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Facilitating Efficient Mars Terrain
Image Classification with

Fuzzy-Rough Feature Selection

Changjing Shang?, Dave Barnes and Qiang Shen

Dept. of Computer Science, Aberystwyth University, Wales, UK.
{cns,dpb,qqs}@aber.ac.uk

Abstract. This paper presents an application study of exploiting fuzzy-
rough feature selection (FRFS) techniques in aid of efficient and accurate
Mars terrain image classification. The employment of FRFS allows the
induction of low-dimensionality feature sets from sample descriptions of
feature vectors of a much higher dimensionality. Supported with compar-
ative studies, the work demonstrates that FRFS helps to enhance both
the effectiveness and the efficiency of conventional classification systems
such as multi-layer perceptrons and K-nearest neighbors, by minimiz-
ing redundant and noisy features. This is of particular significance for
on-board image classification in future Mars rover missions.
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1 Introduction

Over the last decade, significant insights have been gained into the potential
for past or present Martian life and the capabilities of the Mars environment to
sustain a long-term human or robotic colonized presence. A substantial amount
of such information comes from images obtained by the front-line Panoramic
Camera (Pancam) instruments which serve as the scientist’s eyes on Mars [2, 12].
Successful exploitation and application of these images requires a high degree
of accuracy and precision in their analysis. This is both time consuming and
prone to human errors. Automated analysis of such images has thus become an
important task, especially for surveying places (e.g. for geologic cues) in Mars
[17, 31].

A key element of analyzing Pancam terrain images is to detect rocks and
other objects captured in such images. Correct analysis of these images provides
useful semantic descriptions of the physical nature of the terrains. This helps
to uncover knowledge of the surrounding terrain of Martian rovers which will
in turn, help to exploit their mobility capabilities. However, rocks and other
matters on Mars exhibit diverse morphologies, colors and textures. They are
often covered in dust, grouped into self-occluding piles or partially embedded in
? Corresponding author



terrain. Also, Mars terrain images vary significantly in terms of intensity, scale
and rotation, and are blurred with measurement and transmission noise. These
factors make Martian image classification a challenging problem. Any progress
towards automated detection and recognition of image regions which would cor-
respond to whole or parts of Martian rocks, and their types and surroundings,
will make a significant contribution to the accomplishment of addressing this
challenge [32].

Many approaches may be applied for image classification. However, it is dif-
ficult to predict which particular set up and what techniques would be most
effective for large-scale Mars images. Therefore, it is useful to build different clas-
sifiers and to validate their performance with respect to common criteria such
that a likely optimal mechanism can be identified. For this purpose, application-
oriented studies have been carried out to investigate and compare the use of
two types of popular and useful classifier: Multi-layer neural networks and K-
nearest neighbors. Note that these well-developed image classification methods
are intentionally employed here, in order to reduce potential mission risk. This is
due to the observation that flight projects normally opt to use existing mature
technologies rather than totally new mechanisms which tend to have limited
experimental performance data.

One critical step to successfully build an image classifier is to extract and
use informative features from given images [11, 16, 18]. To capture the essential
characteristics of such images, many features may have to be extracted without
explicit prior knowledge of what properties might best represent the underlying
scene reflected by the original image. However, generating more features increases
computational complexity, especially in light of on-board processing of Mars im-
ages where demand for computational memory and processing time must be
minimized, despite the nowadays generally available and relatively cheap com-
puter power. Besides, not all such features may be useful to perform classification
[13]. Due to measurement noise the use of extra features may even reduce the
overall representational potential of the feature set and hence, the classification
accuracy. Thus, it is often necessary to employ a method that can determine
the most significant features, based on sample measurements, to simplify the
classification process, while ensuring high classification performance.

This paper presents an integrated approach for performing large-scale Mars
terrain image classification, by exploiting the recent advances in fuzzy-rough fea-
ture selection techniques [15]. It is based on the initial work presented in [28,
29], where fuzzy-rough methods were, for the first time, applied to tasks relevant
to space engineering. In this work, only those informative features are required
to be generated in order to perform classification. This minimizes feature mea-
surement noise and the computational complexity of both feature extraction and
feature vector-based classification. Experimental results show that this applica-
tion ensures rapid and accurate learning of classifiers. This is of great importance
to on-board image classification in future Mars rover missions.

The rest of this paper is organized as follows. Section 2 introduces the Mars
terrain images under investigation. Sections 3, 4 and 5 outline the key component



techniques used in this work, including feature extraction, (fuzzy-rough) feature
selection and feature pattern classification. Section 6 shows the experimental
results, supported by comparative studies. The paper is concluded in Section 7,
where prospects for further research are discussed.

2 McMurdo Panorama Image

Although the approach taken in this research is general, the present work con-
centrates on the classification of the 360-degree view McMurdo panorama image.
This (composed) image is obtained from the panoramic camera on NASA’s Mars
Exploration Rover Spirit and presented in approximately true color [12], con-
sisting of 1,449 Pancam images and representing a raw data volume of nearly
500 megabytes. Such an image reveals a tremendous amount of detail in part of
Spirit’s surroundings, including many dark, porous-textured volcanic, brighter
and smoother-looking rocks, sand ripple, and gravel (mixture of small stones and
sand).

Figure 1 shows the most part of the original McMurdo image (of a size 20480×
4124), which is separated into three portions to ensure quality of display. This
image, excluding the areas occupied by the instruments and black shadows, is
used for the work here, involving five major image types (i.e. classes) which are
of particular interest. These image types are: textured or smoothed dark rock
(C1), orange colored bedding rock (C2), light gray rock (C3), sand (C4), and
gravel (C5), which are illustrated in Fig. 2. The ultimate task of this research is
to develop an image classifier that can detect and recognize these five types of
regions within a given image.

3 Feature Extraction

Feature extraction involves simplifying the amount of memory and computation
power required to describe complex images accurately. A variety of techniques
may be used to capture and represent the underlying characteristics of a given
image [11, 23]. These include but are not limited to algorithms for:

– Low-level detection of edge and corner which aims at identifying points at
which the image brightness changes sharply, and that of blob and ridge which
aims at finding regions in the image that are either brighter or darker than
the surrounding [19];

– Curvature determination which aims at describing repeating patterns through
cross-correlation of points or regions, and motion detection which aims at
measuring change in speed of an object or objects in the field of view [8];
and

– Shape-based template matching which aims at deciding on which small parts
of an image match a given template image [1], and Hough transform which
aims at detecting positions of arbitrary shapes, most commonly lines, circles
or ellipses via a voting procedure carried out in a certain parameter space
[9].



(a) Portion 1

(b) Portion 2



(c) Portion 3

Fig. 1. Mars McMurdo panorama image.

Fig. 2. Image classes (C1: rock1, C2: rock2, C3: rock3, C4: sand, C5: gravel).



In this work, low-level feature extraction approaches are employed. In par-
ticular, local grey level histograms and the first and second order color statistics
are exploited to produce a feature vector for each individual pixel. This is due
to the recognition that such features are effective in depicting the underlying
image characteristics and are efficient to compute. Also, the resulting features
are robust to image translation and rotation, thereby potentially suitable for
classification of Mars images. Below is a brief outline of the techniques that are
adopted for the implementation of feature extraction in this research.

3.1 Color Statistics-Based Features

Color images originally given in the RGB (Red, Green and Blue) space are first
transformed to those in the HSV (Hue, Saturation and Value) color space [23].
These spaces are in bijection with one another, and the HSV space is widely used
in the literature. Note that HSV is more frequently used because it separates
the color components (H and S) from the luminance component (V) and is
less sensitive to illumination changes [3]. Also, distances in the HSV space tend
to reflect perceptual differences in color in a more consistent way than those
measured in the RGB space.

By computing the first order (mean) and the second order (standard devia-
tion, denoted by STD) color statistics with respect to each of the H, S and V
channels, six features can be generated per pixel, from a certain neighborhood
of that pixel. The size of such neighborhoods is pre-selected by trial and error
(which trades off between the computational efficiency in measuring the features
and the representative potential of the measured features). For presentational
simplicity, the resulting features are hereafter denoted as Mean(X) and STD(X),
X ∈ {H, S, V}, representing the first and second order statistics per color channel
respectively.

3.2 Local Histogram-Based Features

As the name indicates, such features are measured off the histograms computed
from local regions of a given image. Although the method is very simple, it has
shown very good results in practice, especially in performing tasks where feature
extraction has to be as simple and as fast as possible [7] (which is indeed required
for Mars missions where any possible efficiency gain is significant).

In the present context, a histogram is a summary graph showing a count
of grey levels falling in a number of resolution ranges (called bins), within a
predefined neighborhood. To extract histogram-based features, given color im-
ages are first transformed to grey-level (GL) images. For a certain pixel, a set
of histogram features Hi, i = 1, 2, ..., B, are calculated (within the given neigh-
borhood), with respect to a particular bin size B (i.e. number of bins). Thus,
feature Hi represents the normalized frequency of the GL histogram in bin i.
Here, for simplicity, individual bin widths are set equally, and the neighborhood
size is set to the same as that used in the above color feature extraction.



Note that given certain image data, it is important to choose an appropriate
bin size. If it is too small, a bar height at each bin suffers significant statistical
fluctuation due to paucity of grey-levels in each bin. If however, the bin size is
too large, a histogram cannot represent the shape of the underlying distribution
because the resolution is not sufficient. To balance between these two problems,
bin size B is empirically set to 16 in this work.

In addition to histogram features, two further GL statistic features are also
generated, namely, the mean and STD. These are different from their color
statistics-based counterparts and are denoted by Mean(GL) and STD(GL) for
short.

4 Feature Selection

Feature selection (FS) [15, 20] addresses the problem of selecting amongst given
features that are most informative. Fig. 3 shows the basic procedures involved in
such a process. It can be seen from this figure that FS forms a particular approach
to the reduction of the number of features under consideration. Importantly,
unlike conventional dimensionality reduction or feature extraction methods, a
feature selection algorithm preserves the original meaning of the features after
reduction.

Fig. 3. Feature Selection Process



In general, there may be many features involved in Mars image analysis, and
combinatorially large numbers of feature combinations to select from. It might be
expected that the inclusion of an increasing number of features would increase
the likelihood of including enough information to distinguish between classes.
Unfortunately, this is not necessarily true if the size of the training dataset
does not also increase rapidly with each additional feature included. A high-
dimensional feature vector representation increases the chances that a classifier-
learning algorithm finds spurious patterns that are not valid. More features may
introduce more measurement noise and, hence, reduce model accuracy [13].

4.1 Fuzzy-Rough Feature Selection

Recently, there have been significant advances in developing methodologies that
are capable of minimizing feature subsets in a noisy environment. In particular, a
resounding amount of research utilizes fuzzy and rough sets [24, 25] (see [5, 15, 21,
22] for examples). Amongst them is the fuzzy-rough feature selection algorithm
[14] that has been shown to be a highly useful technique by which discrete or real-
valued noisy data (or a mixture of both) can be effectively reduced, without the
need for user-supplied information. Inspired by this observation, FRFS is utilized
in this work to maximize both classification efficiency and effectiveness, while
ensuring that classification is carried out with (a subset of) original features only.
The theoretical foundation of this feature selection method is outlined below.

Let U be the set of pixels within a given image, P be a subset of features, and
D be the set of all possible image classes of interest. The concept of fuzzy-rough
dependency measure, of D upon P (which FRFS is based on), is defined by [15]:

γP (D) =

∑
x∈U

µPOSRP
(D)(x)

|U |
(1)

where
µPOSRP

(D)(x) = sup
X∈U/D

µRP X(x) (2)

µRP X(x) = inf
y∈U

I(µRP
(x, y), µX(y)) (3)

and U/D denotes the (equivalence class) partition of the image (i.e. pixel set)
with respect to D, and I is a fuzzy implicator and T a t-norm [15]. RP is a fuzzy
similarity relation induced by the feature subset P :

µRP
(x, y) = TA∈P {µR{A}(x, y)} (4)

That is, µR{A}(x, y) is the degree to which pixels x and y are deemed similar
with regard to feature A. It may be defined in many ways, but in this work, the
following commonly used similarity relation [14] is adopted:

µR{A}(x, y) = 1 − |A(x) − A(y)|
Amax − Amin

(5)



where A(x) and A(y) stand for the value of feature A ∈ P of pixel x and that
of y, respectively, and Amax and Amin are the maximum and minimum values
of feature A.

FRFS works by employing the above dependency measure to choose which
features to add to the subset of the current best features through a greedy hill-
climbing process. As such, the criterion that the algorithm adopts to select a
subset of features is whether the set of the underlying true image classes may be
maximised using those selected features. It terminates when the addition of any
remaining feature does not increase the dependency. Thus, all features selected
are individually significant, although significance embedded in any correlated
features may not be necessarily captured. This implies that the feature subsets
returned may not be globally minimal. Yet, this general problem is due to the
use of greedy hill-climbing search, not because of the utilisation of fuzzy-rough
dependency measure.

There exist sophisticated approaches to identifying or approximating the
absolute smallest subsets of features [5]. However, in general, searching for all
minimal feature subsets is an NP-complete problem. In practice, it may suffice to
generate only one such subset or even a superset of some of such subsets (if it is
too time consuming to compute a global minimal). The present work follows this
theme of consideration. Indeed, FRFS takes the same approach as the seminal
QuickReduct algorithm [4] which is based on conventional rough set theory.
Empirically (see experimental results later), the use of fuzzy-rough dependency
measure in conjunction with greedy hill-climbing provides an effective means to
find quality feature subsets.

Algorithm 1 outlines the fuzzy-rough feature selection method. What is re-
turned by this algorithm is the subset of features selected from the full set of
original features without altering the meaning and value of such selected features.

Algorithm 1 The Fuzzy-Rough Feature Selection (FRFS) Algorithm
FRFS(C, D): C – the set of all original features; D – the set of possible image classes.

(1) R ← {}, γbest = 0
(2) do
(3) T ← R, γprev ← γbest

(4) foreach a ∈ (C − R)
(5) if γR∪{a}(D) > γT (D)
(6) T ← R ∪ {a}, γbest ← γT D
(7) R ← T
(8) until γbest == γprev

(9) return R



5 Image Classifiers

Multi-layer perceptron (MLP) neural networks [26] and K-nearest neighbors
(KNN) [6] are used here to accomplish image classification, by mapping input
feature vectors onto the underlying image class labels. As indicated previously,
these advanced techniques are used to minimize the mission risk that might in-
cur if more research-oriented classification systems were employed (which often
require further comprehensive experimental evaluation). For learning such clas-
sifiers, a set of training data is selected from the typical parts (see Fig. 2) of
the McMurdo image, with each pixel represented by a feature vector which is
manually assigned an underlying class label.

5.1 Multi-Layer Perceptrons

Multi-layer perceptrons are well-known mechanisms to implement pattern clas-
sifiers. The design of such an image classifier is straightforward: The number of
nodes in its input layer is set to that of the cardinality of the feature subset
returned by FRFS, and the number of nodes within its output layer is set to the
number of image classes for the problem at hand. The internal structure of the
classifier is designed to be flexible and may contain one or two hidden layers.
(What actual number of internal layers and that of hidden nodes in each hidden
layer would be better to use may be determined by experimental simulations
given a fixed number of input features and training images.)

The training of such a classifier is essential to its runtime performance (done
here by using the back-propagation algorithm [26]). For this, feature patterns
that represent different regions of the McMurdo panorama image, coupled with
their respective underlying image class indices, are selected as the training data.
Note that all input features are normalized into the range of 0 to 1 to suit the
use of multi-layer perceptrons.

5.2 K-Nearest Neighbors

K-nearest neighbors (KNN) algorithm is one of the simplest learning methods for
building classifiers. To classify an unclassified feature vector X, KNN ranks the
neighbors of X amongst a given set of N data (Xi, ci), i = 1, 2, ..., N , and uses the
class labels cj (j = 1, 2, ...,K) of the K most similar neighbors to predict the class
of the new vector X. In particular, the classes of these neighbors are weighted
using the similarity between X and each of its neighbors, where similarity is
typically measured by the Euclidean distance metric (though any other distance
metric may also do). Given such similarity measures, X is assigned the class
label with the greatest number of votes amongst the K nearest class labels.

Note that KNN does not rely on prior probabilities, and that it is computa-
tionally efficient if the dimensionality of the input features is not very large. If
however, the dimensionality is high, each distance calculation may become quite
expensive. This reinforces in general, the need for employing FRFS to perform
feature selection, in order to reduce the computation cost.



6 Experimental Results

From the McMurdo image of Fig. 1, a set of 270 subdivided non-overlap images
with a size of 512 × 512 each are used to perform this experiment. 816 pixel
points are selected from 28 of these images. Each of the pixels is labeled with an
identified class index (i.e. one of the five image types: rock1, rock2, rock3, sand
and gravel) for training and verification. The rest of all these images are used
as unseen data for classification. Each training pixel is represented by a vector
of 24 features (i.e. 6 color statistics-based, 16 histogram-based, and 2 grey-level
statistic features, see Section 3). Of course, the actual classification process only
uses subsets of selected features (which are returned by running FRFS). The
performance of each classifier is measured using classification accuracy, with
ten-fold cross validation.

Table 1. Feature meaning and reference

Ref No. Meaning Ref No. Meaning Ref No. Meaning

1 Mean(GL) 2 STD(GL) 3 Mean(H)
4 STD(H) 5 Mean(S) 6 STD(S)
7 Mean(V) 8 STD(V) 9-24 Hi

For easy cross-referencing, Table 1 lists the reference numbers of the origi-
nal features that may be extracted, where i = 1, 2, ..., 16, with respect to their
meaning (see Section 3). Note that in the following, for KNN classification, the
results are first obtained with K set to 1, 3, 5, 8, and 10. Also, for multi-layer
perceptron-based classifiers, only those of one hidden layer are considered here
(to limit simulation cost) with the number of hidden nodes first set to 8, 12, 16,
20, or 24. Those classifiers which have the highest accuracy, with respect to a
given feature pattern dimensionality and a certain number of nearest neighbors
or hidden nodes, are then taken to run for performance comparison. Here, com-
parative studies involve: (1) evaluation of the implication and hence, quality of
using FRFS-selected features as opposed to the use of all original features, and
(2) examination of the class discrimination power of FRFS-selected features over
that of using a popular alternative dimensionality reduction mechanism.

6.1 Comparison with the Use of all Original Features

This subsection shows that, at least, the use of a selected subset of features does
not significantly reduce the classification accuracy as compared to the use of the
full set of original features. For the current problem, FRFS returns 8 features,
namely, STD(GL), Mean(H), STD(H), Mean(S), STD(S), Mean(V), H4, H15

(i.e. features 2, 3, 4, 5, 6, 7, 12 and 23 in Table 1), out of the original twenty-four.
This implies that the use of FRFS leads to a reduction rate of two-third. Table 2



lists the correct classification rates produced by the MLP and KNN classifiers
with 10-fold-cross-validation, where the number (N) of hidden nodes and that
(K) of the nearest neighbors used by these MLP and KNN classifiers are also
provided (in the first column).

Table 2. FRFS-selected vs. full set of original features

Classifier Set Dim. Feature No Rate

MLP(N=20) FRFS 8 2, 3, 4, 5, 6, 7, 12, 23 94.0%
MLP(N=20) Full 24 1, 2, ..., 23, 24 94.0%

KNN(K=8) FRFS 9 2, 3, 4, 5, 6, 7, 12, 23 89.1%
KNN(K=5) Full 24 1, 2, ..., 23, 24 89.2%

These results demonstrate that the classification accuracy of using the eight
FRFS-selected features is the same as that of using the twenty-four original
features for MLP classifiers (94.0%), and is very close to that for KNN classifiers
(89.1% vs. 89.2%). This is indicative of the potential of FRFS in reducing not
only redundant feature measurements but also the noise associated with such
measurements. Clearly, the use of FRFS helps to improve both effectiveness and
efficiency of the classification process. Note that although the number of original
features is not large, for on-board Martian application, especially in relation to
the task of classifying large-scale images, any reduction of feature measurements
is of great practical significance.

6.2 Comparison with the Use of PCA-Returned Features

Principal component analysis (PCA) [6] is arguably one of the most popular
methods for dimensionality reduction (although it was not initially designed to
obtain discriminatory features). It is therefore adopted here as the benchmark
for comparison. Fig. 4 shows the classification results of the KNN and MLP
classifiers using a different number of principal features. For easy comparison,
the results of the KNN and MLP that use 8 FRFS-selected features are also
included in the figure, which are represented by ∗ and ◦, respectively.

These results show that the MLP classifier which uses FRFS-selected features
has a substantially higher classification accuracy amongst all those classifiers
using a subset of features of the same dimensionality (i.e. 8). This is achieved
via a considerably simpler computation, due to the substantial reduction of the
complexity in input feature vectors. The results also show the cases where PCA-
aided (MLP or KNN) classifiers each employ a feature subset of a different
dimensionality. However, these classifiers still generally underperform than their
FRFS-aided counterparts, whether they are implemented using MLP or KNN.
This situation only changes when almost the full set of PCA-returned features
is used where the MLP classifiers may perform similarly or slightly better (if 20
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or 22 principal components are used). Yet, this is at the expense of requiring
many more feature measurements and much more complex classifier structures.

Additionally, it is worth noting that unlike FRFS-selected features, those
returned by PCA lose the underlying meaning of the original features. They are
the linear combinations of the original instead. This may cause any subsequent
analysis and explanation of the image classification results more difficult to the
user [15].

6.3 Classified and Segmented Images

The ultimate task of this research is to classify Mars panoramic camera images
and to detect different regions or objects (e.g. rocks) in such images. Based on the
above results, the MLP which employs the 8 FRFS-selected features, and which
was trained by the given 816 labeled feature patterns, is taken to accomplish this
task: the classification of the entire image of Fig. 1 (excluding certain regions as
indicated previously).

As an illustration, four classified images are shown in Fig. 5, which are num-
bered by (a), (c), (e) and (g) respectively, and presented on the left side of
this figure, where five different colors represent the five image types (namely,
rock1, rock2, rock3, sand and gravel). From this, boundaries between different
class regions can be identified and marked with white lines, resulting in the seg-



mented images also given in Fig. 5, which are numbered by (b), (d), (f) and (h)
correspondingly, and presented on the right.

From these classified images, it can be seen that the five image types vary in
terms of their size, rotation, color, contrast, shape, and texture. For human eyes
it can be difficult to identify boundaries between certain image regions, such as
those between sand and gravel, and those between rock2 and sand. However, the
classifier is able to perform under such circumstances, showing its robustness
to image variations. This indicates that the small subset of features selected
by FRFS indeed convey the most useful information of the original. Note that
classification errors mainly occur within regions representing sand and gravel.
This may be expected since gravel is itself a mixture of sand and small stones.

7 Conclusion

This paper has presented a study on Mars terrain image classification. In par-
ticular, advanced fuzzy-rough feature selection techniques have been adopted
to help solving such important, and practically challenging, problems in space
engineering. Although the real-world images encountered are large-scale and
complex, the resulting dimensionality of selected feature vectors is manageable.
Conventional classifiers such as MLP and KNN that are built using such se-
lected features generally outperform those using more features or an equal num-
ber of features obtained by classical approaches represented by PCA. This is
confirmed by systematic experimental investigations. The work helps to identify
mature mechanisms that can accomplish Martian image classification effectively
and efficiently. This is of particular significance for modeling and analysis of real
images on board in future Mars rover missions, as only advanced and proven
efficient techniques will be chosen to conduct real mission tasks.

Whilst this work is very promising, active research remains to enhance the
performance of FRFS-assisted classifiers. For instance, the influence of parame-
ter set-up for feature extraction, e.g. the neighborhood size and bin size, requires
further investigation. A more systematic selection of the number of bins used
is indeed a general issue for any histogram-based feature extraction approaches
[30]. Also, it would be very interesting to compare the present work with the
use of alternative feature selection methods (e.g. information gain-based [27]) or
classification techniques (e.g. rough-neural hybridization [10]). Finally, currently,
histogram-based features are produced using grey-level images (which have been
transformed from the original color images). Work on direct use of color im-
ages to generate color-channel-based histogram features may help to capture
more essential pattern discriminatory power though it will also introduce extra
computation cost. An investigation into how to appropriately balance between
effectiveness and efficiency is on-going. Again, the employment of FRFS may
well offer significant assistance in choosing, and hence utilizing, just the most
informative color histogram features.



(a) (b)

(c) (d)

(e) (f)



(g) (h)

Fig. 5. Classified (left) and segmented (right) images.
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