
if τ2 > 0 then

output τ1/τ2
else

output
∑
z∈N

d(z)/|N |

end

end

By its reliance on the approximations of standard fuzzy rough set theory,
the algorithms presented above may be impacted by noise. This is due to
the use of sup and inf to generalize the existential and universal quantfier,
respectively. A change in a single object can result in drastic changes to the
lower and upper approximations, accordingly. Another (related) problem
with the approach is that, for classification, it is not affected by the choice of
K; indeed, it may be verified that in the case of crisp decisions (Algorithm
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3), only the single nearest neighbour is used for classification.2 Although this
can be seen as beneficial with regard to the problem of parameter selection,
in reality it means that its classification decisions are based on a single object
only, making the approach even more succeptible to noisy data.

For this reason, we also propose VQNN (Vaguely Quantified Nearest
Neighbours), a variant of FRNN in which R↓C and R↑C are replaced by
R↓QuC and R↑QlC, respectively. Analogously, VQNN2 is a variant of FRNN2
in which R↓Rdz and R↑Rdz are replaced by R↓QuRdz and R↑QlRdz, respec-
tively.

As we have already mentioned, for FRNN, the use of K is of no impor-
tance. For FRNN2, its impact is very limited, since as R(x, y) gets smaller,
x tends to have only have a minor influence on (R↓C)(y) and (R↑C)(y). For
VQNN and VQNN2, this may generally not be true, because R(x, y) appears
in the numerator as well as the denominator of (10) and (11).

6. Experimentation

To demonstrate the power of the proposed approach, several sets of ex-
periments were conducted. In the first set, the impact of K, the number
of nearest neighbours was investigated for of the fuzzy and fuzzy-rough ap-
proaches discussed in Section 3, 4 and 5. In the second set, a comparative
investigation was undertaken to compare the classification performance of
these methods. The third set of experiments compares FRNN and VQNN
with a variety of leading classification algorithms. The fourth set investi-
gates the applicability of the proposed methods to the task of prediction,
comparing it to a number of leading prediction algorithms. The final set
of experiments investigates how well VQNN handles a range of noise levels
introduced to the benchmark data.

The experiments were conducted over 16 benchmark datasets (8 for clas-
sification and 8 for prediction, depending on the decision attribute). The
details of the datasets used can be found in table 1. The Algae datasets3

are provided by ERUDIT [15] and describe measurements of river samples
for each of seven different species of alga, including river size, flow rate and

2This assumes that there is exactly one nearest neighbour z such that R(z, y) is maximal
among all neighbours.

3See http://archive.ics.uci.edu/ml/datasets/Coil+1999+Competition+Data
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Table 1: Dataset details

Dataset Objects Attributes Decision
Cleveland 297 14 nominal

Glass 214 10 nominal
Heart 270 14 nominal
Letter 3114 17 nominal
Olitos 120 26 nominal
Water 2 390 39 nominal
Water 3 390 39 nominal
Wine 178 14 nominal

Algae A→G 187 11 continuous
Housing 506 13 continuous

chemical concentrations. The decision feature is the corresponding concen-
tration of the particular alga. The Letter dataset comes from [33], while
the other datasets are taken from the Machine Learning Repository [6].

The fuzzy-rough approaches discussed in this paper, along with many
more, have been integrated into the WEKA package [41] and can be down-
loaded from: http://users.aber.ac.uk/rkj/book/programs.php.

6.1. Impact of K

Initially, the impact of the number of neighbours K on classification ac-
curacy was investigated for the nearest neighbour approaches. Here, 41 ex-
periments were conducted (K = 1, . . . , 41) for each dataset. For each choice
of parameter K, 2× 10-fold cross-validation was performed. The results can
be seen in Figs. 1 to 4.

The experiments confirm that, for classification, FRNN is insensitive to
the value of parameter K, as is FRNN-O to a lesser extent. FNN and VQNN,
on the other hand, are affected more substantially by K. This is most clearly
observed in the results for the Glass and Letter data, where there is a
clear downward trend. In general for VQNN, a choice of K in the range
5 to 10 appears to produce the best results. The trend for VQNN seems
to be an increase in accuracy in this range followed by a steady drop as K
increases further. This is to be expected as there is benefit in considering a
number of neighbours to reduce the effect of noise, but as more neighbours
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are considered the distinction between classes becomes less clear.

6.2. Comparative study of NN Approaches

This section presents the experimental evaluation of the classification
methods FNN, FRNN-O, FRNN and VQNN for the task of classification.
For this experimentation, in accordance with the findings from the previous
paragraph, FRNN and FRNN-O are run with K set to the full set of training
objects, while for VQNN and FNN K = 10 is used. Again, this is evaluated
via 2×10-fold cross-validation.

The results of the experiments are shown in Table 2, where the average
classification accuracy for the methods is recorded. A paired t-test was used
to determine the statistical significance of the results at the 0.05 level when
compared to FRNN. A ’v’ next to a value indicates that the performance was
statistically better than FRNN, and a ’*’ indicates that the performance was
worse statistically. This is summarised by the final line in the table which
shows the count of the number of statistically better, equivalent and worse
results for each method in comparison to FRNN. For example (0/3/5) in
the FNN column indicates that this method performed better than FRNN
in zero datasets, equivalently to FRNN in three datasets, and worse than
FRNN in five datasets.

For all datasets, either FRNN or VQNN yields the best results. VQNN
is best for Heart and Letter, which might be attributed to the comparative
presence of noise in those datasets.

Table 2: Nearest neighbour classification results (accuracy)

Dataset FRNN VQNN FNN FRNN-O

Cleveland 53.21 59.41 50.19 47.50
Glass 73.13 69.36 69.15 71.22
Heart 76.30 82.04v 66.11* 66.30
Letter 95.76 96.69v 94.25* 95.26
Olitos 78.33 78.75 63.75* 65.83*
Water 2 83.72 85.26 77.18* 79.62
Water 3 80.26 81.41 74.49* 73.08*
Wine 98.02 97.75 96.05 95.78
Summary (v/ /*) (2/6/0) (0/3/5) (0/6/2)
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6.3. Comparison with Other Classification Methods

In order to demonstrate the efficacy of the proposed methods, further
experimentation was conducted involving several leading classifiers. IBk [1]
is a simple (non-fuzzy) K-nearest neighbour classifier that uses Euclidean
distance to compute the closest neighbour (or neighbours if more than one
object has the closest distance) in the training data, and outputs this object’s
decision as its prediction. JRip [7] learns propositional rules by repeatedly
growing rules and pruning them. During the growth phase, features are added
greedily until a termination condition is satisfied. Features are then pruned
in the next phase subject to a pruning metric. Once the ruleset is generated,
a further optimization is performed where classification rules are evaluated
and deleted based on their performance on randomized data. PART [40, 41]
generates rules by means of repeatedly creating partial decision trees from
data. The algorithm adopts a divide-and-conquer strategy such that it re-
moves instances covered by the current ruleset during processing. Essentially,
a classification rule is created by building a pruned tree for the current set of
instances; the leaf with the highest coverage is promoted to a rule. J48 [31]
creates decision trees by choosing the most informative features and recur-
sively partitioning the data into subtables based on their values. Each node
in the tree represents a feature with branches from a node representing the
alternative values this feature can take according to the current subtable.
Partitioning stops when all data items in the subtable have the same classi-
fication. A leaf node is then created, and this classification assigned. SMO
[35] implements a sequential minimal optimization algorithm for training a
support vector classifier. Pairwise classification is used to solve multi-class
problems. Finally, NB (Naive Bayes) is a simple probabilistic classifier based
on applying Bayes’ theorem with strong independence assumptions.

The same datasets as above were used and 2×10-fold cross validation was
performed. The results can be seen in Table 3, with statistical comparisons
again between each method and FRNN. There are two datasets (Water 3 and
Heart) for which FRNN is bettered by SMO and NB, but for the remainder
its performance is equivalent to or better than all classifiers.

6.4. Prediction

For the task of prediction, we compared FRNN and VQNN (K = 10)
to IBk, and three other prediction approaches from the literature. SMOreg
is a sequential minimal optimization algorithm for training a support vector
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Table 3: Comparison of FRNN with leading classifiers (accuracy)

Dataset FRNN IBk JRip PART J48 SMO NB

Cleveland 53.21 51.53 54.22 50.34 52.89 57.77 56.78
Glass 73.13 69.83 68.63 67.25 67.49 57.24* 49.99*
Heart 76.30 76.11 80.93 74.26 78.52 84.07v 83.70v
Letter 95.76 94.94 92.88* 93.82* 92.84* 89.05* 78.57*
Olitos 78.33 75.00 67.92* 63.33* 66.67* 87.5 76.67
Water 2 83.72 84.74 81.79 83.72 82.44 82.95 70.77*
Water 3 80.26 81.15 82.31 84.10 83.08 87.05v 85.51v
Wine 98.02 94.93 94.05 93.27 94.12 98.61 97.19

Summary (v/ /*) (0/8/0) (0/6/2) (0/6/2) (0/6/2) (2/4/2) (2/3/3)

regression using polynomial or Radial Basis Function kernels [35]. It re-
duces support vector machine training down to a series of smaller quadratic
programming subproblems that have an analytical solution. This has been
shown to be very efficient for prediction problems using linear support vec-
tor machines and/or sparse data sets.The linear regression (LR) model [14]
is applicable for numeric classification and prediction provided that the re-
lationship between the input attributes and the output attribute is almost
linear. The relation is then assumed to be a linear function of some parame-
ters - the task being to estimate these parameters given training data. This
is often accomplished by the method of least squares, which consists of find-
ing the values that minimize the sum of squares of the residuals. Once the
parameters are established, the function can be used to estimate the output
values for unseen data. Projection adjustment by contribution estimation
(Pace) regression [39] is a recent approach to fitting linear models, based
on considering competing models. Pace regression improves on classical or-
dinary least squares regression by evaluating the effect of each variable and
using a clustering analysis to improve the statistical basis for estimating their
contribution to the overall regression.

Again, 2×10-fold cross validation was performed and this time the average
root mean squared error (RMSE) was recorded. The results for the prediction
experiment can be seen in Table 4. It can be seen that all methods perform
similarly to FRNN and VQNN. The average RMSEs for FRNN and VQNN
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are generally better than those obtained for the other algorithms.

Table 4: Prediction results (RMSE)

Dataset FRNN VQNN IBk SMOreg LR Pace

Algae A 17.15 16.81 24.28* 17.97 18.00 18.18
Algae B 10.77 10.57 17.18* 10.08 10.30 10.06
Algae C 6.81 6.68 9.07* 7.12 7.11 7.26
Algae D 2.91 2.88 4.62* 2.99 3.86 3.95
Algae E 6.88 6.85 9.02* 7.18 7.61 7.59
Algae F 10.40 10.33 13.51* 10.09 10.33 9.65
Algae G 4.97 4.84 6.48 4.96 5.21 4.96
Housing 4.72 4.85 4.59 4.95 4.80 4.79

Summary (v/ /*) (0/8/0) (0/7/1) (0/8/0) (0/8/0) (0/8/0)

6.5. Noise Investigation

The final set of experiments investigates the impact on the classification
algorithms of noise. For this purpose, different levels of artificial class noise
were added to the benchmark datasets, i.e., class memberships of selected
objects were randomly changed. The noise levels are given as a percentage,
e.g., if the noise level is 10% this denotes that 10% of the data has noise
applied, the rest remain unchanged. In this experiment, 10×10-fold cross
validation is performed for each noise level for each algorithm.

Tables 5 and 6 show the results of this experimentation. In the first
table, the number of datasets is given for which VQNN is better statistically
than the specified method. In the second table, the number of datasets is
given for which VQNN is statistically worse. It can be seen that as the
amount of noise increases, VQNN performs increasingly better than FRNN
demonstrating its better noise-handling approach. This is also the case when
compared to IBk, J48 and Part. VQNN performs well against JRip across
noise levels. It performs comparably with NB and SMO until extreme noise
levels are reached (60% and 80% noise). At this point, it appears to be
the case that there is too much noise for VQNN to cope with; the poorer
performance probably being due to the nearest neighbour approach itself.
The totals given in the tables show that VQNN reaches its peak in noise
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tolerance at the 25% level, when compared to the other methods it performs
statistically better in 34 out of 56 experiments, and statistically worse in only
2 of them.

Table 5: Number of datasets in which VQNN performs statistically better than other
classification methods, for increasing noise levels

Method 0% 5% 10% 15% 20% 25% 40% 60% 80%
FRNN 3 5 6 6 6 7 7 9 7
SMO 2 1 2 1 1 1 1 0 0
IBk 4 4 6 6 8 9 9 9 7
J48 1 3 4 6 7 7 5 5 5
JRip 1 3 2 2 3 3 3 3 3
Part 3 4 5 5 5 5 5 5 4
NB 3 3 3 3 2 2 2 1 1
Total 17 23 28 29 32 34 32 32 27

Table 6: Number of datasets in which VQNN performs statistically worse than other
classification methods, for increasing noise levels

Method 0% 5% 10% 15% 20% 25% 40% 60% 80%
FRNN 0 0 0 0 0 0 0 0 0
SMO 3 3 3 2 1 1 2 4 5
IBk 0 0 0 0 0 0 0 0 0
J48 1 1 0 0 0 0 0 1 0
JRip 1 1 1 1 1 0 1 1 2
Part 0 0 0 0 0 0 0 1 0
NB 2 1 1 1 1 1 2 3 4
Total 7 6 5 4 3 2 5 10 11

7. Conclusion

In this paper, we have introduced FRNN, a new nearest neighbour clas-
sification and prediction approach that exploits the concepts of lower and
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upper approximation from fuzzy rough set theory. While it shares the algo-
rithmic simplicity with other NN approaches (IBk, FNN, FRNN-O), we have
shown experimentally that our method outperforms them by a comfortable
margin, and that it is able to compete with more involved methods including
Support Vector Machines.

We have also shown that by replacing the traditional lower and upper
approximation by their VQRS counterparts to obtain VQNN, additional re-
silience can be achieved in the presence of noisy data. Our experiments
demonstrate that under normal (non-noisy) conditions, VQNN performs sta-
tistically equivalent to FRNN; when noise is added, VQNN soon starts to
outperform FRNN, obtaining peek performance when around 25% of the de-
cision values are corrupted with noise. This is a very promising result, and
the first clear-cut proof for the noise-tolerant capacities attributed to the
VQRS model in [10].

For our future work, we plan to investigate more involved ways of utiliz-
ing the information contained in the lower and upper approximations, and
of optimizing the fuzzy quantifiers in the VQRS definitions in function of
the dataset at hand. We will also look into the integration of our classifica-
tion/prediction approach with fuzzy-rough feature selection methods, such
as [9].

One limitation of the approach is that there is currently no way of dealing
with data possessing missing values. An initial attempt at tackling this
problem for the task of fuzzy-rough feature selection is given in [23] where an
interval-valued approach is adopted. A similar approach could be employed
here by using an interval-valued similarity relation and extending both FRNN
and VQNN via interval-valued fuzzy-rough sets.
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Figure 1: K nearest neighbours vs classification accuracy: Cleveland and Glass data
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Figure 2: K nearest neighbours vs classification accuracy: Heart and Letter data
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Figure 3: K nearest neighbours vs classification accuracy: Olitos and Water 2 data
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Figure 4: K nearest neighbours vs classification accuracy: Water 3 and Wine data
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