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August 9, 2011

Abstract. A two-dimensional foam consists of a monolayer of bubbles. It can be created by squeezing
the more familiar three-dimensional foam between two parallel glass plates. We describe and explain the
minimum plate separation H which must be reached to fully effect the transition from three- to two-
dimensional foam. We find that H/V 1/3 is close to one, where V is the average bubble volume, and
increases slightly when the side-walls of the container are taken into account.

1 Introduction

Foams are found in a variety of industrial and domestic
situations, where they are used for many purposes, includ-
ing cleaning and ore separation [1]. In order to validate
theory and simulation tools, it is common to work with
two-dimensional foams [2]. In this case, Plateau’s rules of
foam geometry are simplified and an experimental realiza-
tion is readily available: a single layer of bubbles, such as
can be made on the surface of a liquid or between two par-
allel surfaces. It is therefore important to know for which
ranges of parameters, including the bubble volume V and
the surface separation H, a 2D foam can be sustained.

Cox et al. [3] described an instability in which a sin-
gle layer of soap bubbles confined between two parallel
glass plates undergoes a spontaneous transition to a two-
layer structure. This is triggered for a bubble with N
sides when the separation of the plates exceeds the criti-
cal value Hmax = 3

√

6V π/(6 − N). Thus three- and then

four-sided bubbles undergo the transition first (as H/V 1/3

is increased above values of around 1.8 and 2 respectively),
while bubbles with 6 or more sides are indefinitely stable.
This 2D to 3D transition is a surface-tension driven insta-
bility, triggered by a Rayleigh-Plateau mechanism, which
can be predicted by noting that soap films minimize their
surface area [4]. The predictions agree with experiments
[3] and thus provide a means to predict the maximum
plate separation to keep an experiment two-dimensional.

Here, we study the reverse transition: when does a
foam consisting of two layers of bubbles revert to a single
layer as the separation is decreased? That is, how much
must a 3D foam be squeezed to ensure that it will become
2D? Rather than being of Rayleigh-Plateau type, this 3D
to 2D instability is triggered by a tilting of the soap film
that separates two bubbles horizontally (i.e. parallel to
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the glass plates), as discussed previously for two isolated
bubbles [5,6].

We first describe experiments in a Hele-Shaw cell that
illustrate the effect. An idealized arrangement of bubbles
is then simulated to determine the critical separations.
Finally, we characterize the instability theoretically, as a
function of the number of sides of the horizontal inter-
bubble film, to provide a guide to the critical separation.

2 Experiments

Experiments were carried out using a Hele-Shaw cell with
varying plate separation. The wedge-shaped walls of the
cell were machined from Carp Brand Tufnol R© to give a
plate separation varying from H = 4.4mm at the entrance
of the cell to H = 1.5mm a distance 500mm into the cell
(giving a slope of 0.33◦). The width of the channel was
kept constant at 12cm. A sketch of the cell and an image
of the foam within it are given in figure 1. The foaming
solution was 5% Fairy liquid in deionised water. A fairly
monodisperse foam (bubble volume 30.41±5.93mm3) was
produced by blowing compressed air at a rate of Q =
0.1 litres per minute (lpm) through a G18 needle (inner
diameter 0.838mm). The flow-rate was then reduced to a
lower value of Q = 0.02 lpm to slowly push the bubbles
through the cell at a velocity of about 1mm/s. At these low
velocities, we observe no deformation of the bubbles at the
sides of the channel, and therefore presume that viscous
effects are not significant in determining the transition
point between 3D and 2D. High resolution video images
(1388× 1040 pixels) of the region within the flowing foam
where 3D to 2D transitions occurred were recorded at a
rate of 2 fps.

Analysis of the images was carried out using ImageJ
[7]. We tracked configurations in which two bubbles in the
bulk of the foam were stacked directly on top of each other,
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(a)

(b)

Fig. 1. Experiments, with flow from left to right: (a) Side
view of the tapered Hele-Shaw cell used for the experiments,
containing bubbles that touch both glass plates (a so-called 2D
foam) and bubbles that don’t (3D foam). (b) Typical image of
the foam, taken from above, with soap films appearing white.
The total width of the region shown is 78mm, and the scale
bar has length 10mm.

which were easily recognisable due to the distinctive ’dou-
ble wall’ that is visible when observed from above (figure
1(b)). The number of sides (N) of the horizontal inter-
bubble film between the two bubbles was recorded, as well
as the plate separation at the point at which they under-
went the transition to two “2D” bubbles. At this point the
volume of each of the two bubbles was calculated from its
cross-section and position in the cell. Figure 2 shows the
average value of the critical height for each value of N ,
with the error bars giving the standard deviation of the
range of values obtained. (Due to the small volumes and
high uncertainty in the values for N = 4, these results are
not shown.) We find that the critical separation decreases
with N . Note that the values are lower than for the 2D
to 3D instability described previously [3], suggesting that
a foam must be compressed quite significantly to remove
all two-layer configurations.
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Fig. 2. Critical separation Hc(N)/V 1/3 for clusters that are
both free (triangles) and adjacent to a wall (squares). Experi-
mental values are shown with open triangles, simulation with
filled symbols. The values for N = 1 (free) and N = 2 (wall)
correspond to just two bubbles, without a surrounding cluster.
The lines are fits to the simulation data for N ≥ 4 in the form
of eq. (1).

3 Simulations

Rather than considering an extensive foam with scattered
double-layer bubbles as in the experiments described above,
which would be computationally prohibitive, we simulate
a finite cluster of bubbles in a two-layer structure. The
structure that we use is based on the same “flower” clus-
ter used previously [3], but now with two central bubbles,
one on top of the other, surrounded by N others that
touch both bounding plates, as illustrated in figure 3(a).
For simplicity we consider a monodisperse foam in which
all bubbles have the same volume. We also explore the
effects of the bubbles being in contact with a side-wall,
since the presence of the planar wall bounding the cluster
may change the critical separation – see figure 3(d).

We use the Surface Evolver [8] to predict numerically
the critical separation for values of N between 4 and 9.
We construct clusters of bubbles with unit volumes (with-
out loss of generality) with three levels of refinement of
the triangulation, as shown in figure 3. Note that the wet-
ting films on the glass plates play no rôle here and are
omitted. The surface area of each cluster is reduced to
a minimum, then the plate separation H reduced by a
small amount and the minimization repeated. For each
value of H, we recorded the eigenvalues of the Hessian
matrix of the surface area (energy) as a means to deter-
mine the value H = Hc at which the eigenvalue associated
with the film-tilting instability goes to zero [9]; the results
are shown in figure 2. Due to the symmetry of the simu-
lated cluster, the instability does not always appear spon-
taneously, but these values were confirmed by perturbing
the cluster randomly at each step.

4 Discussion

Figure 2 shows that the critical separation in the simula-
tions is very close to the values found in experiment; the
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(a) (b) (c) (d)

Fig. 3. Simulations: (a) H/V 1/3 = 1: a pair of six-sided bubbles, one on top of the other, surrounded by six other bubbles.
Films touching the bounding plates have been removed for clarity. (b) H/V 1/3 = 0.78: the instability at Hc(N = 6)/V 1/3 = 0.81
causes the central, horizontal film to tilt. (c) H/V 1/3 = 0.76: even further below the critical separation there is a topological
change and then all bubbles span the gap between the plates. In this case the hexagonal central bubbles become pentagonal.
(d) H/V 1/3 = 1: the case N = 6 (five bubbles and one wall) for a bubble cluster against a plane wall.
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Fig. 4. The surface area of various elements of the bulk clus-
ter, as the separation varies, in the case N = 6. Each area is
normalized by its value at Hc/V 1/3 = 0.85, the point at which
the instability occurs. The minimum in the surface area of the
two central bubbles indicates that it is the central bubbles that
drive the instability.

discrepancy – that experimental values are slightly higher
(that is, the instability is triggered earlier in an experiment
in which H is decreased) – can be attributed to the finite
liquid fraction of the experiments. The critical separation
decreases slightly with increasing N and is predicted to
be greater for a cluster adjacent to a wall.

It is clear [5] that the instability is driven by mini-
mization of surface area. The simulations allow us to sep-
arate how the surface area of different parts of the cluster
varies with N , shown in figure 4, and to show that only
one curve, corresponding to the central bubbles and not
the whole cluster, goes through a minimum to trigger the
instability. That is, as the separation H of the plates is
decreased, the surface area of the two central bubbles de-
creases until it passes through a minimum. At this point
the instability occurs (figure 3b) and the inter-bubble film
tilts, since this now lowers the surface area of these two
bubbles. As the separation decreases further, this causes

a topological change and both bubbles then touch both
bounding plates (figure 3c).

To predict the dependence of the critical separation
on N , it is required to determine the surface area of the
cluster analytically. However, the curvature of the soap
films is significant and any analytic approximation to the
area must take this into account. At the level of detail re-
quired, the calculations are too complex to give a simple
functional dependence Hc(N), and the simulations pro-
vide a much better idea of the area of the clusters. We
show in figure 2 that a fit of the simulation data to the
form

Hc/V 1/3 = a1 + a2

1√
N

, (1)

with a1 and a2 of order one, provides an excellent approx-
imation to the critical separation and suggests that Hc

decreases with N−1/2.

5 Conclusions

We have described the transition which takes a 3D foam
to a 2D one, and explained it with an argument based
upon minimization of surface area. The values of the crit-
ical plate separation at which the instability occurs are
lower than for transition which takes a 2D foam to a 3D
one under extension (increasing H), described previously
[3]. So a foam must be compressed quite significantly to
remove all two-layer configurations.

The critical height depends weakly on the number of
sides N of a bubble, and the result [5] for two bubbles
(shown for N = 1 on figure 2) provides a good approx-
imation. For a given value of N , bubbles adjacent to a
wall undergo the instability at higher H. Thus, in an ex-
periment with fixed plate separation it will first become
apparent that the bubble size is too large to sustain a
two-layer foam close to the wall. Conversely, if the plate
separation is being decreased, the transition to a 2D foam
will start at the walls and propagate into the bulk.
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