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Fuzzy Complex Numbers and their Application for

Classifiers Performance Evaluation

Xin Fu, Qiang Shen∗

Department of Computer Science, Penglais Campus, Aberystwyth University,
Aberystwyth, SY23 3DB, UK

Abstract

There are a variety of measures to describe classification performance with

respect to different criteria and they are often represented by numerical val-

ues. Psychologists have commented that human beings can only reasonably

manage to process seven or-so items of information at any one time. Hence,

selecting the best classifier amongst a number of alternatives whose perfor-

mances are represented by similar numerical values is a difficult problem

faced by end users. To alleviate such difficulty, this paper presents a new

method of linguistic evaluation of classifiers performance. In particular, an

innovative notion of fuzzy complex numbers (FCNs) is developed in an ef-

fort to represent and aggregate different evaluation measures conjunctively

without necessarily integrating them. Such an approach well maintains the

underlying semantics of different evaluation measures, thereby ensuring that

the resulting ranking scores are readily interpretable and the inference eas-

ily explainable. The utility and applicability of this research are illustrated

by means of an experiment which evaluates the performance of 16 classi-
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fiers using different benchmark datasets. The effectiveness of the proposed

approach is compared to conventional statistical approach. Experimental

results show that the FCN-based performance evaluation provides an intu-

itively reliable and consistent means in assisting end users to make informed

choices of available classifiers.

Keywords: Fuzzy complex numbers, performance evaluation, feature

selection, pattern classification

1. Introduction

Pattern classification has been successfully applied to many application

domains. For instance, classifiers have been developed in conjunction with

feature selection approaches [1, 2, 3] to perform tasks such as image anal-

ysis [4], face recognition, and remote sensing. However, classifiers which

are applied to different problem domains and trained by various learning

algorithms can perform quite differently. In fact, evaluating classifier perfor-

mance is perhaps one of the most deceiving and tricky problems in classifier

design [5]. To tackle this important problem, a variety of measures have been

proposed to describe the classification performance with respect to different

criteria, ranging from classification accuracy and error rate, through storage

complexity and computation time to sensitivity and robustness [6, 7, 8].

In principle, performance measures can be qualitative or quantitative.

Quantitative measures are naturally expressed by numerical values. How-

ever, using such seemingly precise measures to compare a number of classi-

fiers, their performances may turn out to be very close in value. Such pure

numerical values with small differences may not make much sense to the

2



user who would like to make an informed choice of available classifiers. It

would be more appropriate and often desirable to describe the relative perfor-

mance of the classifiers using linguistic terms, such as good, average and bad.

The assessment in qualitative measures often reflects the knowledge of do-

main experts and such measures are usefully represented by linguistic terms.

Compared to numerical values, linguistic terms make it easier for users to

understand the evaluation outcome. Indeed, human beings appear to use

qualitative reasoning when initially attempting to gain an understanding of

a problem.

It is worth noting that in order to obtain a fair evaluation of classifi-

cation performance, several measures may need to be taken into account

concurrently. For example, precision and recall are two widely used statisti-

cal measures which jointly provide a common indication of classifier perfor-

mance. However, for many classification tasks, these two statistical measures

should not be utilised in isolation, as neither measure alone contains sufficient

information to assess the performance. It can be trivial to achieve a recall

score of 1.0 by simply assigning all instances to a certain class. Similarly,

precision may remain high by classifying only a few instances. To combat

this, precision and recall are usually combined into a single measure, such as

the F-Measure which is the weighted harmonic mean of these two measures

[9]. Unfortunately, in so doing, the underlying semantics associated with

these two base measures may be destroyed, even if a qualitative version of

the precision and recall measures are used. Thus, it is of great interest and

potentially beneficial to establish a new mechanism which can maintain the

associated semantics when performing evaluation without necessarily using

3



just one transformed measure. Inspired by this observation, this paper pro-

poses a novel framework of fuzzy complex numbers (FCNs) that will entail

effective and efficient representation of different types of evaluation measures

concurrently and explicitly.

Note that the term FCN is not new; the concept of complex numbers

has been proposed in the literature. For example, a form of fuzzy complex

numbers has been defined in [10] as a mapping from the conventional complex

number plane to the real-valued interval [0, 1]. Such an FCN is therefore,

simply a type-1 fuzzy set [11]. Work on the differentiation and integration of

this type of FCNs has been proposed in [12, 13], with more advanced follow-

on research on their mathematical properties reported in [14, 15, 16, 17].

Recently, in combining fuzzy complex analysis and statistical learning theory,

important theorems (of a learning process) based on fuzzy complex random

samples were developed [18]. This work further demonstrates the interesting

properties of so-called rectangular fuzzy complex numbers, which are a special

type of FCN as proposed in [10]. Another relevant development is the notion

that relates real complex numbers to fuzzy sets [19]. It introduces a new type

of set, named complex fuzzy sets, to allow the membership value of a standard

fuzzy set to be represented using a classical complex number. However, as

discussed in [19], it may be difficult to identify suitable real-world problems

for the use of such complex-valued memberships. Despite this obstacle, work

has continued along this theme of research. This is evident in that complex

fuzzy sets have been integrated with propositional logic to construct a specific

instance of fuzzy reasoning systems [20].

Existing research regarding the concept of FCNs is all framed by either
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giving conventional complex numbers a real-valued membership or assigning

a fuzzy set element to a complex number as its membership value. These

approaches are rather different from what is proposed in this paper, where

both the real and imaginary values of an FCN are in general, themselves

fuzzy numbers; each with an embedded semantic meaning. By extending the

initial definition and calculus of the proposed FCNs as given in [21], impor-

tant algebraic properties, including closure, associativity, commutativity and

distributivity of such FCN are established in the present work. This helps

to support the aggregation process of FCNs. This new aggregation approach

enhances the original work of [21] by allowing an arbitrary number of com-

ponents of an FCN to be integrated in a random order. Further, the newly

derived modulus of this type of FCN is introduced to impose an order over

a given set of FCNs. Apart from these theoretical contributions, this work

is applied to a completely new problem domain to gauge the performance of

classifiers. This differs significantly from what is reported in [21]. The under-

lying development of this new approach to FCNs is general. It offers great

potential for other application problems which exhibit similar characteristics

as those of multi-criteria performance evaluation (e.g. student performance

evaluation [22]).

The rest of this paper is organized as follows. Section 2 proposes the novel

approach to the notion of FCNs, which extends real-valued complex numbers

to representing two-dimensional linguistic-valued measures concurrently. In

Section 3, this approach is utilised to construct a general linguistic evaluation

method which effectively ranks the overall performance of different classifiers.

For computational simplicity, such a general evaluation method is specified
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using the linear triangular fuzzy sets. Details of the implemented classifier

evaluator are also presented in this section. Section 4 describes the exper-

imentation carried out on standard benchmark datasets and discusses the

evaluation results. The paper is concluded in Section 5, with the perspective

of further work pointed out.

2. Fuzzy complex numbers

2.1. Prerequisites

2.1.1. Fuzzy numbers

Fuzzy numbers are a special type of fuzzy sets which can be used to

represent imprecise quantities such as about 0.6. Fuzzy numbers map real

values from R on to a closed interval [0, 1].

Definition 1. (Fuzzy numbers [23]) A fuzzy number, ã, is defined as:

ã = {(x, μã(x))
∣∣ μã(x) ∈ [0, 1], x ∈ R},

and satisfies the following properties:

a) Continuity: μã(x) is a continuous function mapping from R to a closed

interval [0, 1].

b) Normality: i.e. ∃x ∈ R and μã(x) = 1.

c) Convexity: i.e. ∀x, y, z ∈ R, if x ≤ y ≤ z then μã(y) ≥ min(μã(x), μã(z)).

d) Boundness of support: i.e. ∃S ∈ R and ∀x ∈ R, if |x| ≥ S then

μã(x) = 0.
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2.1.2. Extension principle

The extension principle [24] provides a fundamental mechanism to trans-

late conventional boolean set-based concepts into their fuzzy-set counter-

parts. In this work, it forms the foundation to derive the arithmetic opera-

tions of the proposed FCNs.

Definition 2. Let f : Rn −→ R be a function and A1, . . . , An be fuzzy sets.

Then B = f(A1, . . . , An) is a fuzzy set with the following membership func-

tion:

μB(y) =
∨

y=f(x1,...,xn)

(μA1(x1) ∧ · · · ∧ μAn(xn)). (1)

Note that the operators ∧ and ∨ above denote a given t-norm and s-norm

respectively. Throughout this paper, they are interpreted using the min and

max operators.

2.2. Definition of FCNs

Inherit from the real complex numbers, an FCN, z̃, is defined in the form

of:

z̃ = ã+ ib̃, (2)

where both ã and b̃ are fuzzy numbers with membership functions μã(x) and

μb̃(x), regarding a given domain variable x. ã is the real part of z̃ while b̃

represents the imaginary part, i.e. Re(z̃) = ã and Im(z̃) = b̃.

An FCN can be visually shown as in Figure. 1. Importantly, in general, for

a given z̃, both Re(z̃) and Im(z̃) are fuzzy. If b̃ does not exist, z̃ degenerates

to a fuzzy number. Further, if b̃ does not exist and ã itself degenerates to a

real number, then z̃ degenerates to a real number.
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Figure 1: A fuzzy complex number

2.3. Operations on FCNs

The operations on the proposed FCNs are a straightforward extension of

those on real complex numbers. Let z̃1 = ã + ib̃ and z̃2 = c̃ + id̃ be two

FCNs, where ã, b̃, c̃ and d̃ are fuzzy numbers with membership functions

μã(x), μb̃(x), μc̃(x) and μd̃(x), respectively. The basic arithmetic operations

on z̃1 and z̃2 are defined as follows:

• Addition

z̃1 + z̃2 = (ã+ c̃) + i(b̃+ d̃), (3)

where ã+c̃ and b̃+d̃ are newly derived fuzzy numbers with the following

membership functions:

μã+c̃(y) =
∨

y=x1+x2

(μã(x1) ∧ μc̃(x2)),

μb̃+d̃(y) =
∨

y=x1+x2

(μb̃(x1) ∧ μd̃(x2)).
(4)

• Subtraction

z̃1 − z̃2 = (ã− c̃) + i(b̃− d̃), (5)
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where ã−c̃ and b̃−d̃ are newly derived fuzzy numbers with the following
membership functions:

μã−c̃(y) =
∨

y=x1−x2

(μã(x1) ∧ μc̃(x2)),

μb̃−d̃(y) =
∨

y=x1−x2

(μb̃(x1) ∧ μd̃(x2)).
(6)

• Multiplication

z̃1 × z̃2 = (ãc̃− b̃d̃) + i(b̃c̃+ ãd̃), (7)

where ãc̃ − b̃d̃ and b̃c̃ + ãd̃ are newly derived fuzzy numbers with the
following membership functions:

μãc̃−b̃d̃(y) =
∨

y=x1x2−x3x4

(μã(x1) ∧ μc̃(x2) ∧ μb̃(x3) ∧ μd̃(x4)),

μb̃c̃+ãd̃(y) =
∨

y=x1x2+x3x4

(μb̃(x1) ∧ μc̃(x2) ∧ μã(x3) ∧ μd̃(x4)).
(8)

• Division
z̃1
z̃2
=

(
ãc̃+ b̃d̃

c̃2 + d̃2

)
+ i

(
b̃c̃− ãd̃
c̃2 + d̃2

)
. (9)

For notational simplicity, let t̃1 =
ãc̃+b̃d̃
c̃2+d̃2 and t̃2 =

b̃c̃−ãd̃
c̃2+d̃2 , where t̃1 and

t̃2 are newly derived fuzzy numbers with the following membership

functions:

μt̃1(y) =
∨

y=
x1x3+x2x4

x2
3
+x2

4
,x2

3+x2
4 �=0

(μã(x1) ∧ μb̃(x2) ∧ μc̃(x3) ∧ μd̃(x4)),
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μt̃2(y) =
∨

y=
x2x3−x1x4

x2
3
+x2

4
,x2

3+x2
4 �=0

(μã(x1) ∧ μb̃(x2) ∧ μc̃(x3) ∧ μd̃(x4)). (10)

• Modulus

Given z̃ = ã+ ib̃, the modulus of z̃ is defined:

|z̃| =
√
ã2 + b̃2. (11)

It is obvious that |z̃| is a newly derived fuzzy number with the following
membership function:

μ|z̃|(y) =
∨

y=
√

x2
1+x2

2

(μã(x1) ∧ μb̃(x2)). (12)

Note that the rectangular FCNs as proposed in [10] are represented in a

form that is similar to the present work (but have different interpretation).

In performing addition and subtraction on these two types of FCN, the same

results are obtained. However, for multiplication and division this is not the

case. The rectangular FCNs are defined as type-1 fuzzy sets, and the basic

arithmetic operations on them are developed using the extension principle.

The algebraic properties of the proposed FCNs are presented in the Ap-

pendix. These properties, including closure, associativity, commutativity

and distributivity are important for the further exploration and application

of this novel framework. In particular, the associativity and commutativity

of FCNs are used to derive the aggregation of components of an FCN in the

10



next section.

2.4. Aggregation of Components of an FCN

Importantly, if there are more than two components involved in the prob-

lem domain, a hierarchical aggregation approach can be taken due to the

commutativity of FCNs. That is, any two fuzzy numbers can be selected

to construct a working FCN first. Then, the newly derived modulus of this

FCN, together with a third fuzzy number can be used to construct another

FCN. This process continues until all the involved fuzzy numbers are aggre-

gated. For notation simplicity, arbitrary n components can be represented

in one single FCN and each component is denoted as a fuzzy number.

Definition 3. Let ã1, . . . , ãn be n fuzzy numbers, an aggregation operator τ

is defined as:

τ(ã1, . . . , ãn) =
√
ã2

1 + · · ·+ ã2
n. (13)

Note that this aggregation results in a new fuzzy number. This can be

obtained by directly applying Theorems 2 - 3 (see Appendix). Since the

multiplication and addition on fuzzy numbers are commutative, different

components can be aggregated in a random order with this aggregation op-

erator.

3. Evaluation of classifiers performance

3.1. System overview

The problem considered herein is that of classifier performance evalua-

tion. In particular, the classification task considered consists of two phases:

feature selection and classification. Thus, this work helps to assist the end
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user to determine what combinations of feature selectors and classifiers may

outperform the others with respect to a variety of given criteria. Obviously,

a system implemented for such experimentation involves two main processes:

Data Processing and Evaluation, with each carrying out certain subtasks as

outlined in Figure 2.

Figure 2: System overview

Initially, feature selection is utilised as the dimensionality reduction tech-

nique to extract a minimal feature subset from a given dataset while preserv-

ing the semantics of the original information. After that, a classifier learning

step is employed to build a model or models which represent the relationship

between the input data and the class labels from the training dataset. Then,

the generated model is applied to predict the class labels of objects in the

reduced testing dataset, using those selected features only.

The classification results obtained are recorded and fed to the Evaluation

component for performance evaluation. The proposed FCNs notion is em-

ployed herein to enable such evaluation concurrently and explicitly. Finally,
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ranked classifiers are provided to the end user to support decision making.

Based on the resulting evaluation scores, the user may adjust the partition

of the quantity space in an effort to improve the evaluation results. In this

work, the focus lies on the implementation of the proposed FCNs for the

Evaluation step. Technical details for accomplishing the relevant subtasks

are described in the following subsections.

3.2. Fuzzification

In general, the results of classification may be either qualitative or quan-

titative. As argued previously, the absolute numerically-valued results (e.g.

the probability associated with the class indices) of a given classifier may not

be easily understood by the user. This is especially true when more than

one value needs to be considered and whilst these numerical values are very

close to each other. Instead of relying on the absolute real values, the relative

performance of the classifiers may bear more information for the user. Thus,

the numerical classification outcomes may be more humanly interpretable

with fuzzy numbers or linguistic terms such as High and Low which help to

capture the relative performance of a given classifier. In order to accomplish

such subjective evaluation, a fuzzification process [25] is often employed, con-

verting an observed input space into fuzzy sets defined in certain universes

of discourse. Fuzzification of numerical real values also helps to “hide” the

confidential context of performance, as the user may not be willing to disclose

the actual values for certain sensitive evaluation metrics.

13



3.2.1. Fuzzy quantity space

Within the present work, the (relative) performance of a given classifier

takes a value from a pre-defined fuzzy quantity space [26]. A fuzzy quantity

space is simply a collection of all the membership functions defining the

fuzzy sets that jointly partition a given universe of discourse. In particular,

if defined on real numbers, the elements of a fuzzy quantity space are fuzzy

numbers and such a fuzzy quantity space is denoted as QFN (see later for

example). Fuzzy quantity spaces provide an intuitive way to represent a

qualitative value through the use of gradual membership functions, enabling a

flexible representation of domain knowledge. This is because a fuzzy quantity

space consists of a finite number of fuzzy sets, different cardinalities reflect

different detailed abstractions of the modelled variables.

3.2.2. Transforming a numerical value into a fuzzy set in QFN

In general, the classification results may take values from different phys-

ical dimensions and scales. Thus, a normalization process is firstly applied.

This process normalises the range of the resultant values to the interval [0, 1].

Given a class attribute, its classification results obtained by using different

classification approaches are represented by: v1, v2, . . . , vn, where n is the

total number of combinations of feature selectors and classifiers. The nor-

malized values of these results are defined as follows:

Nor(vi) =
vi −min(v1, v2, . . . , vn)

max(v1, v2, . . . , vn)−min(v1, v2, . . . , vn) , (14)

where i = 1, 2, . . . , n.

The normalised results need to be mapped onto a pre-defined fuzzy quan-
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tity space QFN . A matching mechanism is employed to determine which

element of QFN best represents the given value.

Definition 4. Given two fuzzy numbers A and B, the matching degree, S,

between them is:

S(A,B) = 1− Sd(A,B), (15)

where Sd(A,B) denotes a distance measure between two normalized fuzzy

sets.

Suppose that QFN = {VFN1, VFN2, . . . , VFNn}. Given a fuzzy set A, it is
obvious that the larger the matching degree S(VFNi

, A) is, the more similar

VFNi
and A are, where i ∈ {1, 2, . . . , n}. VFN is selected to represent A if

VFN = argmaxS(VFNi
, A), i ∈ {1, 2, . . . , n}.

3.3. Performance representation using FCNs

From the application point of view, an FCN is capable of representing

two-dimensional inexact information concurrently. To support the task of

classification performance evaluation, both the real and imaginary parts of a

proposed FCN can be assigned with their embedding meanings (e.g. evalua-

tion outcomes using two different measures). Having carried out the fuzzifi-

cation step as described above, the classification value of a certain measure

is represented by one of the pre-specified fuzzy numbers. Thus, the outcomes

can be readily applied to construct the FCNs. For example, the real part

can be utilised to represent the precision measure while the imaginary part

represents the recall measure. As such, the modulus of the corresponding

FCN offers a good indication of the overall system performance.
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Importantly, if there are more than two evaluation measures involved, a

hierarchical approach can be taken due to the commutativity of FCNs. That

is, any two fuzzy numbers can be selected to construct a working FCN first.

Then, the newly derived modulus of this FCN, together with a third fuzzy

number can be used to construct another FCN. This process continues until

all the involved fuzzy numbers are aggregated. Mathematically, the aggre-

gation result of these fuzzy numbers is obviously equivalent to that which is

obtained by applying Eq. (13) to all individual performance measures.

3.4. Overall performance ranking

This is a fairly straightforward sub-task: the overall performance of a

classifier is decided on the basis of the modulus of the corresponding FCN.

According to Theorem 3, the modulus of an FCN is a fuzzy number. The

relevant position of individual outcomes can be readily compared and hence

ranked using the conventional partial ordering relation holding amongst fuzzy

numbers. If, however, it is desirable to have an absolute ordering, the re-

sulting fuzzy numbers can be compared by defuzzifying these fuzzy numbers.

There exist many defuzzification operators that may be applied for this pur-

pose (see later for an example).

3.5. An implemented classifier evaluator

This subsection presents an implemented classifier evaluator which spec-

ifies the general evaluation approach. It is assumed that the relative per-

formance is represented using fuzzy numbers which take values from the

following fuzzy quantity space, QFN = {Worst, V L, L,M,H, V H,Best}, as
shown in Figure 3. Although a wide range of membership functions may
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be adopted to represent fuzzy sets, for computational efficiency, triangular

membership functions are used here. A fuzzy set A with the triangular mem-

bership is denoted by A = [a, b, c], where a is its left most element, b is the

element whose membership value is 1, and c is its right most element. This

is shown in Figure 4.

1

μ

x0 10.50.25 0.75

HMLVL VH BestWorst

Figure 3: Fuzzy quantity space for implemented classifier evaluator

X

u

1

0
a c

A

b Rep(A)

1/3

Figure 4: Representative value of a triangular fuzzy set A = [a, b, c]

In general, quantitative attributes which are represented by crisp values

are often involved in the process of classifier performance evaluation. A fuzzi-

fication process is therefore needed when transforming a numerical value into

a fuzzy set in QFN . This is achieved by: 1) normalising a crisp value x, x ∈ D
(the domain of the attribute in question), 2) treating the normalised value

x̄, x̄ ∈ [0, 1] as a special case of triangular fuzzy numbers i.e. [x̄, x̄, x̄], and

17



3) calculating the degree of similarity between such a specific fuzzy number

and an element of QFN . The degree of matching of two fuzzy numbers is

a value within the range of [0, 1]. In this work, without losing generality,

the Hausdorff distance [27] is employed to measure the fuzzy set matching

degrees. This is defined below.

Definition 5. Given two triangular fuzzy sets A = [a1, a2, a3] and B =

[b1, b2, b3], A �= B, the Hausdorff distance between them is defined as:

Sd(A,B) = max{d(A,B), d(B,A)} = max{sup
a∈A

inf
b∈B
d(a, b), sup

b∈B
inf
a∈A
d(a, b)},

(16)

where d(a, b) is the normalised absolute distance between parameters a and

b, i.e.

d(a, b) =
|a− b|

max{|b3 − a1|, |a3 − b1|} .

Once the distance between A and B is obtained, Eq. (15) can be applied

to derive their matching degree. The fuzzification of a given fuzzy set A is

deemed to be the element of QFN which receives the largest matching degree.

In order to derive an absolute overall performance ranking (amongst pos-

sible classifiers for use), the moduli of the constructed FCNs are defuzzified

using their representative values [28]. For computational simplicity, the rep-

resentative value of a triangular membership function A = [a, b, c] (as shown

in Figure 4) is defined as [29]:

Rep(A) =
a + b+ c

3
. (17)

Note that, this representative value also happens to be the centre of
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gravity (CoG) of the area under the triangular membership function.

In this work, the number of involved evaluation measures can vary. When

calculating the moduli of the constructed FCNs, the resulting representative

values may be larger than 1 (e.g. the representative value of |Best+ iBest|
is 1.414). A normalisation is therefore employed to make all the derived

representative values lie within a common scale [0, 1], in which 1 represents

the classifier performs best, whereas 0 represents the classifier performs worst.

4. Experimentation and discussions

To verify the applicability and utility of the proposed method for FCN-

based classifier evaluation, a set of experiments are carried out in this section.

Four feature selectors are used in this investigation in conjunction with four

different classifiers, creating 16 combinations. These are each evaluated over

five standard benchmark datasets.

4.1. Datasets

Three benchmark datasets from the UCI Machine Learning Repository

[30] (namely glass, vehicle and sonar) and two mammographic datasets (namely

the Mammographic Image Analysis Society (MIAS) dataset [31] and the Dig-

ital Database of Screening Mammography (DDSM) dataset [32]) are used in

this paper for experimental investigation.

The glass dataset consists of 10 attributes (including the index number)

and all these attributes are continuously valued. There are 214 instances in

total and they can be classified into 7 different classes. The vehicle dataset

aims to classify a silhouette into one of the four given types of vehicle. The

dataset records 946 instances together with 18 features which are extracted
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from the silhouette images. The sonar dataset contains 111 mine patterns

and 97 rock patterns which are obtained by bouncing sonar signals off a metal

cylinder at different angles and conditions. Each pattern is represented by

60 attributes which take values from [0, 1].

The MIAS dataset contains 322 digitised mammograms images which are

taken from 161 women by the UK National Breast Screening Programme.

Each image is represented by 281 features extracted using the process de-

scribed in [33]. Similarly, the DDSM dataset consists of 281 features obtained

in the same manner as with MIAS datset but from 832 mammograms im-

ages. Three mammographic experts are invited to classify all the images in

the above two datasets into the following four BIRADS categories, according

to their density [34]:

• BIRADS 1: the breast is almost entirely fatty.

• BIRADS 2: there is some fibro-glandular tissue.

• BIRADS 3: the breast is heterogeneously dense.

• BIRADS 4: the breast is extremely dense.

Note that, if three experts classified the image into different classes, the

consensus opinion is achieved by applying the method reported in [33].

4.2. Combined use of feature selection and classification

4.2.1. Feature selection

In many real-world applications of feature-based pattern classification,

due to the involvement of noisy, irrelevant or misleading features, it is likely

that not all the input features are useful [35]. When considering learning
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tasks, it is evident that using an increasing number of features requires an

exponentially increasing number of training objects and this is called the

curse of dimensionality in the literature. Thus, it is important to apply fea-

ture selection (FS) to remove noisy and redundant features, while tackling

the curse of dimensionality. In addition to the benefits of gaining compu-

tational efficiency and removing noisy inputs, FS also helps to reduce the

costs associated with collecting large amounts of unnecessary (feature) mea-

surements. However, choosing the most informative features is not an easy

task as there may be many inter-dependencies between subsets of features.

Amongst many FS techniques designed to support classification tasks [1, 3],

the following four feature selectors are employed in this experimentation due

to their availability:

• Consistency subset evaluator (CS) [36]: This is a probabilistic approach

to feature selection. A subset of features is evaluated by means of the

consistency criterion which specifies to what extent the subset can be

accepted. Consistency of any subset can never be lower than that

of the full set of features. Therefore, this subset evaluator is used in

conjunction with a search algorithm which looks for the smallest subset

with consistency equal to that of the full set of features.

• Fuzzy-rough feature selection (FRFS) [37]: Fuzzy-rough sets encap-

sulate the related but distinct concepts of vagueness (fuzzy sets) and

indiscernibility (rough sets), offering a high degree of flexibility when

dealing with real-valued data. Conventional fuzzy-rough sets [38] ex-

tend the rough set concepts [39, 40, 41] through the use of fuzzy
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equivalence classes [42], but process several problems (e.g. complex-

ity of calculating the Cartesian product of fuzzy equivalence classes,

and fuzzy lower approximation not being a subset of fuzzy upper ap-

proximation) that render them ineffective for large datasets. Recently,

FRFS [37] proposed three new approaches based on the use of fuzzy

T -transitive similarity relations - fuzzy lower approximation-based FS,

fuzzy boundary region-based FS and, in particular, fuzzy discernibility

matrix-based FS - to effectively address the above stated issues. No

user-defined thresholds are required in any of these three new methods,

although a choice must be made regarding fuzzy similarity relations and

connectives.

• Correlation-based feature subset evaluator (CFS) [43]: This is a simple

filtering algorithm that ranks feature subsets according to a correlation

based heuristic evaluation function. Those subsets which contain fea-

tures that are highly correlated with the class and uncorrelated with

each other are searched for.

• Distance metric-assisted tolerance rough set feature selection (DM-

TRS) [44]: This is an extension of the tolerance rough set (TRS)

approach as described in [45], which is capable of dealing with real-

valued data. It marries TRS with the distance metric assisted rough

set approaches [46]. The information of the TRS boundary region that

is otherwise ignored is examined and used to guide feature selection.
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4.2.2. Classifiers and classifier learning

In this work, in order to demonstrate the challenge in classifiers perfor-

mance evaluation and hence in their selection, four classifier which share

similar underlying theoretical foundations are employed to classify the given

data. Each classifier learning algorithm is briefly discussed below.

• Fuzzy k-nearest neighbours classifier (FNN) [47]: The classical (crisp)

k-nearest neighbour (kNN) algorithm was introduced to classify objects

based on their similarity to each of k clusters created with the training

data. However, each sample object is considered equally important in

the assignment of the cluster label and once an object is assigned to

a cluster, there is no indication of its strength of membership in that

cluster. This work has been extended by assigning partial membership

of an object to different clusters [48]. FNN also takes into account the

relative importance of any test object with respect to each neighbouring

cluster.

• Fuzzy-rough k-nearest neighbours classifier (FRNN FRS) [49]: This

approach combines the fuzzy-rough approximations [3, 37] with the

underlying ideas of FNN. Given a test object, the nearest neighbours

of this object are employed to construct the lower and upper approxi-

mations of each decision class. These derived approximations provide

a clue for determining the class membership of the test object. This

approach has the ability to handle real-valued data and is proven to

be efficient in improving classification accuracy as well as considerably

removing redundant, irrelevant, and noisy features.
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• Fuzzy-rough ownership k-nearest neighbours classifier (FRNN O) [50]:

This approach combines conventional kNN algorithms with both fuzzy

and rough uncertainties to generate class confidence values using a

fuzzy-rough ownership function. Unlike conventional kNN algorithms,

this approach does not need to specify the number of neighbours with

all training objects considered. Initially, a parameter that determines

the bandwidth of the fuzzy-rough ownership function is calculated for

each attribute and all confidence values of decision classes for the test

object y are set to 0. Next, the squared weighted distance of y from

all objects is computed in order to update the fuzzy-rough ownership

value of y. Finally, when all training objects have been applied, the

algorithm outputs the class with the highest fuzzy-rough ownership

value.

• Vaguely-quantified k-nearest neighbours classifier (VQNN) [51]: This

method takes a similar approach to FRNN FRS. However, it applies the

vaguely quantified rough set (VQRS) model [52] to derive the fuzzy-

rough upper and lower approximations, as this model may be more

robust in the presence of noisy data.

4.3. Experimental setup

In this work, the best-first search algorithm [53] is employed to perform

CS and CFS-based feature selection. The FRFS feature selector uses the

following similarity measure:

μRa(x, y) = 1− |a(x)− a(y)|
|amax − amin| (18)
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where μRa(x, y) is the degree to which object x and y are similar for feature

a, along with the �Lukasiewicz t-norm (T (x, y) = max(x+ y − 1, 0)) and the

�Lukasiewicz fuzzy implicator (I(x, y) = min(1, 1−x+ y)). For the DM-TRS
feature selector, the weighting of the distance measure is set to 0.2, while the

weighting of the rough set dependency is set to 0.8. In addition, the tolerance

value is set to 0.97 for all the experimental datasets. These parameters were

empirically demonstrated to achieve the best level of dimensionality reduction

for the given datasets [49].

For each of the classifiers, the value of k is set to 10 initially and then

decremented by 1 for each experiment. Thus, a set of 10 results are ob-

tained for each dataset. Importantly, cross validation of 10 × 10-fold cross-

validation is performed for each experiment. As with feature selection, in

implementing each of the four classifiers, the similarity measure used is the

same as μRa(x, y) as specified above. For the FRNN FRS approach, the

�Lukasiewicz t-norm and the Kleene-Dienes implicator (I(x, y) = max(1 −
x, y)) are chosen. The choice of this implicator is based on empirical studies

[49]. In addition, the VQNN approach softens the universal and existential

quantifier by means of vague quantifiers. In implementing the VQNN ap-

proach, the upper and lower fuzzy quantifiers are specified as Ql = Q(0.1,0.6)

and Qu = Q(0.2,1.0) to reflect the vague quantifiers some and most from nat-

ural language respectively.

4.4. Experimental results

Four measures, namely correct classification percentage (CCP), cardinal-

ity of surviving feature subset (i.e. number of selected features or classifier

inputs), average precision and average recall, are adopted to evaluate the
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Table 1: Evaluation results of using CCP and reduction capability for glass classification

Classifier CCP No. of features FCN Rep(Modulus) Ranking

Absolute Normalised Absolute Normalised Absolute Normalised

CS + FRNN FRS 0.6869 0.6667 7 0.4 H + iM 0.9035 0.6163 Joint 5

CS + FNN 0.6729 0.5 7 0.4 M + iM 0.7071 0.4687 9

CS + FRNN O 0.6916 0.7222 7 0.4 H + iM 0.9035 0.6163 Joint 5

CS + VQNN 0.6355 0.0556 7 0.4 VL + iM 0.5135 0.3232 12

FRFS + FRNN FRS 0.6682 0.4444 9 0.0 M + iWorst 0.5 0.3131 Joint 13

FRFS + FNN 0.6729 0.5 9 0.0 M + iWorst 0.5 0.3131 Joint 13

FRFS + FRNN O 0.6963 0.7778 9 0.0 H + iWorst 0.75 0.501 8

FRFS + VQNN 0.6355 0.0556 9 0.0 VL + iWorst 0.0833 0.0 16

CFS + FRNN FRS 0.6869 0.6667 8 0.2 H + iL 0.8029 0.5407 7

CFS + FNN 0.6729 0.5 8 0.2 M + iL 0.5701 0.3658 Joint 10

CFS + FRNN O 0.6822 0.6111 8 0.2 M + iL 0.5701 0.3658 Joint 10

CFS + VQNN 0.6355 0.0556 8 0.2 VL + iL 0.2697 0.14 15

DMTRS + FRNN FRS 0.7149 1.0 4 1.0 Best + iBest 1.4142 1.0 1

DMTRS + FNN 0.6308 0.0 4 1.0 Worst + iBest 1.0 0.6888 4

DMTRS + FRNN O 0.6589 0.3333 4 1.0 L + iBest 1.0496 0.7261 3

DMTRS + VQNN 0.6682 0.4444 4 1.0 M + iBest 1.1329 0.7886 2

performance of classifiers. Combining the aforementioned 4 feature selectors

and 4 classifiers results in 16 different integrated approaches to classification

using reduced input pattern dimensionality. Given the five datasets, a set of

experimentations were carried out by using these 16 approaches, along with

the corresponding parameters specified in Section 4.3.

4.4.1. Evaluation measures: CCP and reduction capability

In this sub-section, the CCP and reduction capability are jointly con-

sidered for each combined feature pattern classifier. The evaluation results

by using the 16 different approaches with respect to the given datasets are

shown in Table 1 - Table 5, respectively.

Prior to the joint evaluation, the obtained absolute value of CCP and

the number of selected features are normalized to [0, 1]. Intuitively, the nor-

malised value of 1 is assigned to the classifier which achieves the largest
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Table 2: Evaluation results of using CCP and reduction capability for vehicle classification

Classifier CCP No. of features FCN Rep(Modulus) Ranking

Absolute Normalised Absolute Normalised Absolute Normalised

CS + FRNN FRS 0.6678 0.7478 18 0.0 H + iWorst 0.75 0.2909 Joint 14

CS + FNN 0.6489 0.6087 18 0.0 M + iWorst 0.5 0.0 16

CS + FRNN O 0.6891 0.9043 18 0.0 VH + iWorst 0.9167 0.4848 7

CS + VQNN 0.7021 1.0 18 0.0 Best + iWorst 1.0 0.5817 6

FRFS + FRNN FRS 0.6076 0.3043 9 0.8182 L + iH 0.8029 0.3524 Joint 10

FRFS + FNN 0.6158 0.3652 9 0.8182 L + iH 0.8029 0.3524 Joint 10

FRFS + FRNN O 0.6843 0.8696 9 0.8182 H + iH 1.0607 0.6524 3

FRFS + VQNN 0.6312 0.4783 9 0.8182 M + iH 0.9035 0.4695 Joint 8

CFS + FRNN FRS 0.591 0.1826 11 0.6364 L + iH 0.8029 0.3524 Joint 10

CFS + FNN 0.5887 0.1652 11 0.6364 L + iH 0.8029 0.3524 Joint 10

CFS + FRNN O 0.6371 0.5217 11 0.6364 M + iH 0.9035 0.4695 Joint 8

CFS + VQNN 0.5662 0.0 11 0.6364 Worst + iH 0.75 0.2909 Joint 14

DMTRS + FRNN FRS 0.6064 0.2957 7 1.0 L + iBest 1.0496 0.6394 Joint 4

DMTRS + FNN 0.695 0.9478 7 1.0 VH + iBest 1.3595 1.0 1

DMTRS + FRNN O 0.6726 0.7826 7 1.0 H + iBest 1.2607 0.885 2

DMTRS + VQNN 0.6135 0.3478 7 1.0 L + iBest 1.0496 0.6394 Joint 4

Table 3: Evaluation results of using CCP and reduction capability for sonar classification

Classifier CCP No. of features FCN Rep(Modulus) Ranking

Absolute Normalised Absolute Normalised Absolute Normalised

CS + FRNN FRS 0.7885 0.5172 14 0.3571 M + iL 0.5701 0.1108 Joint 13

CS + FNN 0.8173 0.7241 14 0.3571 H + iL 0.8029 0.4786 Joint 9

CS + FRNN O 0.851 0.9655 14 0.3571 VH + iL 0.9663 0.7368 6

CS + VQNN 0.8077 0.6552 14 0.3571 H + iL 0.8029 0.4786 Joint 9

FRFS + FRNN FRS 0.8558 1.0 13 0.4286 Best + iM 1.1329 1.0 Joint 1

FRFS + FNN 0.7596 0.3103 13 0.4286 L + iM 0.5701 0.1108 Joint 13

FRFS + FRNN O 0.8317 0.8276 13 0.4286 H + iM 0.9035 0.6375 8

FRFS + VQNN 0.7788 0.4483 13 0.4286 M + iM 0.7071 0.3272 12

CFS + FRNN FRS 0.7788 0.4483 19 0.0 M + iWorst 0.5 0.0 Joint 15

CFS + FNN 0.8221 0.7586 19 0.0 H + iWorst 0.75 0.395 11

CFS + FRNN O 0.8462 0.931 19 0.0 VH + iWorst 0.9167 0.6584 7

CFS + VQNN 0.7692 0.3793 19 0.0 M + iWorst 0.5 0.0 Joint 15

DMTRS + FRNN FRS 0.7452 0.2069 5 1.0 L + iBest 1.0496 0.8684 3

DMTRS + FNN 0.7163 0.0 5 1.0 Worst + iBest 1.0 0.79 5

DMTRS + FRNN O 0.7308 0.1034 5 1.0 VL + iBest 1.0103 0.8063 4

DMTRS + VQNN 0.774 0.4138 5 1.0 M + iBest 1.1329 1.0 Joint 1
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Table 4: Evaluation results of using CCP and reduction capability for MIAS classification

Classifier CCP No. of features FCN Rep(Modulus) Ranking

Absolute Normalised Absolute Normalised Absolute Normalised

CS + FRNN FRS 0.6646 0.6632 11 0.807 H + iH 1.0607 0.8144 Joint 4

CS + FNN 0.5559 0.1893 11 0.807 L + iH 0.8029 0.4399 14

CS + FRNN O 0.6615 0.6488 11 0.807 H + iH 1.0607 0.8144 Joint 4

CS + VQNN 0.7019 0.8246 11 0.807 H + iH 1.0607 0.8144 Joint 4

FRFS + FRNN FRS 0.6149 0.4460 7 0.961 M + iVH 1.0528 0.8029 Joint 7

FRFS + FNN 0.5124 0.0 7 0.961 Worst + iVH 0.9167 0.6052 Joint 12

FRFS + FRNN O 0.6584 0.6353 7 0.961 H + iVH 1.1885 1.0 1

FRFS + VQNN 0.6522 0.6084 7 0.961 M + iVH 1.0529 0.803 Joint 7

CFS + FRNN FRS 0.7236 0.9191 32 0.0 VH + iWorst 0.9167 0.6052 Joint 12

CFS + FNN 0.6025 0.3921 32 0.0 M + iWorst 0.5 0.0 16

CFS + FRNN O 0.6988 0.8111 32 0.0 H + iWorst 0.75 0.3631 15

CFS + VQNN 0.7422 1.0 32 0.0 Best + iWorst 1.0 0.7262 11

DMTRS + FRNN FRS 0.5528 0.1758 6 1.0 L + iBest 1.0496 0.7983 Joint 9

DMTRS + FNN 0.6273 0.5 6 1.0 M + iBest 1.1329 0.9192 Joint 2

DMTRS + FRNN O 0.6211 0.473 6 1.0 M + iBest 1.1329 0.9192 Joint 2

DMTRS + VQNN 0.59 0.338 6 1.0 L + iBest 1.0496 0.7983 Joint 9

Table 5: Evaluation results of using CCP and reduction capability for DDSM classification

Classifier CCP No. of features FCN Rep(Modulus) Ranking

Absolute Normalised Absolute Normalised Absolute Normalised

CS + FRNN FRS 0.4838 0.3333 21 0.45 L + iM 0.5701 0.3626 Joint 10

CS + FNN 0.5018 0.4524 21 0.45 M + iM 0.7071 0.5177 Joint 8

CS + FRNN O 0.5259 0.6111 21 0.45 M + iM 0.7071 0.5177 Joint 8

CS + VQNN 0.5572 0.8175 21 0.45 H + iM 0.9035 0.7402 6

FRFS + FRNN FRS 0.5150 0.5397 23 0.36 M + iL 0.5701 0.3626 Joint 10

FRFS + FNN 0.4789 0.3016 23 0.36 L + iL 0.3536 0.1173 15

FRFS + FRNN O 0.4561 0.4789 23 0.36 M + iL 0.5701 0.3626 Joint 10

FRFS + VQNN 0.5848 1.0 23 0.36 Best + iL 1.0496 0.9057 Joint 3

CFS + FRNN FRS 0.4838 0.3333 31 0.0 L + iWorst 0.25 0.0 16

CFS + FNN 0.5078 0.4921 31 0.0 M + iWorst 0.5 0.2832 Joint 13

CFS + FRNN O 0.5199 0.5714 31 0.0 M + iWorst 0.5 0.2832 Joint 13

CFS + VQNN 0.5548 0.8016 31 0.0 H + iWorst 0.75 0.5663 7

DMTRS + FRNN FRS 0.4332 0.0 9 1.0 Worst + iBest 1.0 0.8495 5

DMTRS + FNN 0.4862 0.3492 9 1.0 L + iBest 1.0496 0.9057 Joint 3

DMTRS + FRNN O 0.5067 0.4841 9 1.0 M + iBest 1.1329 1.0 Joint 1

DMTRS + VQNN 0.5235 0.5952 9 1.0 M + iBest 1.1329 1.0 Joint 1
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absolute CCP, whereas the value of 0 is given to the one with smallest CCP

value. However, for the reduction capability measure, the normalised value

of 1 conversely reflects the classifier having the smallest cardinality of sur-

viving feature subset, whereas the value of 0 represents the classifier having

the most selected features. The normalized values are then used to match

with the predefined QFN (of Figure 3) to derive the corresponding linguistic

terms which are in turn, applied to construct the corresponding FCNs. In

particular, the real part of such an FCN represents the CCP of the classifier,

while the imaginary part represents the reduction capability of the feature

selectors. Note that the less features survived, the better reduction capabil-

ity a feature selector has. These approaches are then ranked according to

the representative values of the derived FCNs modulus.

The classifiers using the DM-TRS feature selector achieve a better per-

formance on glass, vehicle, sonar and DDSM datasets. This is likely be-

cause DM-TRS significantly reduces the number of original features which

are noisy. The classifier learning methods can therefore benefit from a high

quality feature subset to produce a more accurate classification. In partic-

ular, for the glass dataset, the combination of DM-TRS and FRNN FRS

achieves the Best performance when considering just two criteria: CCP and

reduction capability. For the vehicle dataset, although the combination of CS

and VQNN results in the Best CCP, its reduction capability is relatively the

Worst. Thus, it only ranks in the 6th place. For the MIAS dataset, the com-

bination of FRFS and FNN O outperforms the others, because it achieves a

High CCP when employing a feature selector with Very High reduction capa-

bility. For the DDSM dataset, due to the Medium correct classification rate
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and Best reduction capability, the combination of DM-TRS and FRNN O

together with that of DM-TRS and VQNN rank jointly in the first place.

Clearly, with the use of linguistic terms, the evaluation results are trans-

parent and can be readily understood by the user. Note that there are certain

approaches that have different absolute performance values but receive the

same linguistic ranking using the proposed FCN approach. This reflects the

reality well. Due to the involvement of noisy data, it may be difficult and

even unfair to distinguish the overall performances of those approaches which

receive very similar numerical outcome values.

4.4.2. Evaluation measures: precision and recall

As previously mentioned, precision and recall are not discussed in isola-

tion. In this sub-section, each combined approach is assessed from a different

point of view, using the performance criteria of precision and recall. This

forms a useful basis upon which to compare against the F-measure, which is

defined by:

F = 2× precision× recall
precision+ recall

. (19)

Table 6 - Table 10 show the evaluation results from applying different clas-

sifiers to the glass, vehicle, sonar, MIAS and DDSM datasets, respectively.

Note that, the absolute precisions and recalls, together with their associated

FCNs are also included in this experiment. This helps non-expert users to

gain a better understanding of the overall quality of a given classifier. In

the event where none of the involved classifiers achieves an acceptable result

in terms of absolute FCNs, users can abandon all these classifiers without

taking the risk of picking up a poorly performing classifier for use. However,
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if a classifier must be chosen whilst knowing that the absolute performances

of all available classifiers are poor, the normalised FCNs still help to suggest

a relative ranking.

Considering each given dataset, both the FCN-based measure and the

F-measure obtain the same result for the first and the last three ranked

classifiers. Similar ranking scores of different classifiers are obtained for the

rest of the cases also. The only difference is that certain classifiers have the

same ranking when using the FCN-based approach. A closer examination

into the results reveals that, in addition to the inherent comprehensibility, the

performance assessment outcomes by the FCN-based approach is intuitively

more reliable and consistent.

For example, the “CS + VQNN” and “CFS + VQNN” classifiers on the

MIAS dataset jointly rank the first when employing the FCN-based approach.

However, the use of F-measure concludes that the “CFS + VQNN” classifier

performs better than “CS + VQNN”. Yet, it is clear that “CS + VQNN”

achieves a higher absolute precision, whereas “CFS + VQNN” obtains a

higher absolute recall. When combining these two measures, the resulting

F-measure values of these two classifiers are actually extremely close to each

other (0.7372 and 0.7404 respectively). It appears rather artificial to say one

is better than the other overall just based on such a minute numerical differ-

ence (that may well result from noise in data). It is the relative performance

to other classifiers that may be of more interest to the user. In FCN-based

ranking, the precision of “CS + VQNN” is ranked the Best amongst all clas-

sifers, while its recall achieves a relatively High value. Conversely, the recall

value of “CFS + VQNN” is ranked the Best, while its precision achieves a
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Table 6: Evaluation results of using precision and recall for glass classification
Classifier Average Precision Average Recall F-measure FCN FCN Rep(Modulus) Ranking Ranking(F)

Absolute Normalised Absolute Normalised Absolute Normalised Absolute Normalised

CS + FRNN FRS 0.552 0.5875 0.5264 0.868 0.5389 M + iM M + iH 0.9035 0.6427 Joint 6 6

CS + FNN 0.4616 0.0119 0.4833 0.4987 0.4722 M + iM VL + iM 0.5135 0.3371 9 9

CS + FRNN O 0.6168 1.0 0.5288 0.8886 0.5694 M + iM Best + iVH 1.3594 1.0 Joint 1 2

CS + VQNN 0.4772 0.1119 0.4557 0.2622 0.4662 M + iM VL + iL 0.2697 0.146 Joint 13 13

FRFS + FRNN FRS 0.528 0.4348 0.5027 0.665 0.515 M + iM M + iH 0.9034 0.6427 Joint 6 7

FRFS + FNN 0.526 0.422 0.479 0.4619 0.5014 M + iM M + iM 0.7071 0.4889 8 8

FRFS + FRNN O 0.5636 0.6614 0.5382 0.9692 0.5506 M + iM H + iVH 1.1885 0.866 Joint 3 3

FRFS + VQNN 0.4899 0.1922 0.4339 0.0754 0.4602 M + iM L + iVL 0.2697 0.146 Joint 13 14

CFS + FRNN FRS 0.558 0.6257 0.5384 0.9709 0.548 M + iM H + iVH 1.1885 0.866 Joint 3 4

CFS + FNN 0.4597 0.0 0.4834 0.4996 0.4713 M + iM Worst + iM 0.5 0.3265 10 10

CFS + FRNN O 0.6106 0.9605 0.5418 1.0 0.5741 M + iM VH + iBest 1.3594 1.0 Joint 1 1

CFS + VQNN 0.491 0.1992 0.4446 0.1668 0.4666 M + iM L + iL 0.3536 0.2118 Joint 11 11

DMTRS + FRNN FRS 0.5564 0.6155 0.5308 0.9057 0.5433 M + iM M + iVH 1.0529 0.7598 5 5

DMTRS + FNN 0.491 0.1992 0.4446 0.1668 0.4666 M + iM L + iL 0.3536 0.2118 Joint 11 12

DMTRS + FRNN O 0.491 0.1992 0.4327 0.0651 0.46 M + iM L + iVL 0.2697 0.146 Joint 13 15

DMTRS + VQNN 0.4678 0.0516 0.4251 0.0 0.4454 M + iM VL + iWorst 0.0833 0.0 16 16

Table 7: Evaluation results of using precision and recall for vehicle classification
Classifier Average Precision Average Recall F-measure FCN FCN Rep(Modulus) Ranking Ranking(F)

Absolute Normalised Absolute Normalised Absolute Normalised Absolute Normalised

CS + FRNN FRS 0.6705 0.8379 0.669 0.7459 0.6697 H + iH H + iH 1.0607 0.7522 Joint 5 6

CS + FNN 0.6368 0.5893 0.653 0.628 0.6448 H + iH M + iH 0.9035 0.6408 7 7

CS + FRNN O 0.6835 0.9337 0.6923 0.9171 0.6878 H + iH VH + iVH 1.2964 0.9194 Joint 2 3

CS + VQNN 0.6925 1.0 0.7035 1.0 0.698 H + iH Best + iBest 1.41 1.0 1 1

FRFS + FRNN FRS 0.6143 0.424 0.6088 0.302 0.6115 M + iM M + iL 0.5701 0.4043 Joint 10 10

FRFS + FNN 0.6008 0.3241 0.6208 0.3904 0.6106 M + iM L + iM 0.5701 0.4043 Joint 10 11

FRFS + FRNN O 0.6828 0.9282 0.6873 0.8803 0.685 H + iH VH + iVH 1.2964 0.9194 Joint 2 4

FRFS + VQNN 0.621 0.4733 0.633 0.4807 0.6269 M + iH M + iM 0.7071 0.5015 Joint 8 9

CFS + FRNN FRS 0.6068 0.3683 0.5913 0.1731 0.5989 M + iM L + iL 0.3556 0.2522 Joint 13 14

CFS + FNN 0.5725 0.116 0.5923 0.1805 0.5822 M + iM VL + iL 0.2697 0.1913 15 15

CFS + FRNN O 0.6345 0.5727 0.6403 0.534 0.6374 H + iH M + iM 0.7071 0.5015 Joint 8 8

CFS + VQNN 0.5568 0.0 0.5678 0.0 0.5622 M + iM Worst + iWorst 0.0 0.0 16 16

DMTRS + FRNN FRS 0.6128 0.4125 0.6068 0.2873 0.6097 M + iM M + iL 0.5701 0.4043 Joint 10 12

DMTRS + FNN 0.6898 0.9797 0.6983 0.9613 0.694 H + iH VH + iVH 1.2964 0.9194 Joint 2 2

DMTRS + FRNN O 0.6693 0.8287 0.6748 0.7882 0.672 H + iH H + iH 1.0607 0.7523 Joint 5 5

DMTRS + VQNN 0.6035 0.3444 0.6148 0.3462 0.6091 M + iM L + iL 0.3536 0.2508 Joint 13 13

relatively High value. Therefore, it is difficult to tell the difference between

these two with regard to the precision and recall measures. They should

intuitively be assigned the same ranking. This matches well the resulting

ranking score obtained from the proposed FCN approach.

Considering the classification of the DDSM dataset as another exam-

ple, similar evaluation results are obtained overall, when using the FCN-

based measure and the F-measure. For instance, they both suggest that the
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Table 8: Evaluation results of using precision and recall for sonar classification
Classifier Average Precision Average Recall F-measure FCN FCN Rep(Modulus) Ranking Ranking(F)

Absolute Normalised Absolute Normalised Absolute Normalised Absolute Normalised

CS + FRNN FRS 0.791 0.5054 0.7845 0.5263 0.7877 H + iH M + iM 0.7071 0.5015 Joint 8 8

CS + FNN 0.8255 0.7527 0.8115 0.7158 0.8184 H + iH H + iH 1.0607 0.7523 Joint 4 6

CS + FRNN O 0.8595 0.9964 0.8455 0.9544 0.8524 H + iH VH + iVH 1.2964 0.9194 Joint 2 2

CS + VQNN 0.809 0.6344 0.8045 0.6667 0.8067 H + iH H + iH 1.0607 0.7523 Joint 4 7

FRFS + FRNN FRS 0.86 1.0 0.852 1.0 0.856 H + iH Best + iBest 1.41 1.0 1 1

FRFS + FNN 0.7665 0.3297 0.7525 0.3018 0.7594 H + iH L + iL 0.3536 0.2508 Joint 13 13

FRFS + FRNN O 0.8425 0.8746 0.8255 0.814 0.8339 H + iH H + iH 1.0607 0.7523 Joint 4 4

FRFS + VQNN 0.7895 0.4946 0.7715 0.4351 0.7804 H + iH M + iM 0.7071 0.5015 Joint 8 9

CFS + FRNN FRS 0.778 0.4122 0.778 0.4807 0.778 H + iH M + iM 0.7071 0.5015 Joint 8 10

CFS + FNN 0.8245 0.7455 0.8185 0.7649 0.8215 H + iH H + iH 1.0607 0.7523 Joint 4 5

CFS + FRNN O 0.85 0.9283 0.8425 0.9333 0.8462 H + iH VH + iVH 1.2964 0.9194 Joint 2 3

CFS + VQNN 0.768 0.3405 0.769 0.4175 0.7685 H + iH L + iM 0.5701 0.4043 12 12

DMTRS + FRNN FRS 0.749 0.204 0.739 0.207 0.744 H + iH L + iL 0.3536 0.2508 Joint 13 14

DMTRS + FNN 0.7205 0.0 0.7095 0.0 0.715 H + iH Worst + iWorst 0.0 0.0 16 16

DMTRS + FRNN O 0.736 0.1111 0.724 0.1018 0.73 H + iH VL + iVL 0.1179 0.0836 15 15

DMTRS + VQNN 0.791 0.5054 0.765 0.3895 0.7778 H + iH M + iM 0.7071 0.5015 Joint 8 11

Table 9: Evaluation results of using precision and recall for MIAS classification
Classifier Average Precision Average Recall F-measure FCN FCN Rep(Modulus) Ranking Ranking(F)

Absolute Normalised Absolute Normalised Absolute Normalised Absolute Normalised

CS + FRNN FRS 0.654 0.4839 0.672 0.7922 0.6628 H + iH M + iH 0.9035 0.7167 5 5

CS + FNN 0.539 0.072 0.514 0.1082 0.5262 M + iM VL + iVL 0.1179 0.0935 15 15

CS + FRNN O 0.682 0.5842 0.63 0.6104 0.655 H + iH M + iM 0.7071 0.5609 Joint 7 7

CS + VQNN 0.798 1.0 0.685 0.8485 0.7372 H + iH Best + iH 1.2607 1.0 Joint 1 2

FRFS + FRNN FRS 0.64 0.434 0.606 0.5065 0.6225 H + iM M + iM 0.7071 0.5609 Joint 7 11

FRFS + FNN 0.519 0.0 0.489 0.0 0.5036 M + iM Worst + iWorst 0.0 0.0 16 16

FRFS + FRNN O 0.618 0.3548 0.637 0.6407 0.6274 M + iH L + iH 0.8029 0.6369 6 9

FRFS + VQNN 0.688 0.6057 0.632 0.619 0.6588 H + iH M + iM 0.7071 0.5609 Joint 7 6

CFS + FRNN FRS 0.728 0.7491 0.699 0.9091 0.7132 H + iH H + iVH 1.1885 0.9427 3 3

CFS + FNN 0.627 0.3871 0.56 0.3074 0.5916 M + iM M + iL 0.5701 0.4522 Joint 12 13

CFS + FRNN O 0.73 0.7563 0.654 0.7143 0.6899 H + iH H + iH 1.0607 0.8414 4 4

CFS + VQNN 0.762 0.8710 0.72 1.0 0.7404 H + iH H + iBest 1.2607 1.0 Joint 1 1

DMTRS + FRNN FRS 0.5573 0.1371 0.555 0.2857 0.5561 M + iM L + iL 0.3536 0.2805 14 14

DMTRS + FNN 0.647 0.4588 0.6225 0.5779 0.6345 H + iM M + iM 0.7071 0.5609 Joint 7 8

DMTRS + FRNN O 0.6528 0.4794 0.6023 0.4903 0.6265 H + iM M + iM 0.7071 0.5609 Joint 7 10

DMTRS + VQNN 0.6545 0.4857 0.57 0.3506 0.6093 H + iM M + iL 0.5701 0.4522 Joint 12 12
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Table 10: Evaluation results of using precision and recall for MIAS classification
Classifier Average Precision Average Recall F-measure FCN FCN Rep(Modulus) Ranking Ranking(F)

Absolute Normalised Absolute Normalised Absolute Normalised Absolute Normalised

CS + FRNN FRS 0.4608 0.3493 0.4555 0.6888 0.4581 M+ iM L + iH 0.8029 0.5407 Joint 5 8

CS + FNN 0.431 0.1863 0.3876 0.0686 0.4082 M+ iM L + iVL 0.2697 0.1401 14 15

CS + FRNN O 0.5015 0.5726 0.4353 0.5034 0.466 M+ iM M + iM 0.7071 0.4687 Joint 7 5

CS + VQNN 0.5473 0.8233 0.4675 0.7986 0.5042 M+ iM H + iH 1.0607 0.7344 Joint 2 2

FRFS + FRNN FRS 0.4865 0.4904 0.4778 0.8924 0.4821 M+ iM M + iVH 1.0529 0.7286 4 4

FRFS + FNN 0.4728 0.4151 0.402 0.1991 0.4345 M+ iM M + iL 0.5701 0.3658 Joint 10 12

FRFS + FRNN O 0.4358 0.2123 0.4133 0.3021 0.4242 M+ iM L + iL 0.3536 0.2031 13 13

FRFS + VQNN 0.5795 1.0 0.4895 1.0 0.5307 M+ iM Best + iBest 1.4142 1.0 1 1

CFS + FRNN FRS 0.4615 0.3534 0.4683 0.8055 0.4649 M+ iM L + iH 0.8029 0.5407 Joint 5 6

CFS + FNN 0.4828 0.4699 0.3955 0.1396 0.4348 M+ iM M + iL 0.5701 0.3658 Joint 10 11

CFS + FRNN O 0.4785 0.4466 0.443 0.5744 0.4601 M+ iM M + iM 0.7071 0.4687 Joint 7 7

CFS + VQNN 0.54 0.7836 0.4713 0.833 0.5033 M+ iM H + iH 1.0607 0.7344 Joint 2 3

DMTRS + FRNN FRS 0.387 0.0 0.3875 0.0664 0.3922 M+ iM Worst + iVL 0.0833 0.0 16 16

DMTRS + FNN 0.443 0.2521 0.3803 0.0 0.4092 M+ iM L + iWorst 0.25 0.1253 15 14

DMTRS + FRNN O 0.481 0.4603 0.422 0.3822 0.4496 M+ iM M + iM 0.7071 0.4687 Joint 7 10

DMTRS + VQNN 0.5043 0.5877 0.4183 0.3478 0.4572 M+ iM M + iL 0.5701 0.3658 Joint 10 9

“FRFS + VQNN” classifier is the best in dealing with this dataset (with

respect to combined precision and recall criteria), whereas the “DMTRS +

FRNN FRS” performs the worst. However, the use of F-measure ranks “CS

+ VQNN” and “CFS + VQNN” differently, preferring the former to the

latter, just because they receive F-measure values of 0.5042 and 0.5033, re-

spectively. Again, it has a natural appeal to assign the same ranking score to

these two classifiers, rather than to distinguish them due to such a tiny nu-

merical difference. Hence, the results obtained by the FCN approach seems

to be more reasonable.

4.4.3. Overall evaluation

The aforementioned four performance measures, namely CCP, reduction

capability, precision and recall, are jointly taken into account in this sub-

section. For each measure, the relative performance of each classifier is repre-

sented by linguistic terms. In order to obtain the ranking score of the overall

performance, these linguistic terms are aggregated by applying Eq. (13). The

overall ranking of different classifiers are shown in Table 11 - Table 15, with
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Table 11: Overall evaluation for glass classification

Classifier Precision Recall CCP No. of features Rep(Modulus) Ranking

Absolute Normalised

CS + FRNN FRS M H H M 1.1792 0.6122 6

CS + FNN VL M M M 0.887 0.3743 11

CS + FRNN O Best VH H M 1.514 0.8849 2

CS + VQNN VL L VL M 0.6585 0.1883 14

FRFS + FRNN FRS M H M Worst 0.9761 0.4469 10

FRFS + FNN M H M Worst 0.87 0.3605 12

FRFS + FRNN O H VH H Worst 1.2616 0.6793 5

FRFS + VQNN L VL VL Worst 0.4273 0.0 16

CFS + FRNN FRS H VH H L 1.304 0.7139 4

CFS + FNN Worst M M L 0.7873 0.2931 13

CFS + FRNN O VH Best M L 1.4019 0.7936 3

CFS + VQNN L L VL L 0.6058 0.1453 15

DMTRS + FRNN FRS M VH Best Best 1.6554 1.0 1

DMTRS + FNN L L Worst Best 1.0692 0.5227 9

DMTRS + FRNN O L VL L Best 1.0845 0.5351 8

DMTRS + VQNN VL Worst M Best 1.0954 0.544 7

respect to the given five datasets.

It is interesting to note that this experimentation proposes five different

Best classifiers for the five datasets. This implies that different classifiers

may only be suitable for a certain type of problem. For example, in the

MIAS dataset, the “CS + VQNN” classifier reaches the Best classification

precision, and High classification recall, CCP and reduction capability. Al-

though the DM-TRS feature selector achieves the Best reduction capability,

its combination with any other learning method only obtainsMedium or Low

classification precision, recall and CCP. Also, the “CFS” feature selector per-

forms Worst in feature reduction. As a result, “CS + VQNN” is rated as

the best amongst these classifier overall. For the DDSM dataset, owing to

the individually Best performance in precision, recall and CCP measures, it
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Table 12: Overall evaluation for vehicle classification

Classifier Precision Recall CCP No. of features Rep(Modulus) Ranking

Absolute Normalised

CS + FRNN FRS H H H Worst 1.1579 0.4551 7

CS + FNN M H M Worst 0.9761 0.2809 11

CS + FRNN O VH VH VH Worst 1.446 0.7311 5

CS + VQNN Best Best Best Worst 1.6385 0.9156 2

FRFS + FRNN FRS M L L H 0.961 0.2665 Joint 12

FRFS + FNN L M L H 0.961 0.2665 Joint 12

FRFS + FRNN O VH VH H H 1.5095 0.792 3

FRFS + VQNN M M M H 1.0936 0.3935 Joint 9

CFS + FRNN FRS L L L H 0.887 0.1956 14

CFS + FNN VL L L H 0.8429 0.1533 15

CFS + FRNN O M M M H 1.0936 0.3935 Joint 9

CFS + VQNN Worst Worst Worst H 0.6829 0.0 16

DMTRS + FRNN FRS M L L Best 1.1786 0.4749 6

DMTRS + FNN VH VH VH Best 1.7266 1.0 1

DMTRS + FRNN O H H H Best 1.4951 0.7782 4

DMTRS + VQNN L L L Best 1.1198 0.4186 8

Table 13: Overall evaluation for sonar classification

Classifier Precision Recall CCP No. of features Rep(Modulus) Ranking

Absolute Normalised

CS + FRNN FRS M M M L 0.9291 0.1722 13

CS + FNN H H H L 1.2038 0.4622 Joint 6

CS + FRNN O VH VH VH L 1.4836 0.7575 2

CS + VQNN H H H L 1.2038 0.4622 Joint 6

FRFS + FRNN FRS Best Best Best M 1.7134 1.0 1

FRFS + FNN L L L M 0.7659 0.0 16

FRFS + FRNN O H H H M 1.2587 0.5201 5

FRFS + VQNN M M M M 1.0 0.2471 11

CFS + FRNN FRS M M M Worst 0.87 0.1099 14

CFS + FNN H H H Worst 1.1579 0.4137 8

CFS + FRNN O VH VH VH Worst 1.446 0.7178 3

CFS + VQNN L M M Worst 0.7873 0.0226 15

DMTRS + FRNN FRS L L L Best 1.1198 0.3735 9

DMTRS + FNN Worst Worst Worst Best 0.958 0.2027 12

DMTRS + FRNN O VL VL VL Best 1.0096 0.2572 10

DMTRS + VQNN M M M Best 1.2881 0.5511 4
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Table 14: Overall evaluation for MIAS classification

Classifier Precision Recall CCP No. of features Rep(Modulus) Ranking

Absolute Normalised

CS + FRNN FRS M H H H 1.3936 0.7091 5

CS + FNN VL VL L H 0.8211 0.069 15

CS + FRNN O M M H H 1.2777 0.5796 9

CS + VQNN Best H H H 1.6541 1.0 1

FRFS + FRNN FRS M M M VH 1.2761 0.5779 Joint 10

FRFS + FNN Worst Worst Worst VH 0.9167 0.1765 14

FRFS + FRNN O L H H VH 1.4375 0.7581 4

FRFS + VQNN M M M VH 1.2761 0.5778 Joint 10

CFS + FRNN FRS H VH VH Worst 1.5018 0.8299 3

CFS + FNN M L M Worst 0.7587 0.0 16

CFS + FRNN O H H H Worst 1.299 0.6034 8

CFS + VQNN H Best Best Worst 1.6109 0.9518 2

DMTRS + FRNN FRS L L L Best 1.1375 0.4231 13

DMTRS + FNN M M M Best 1.3507 0.6612 Joint 6

DMTRS + FRNN O M M M Best 1.3507 0.6612 Joint 6

DMTRS + VQNN M L L Best 1.2132 0.5076 12

Table 15: Overall evaluation for DDSM classification

Classifier Precision Recall CCP No. of features Rep(Modulus) Ranking

Absolute Normalised

CS + FRNN FRS L H L M 0.9878 0.2808 10

CS + FNN L VL M M 0.7675 0.076 13

CS + FRNN O M M M M 1.0 0.2921 9

CS + VQNN H H H M 1.3936 0.658 2

FRFS + FRNN FRS M VH M L 1.2068 0.4843 6

FRFS + FNN M L L L 0.6857 0.0 Joint 15

FRFS + FRNN O L L M L 0.6857 0.0 Joint 15

FRFS + VQNN Best Best Best L 1.7616 1.0 1

CFS + FRNN FRS L H L Worst 0.8513 0.1539 12

CFS + FNN M L M Worst 0.7587 0.0679 14

CFS + FRNN O M M M Worst 0.866 0.1676 11

CFS + VQNN H H H Worst 1.299 0.57 4

DMTRS + FRNN FRS Worst VL Worst Best 1.0103 0.3017 8

DMTRS + FNN L Worst L Best 1.0951 0.3805 7

DMTRS + FRNN O M M M Best 1.3507 0.6181 3

DMTRS + VQNN M L M Best 1.2839 0.556 5
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is not surprising that “FRFS + VQNN” reaches the first place in terms of

overall performance.

Another point to note is that the DM-TRS feature selector produces the

greatest data reduction on all of the experimental datasets. However, the

impact of feature selection may have different effects upon different classifiers.

Combining DM-TRS with each of the five classifiers does not necessarily lead

to the best overall performance all the time. It only works extremely well

in conjunction with FRNN FRS and FNN classifiers on the glass and vehicle

dataset, respectively. Thus, one of the most important conclusions that can

be drawn from these results is that it is difficult to choose a clear “winner”.

There is no such a thing as the best combination of feature selector and

classifier with regard to different performance criteria and different datasets.

This gives rise to the need for more careful selection of what feature selectors

to combine with what classifiers in general when facing a new problem. The

work developed herein offers such a helpful means to linguistically evaluate

such combinations.

5. Conclusion

This paper has proposed a novel notion of fuzzy complex numbers (FCNs)

and introduced the calculus for the proposed FCNs. This is achieved by sub-

stantially extending the seminal ideas proposed in [21]. In particular, the

algebraic properties of the FCNs, including closure, associativity, commuta-

tivity and distributivity are discussed and added on to this work. Further,

the closure, associativity and commutativity properties are utilised to form

the basis upon which to establish a new hierarchical approach of aggregating
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different components of an FCN. An arbitrary number of FCN components

can now be aggregated in a random order.

This notion of FCNs is capable of representing and aggregating a variety

of inexact knowledge and data in a unified manner. This ability is demon-

strated by exploiting the framework to support the performance evaluation

of classifiers. The effectiveness of the approach is compared to the tradi-

tional F-measure-based approach. Experimental results demonstrates that

the FCN-based performance evaluation is intuitively reliable and consistent.

Importantly, unlike semantics-destroying approaches (e.g. the F-measure)

for classifier performance assessment, the proposed work maintains the un-

derlying semantics of different evaluation measures. This ensures that the

resulting ranking and hence selection process of choosing (what combination

of feature selector and) pattern classifier is interpretable and explainable to

the user. This is essential in assisting the user to make informed decisions

when given a challenging classification task.

Although the proposed approach is promising, much may be done through

further research. One such work is to extend the FCN aggregation process

by considering the relative significance of the real and imaginary parts of

the FCNs when deriving the modulus (e.g. by introducing weights to these

parts). This may lead to the development of a new OWA operator [54, 55].

Also, a more general mechanism can be built to automatically generate the

corresponding fuzzy quantity spaces (including the fuzzy partitions) from

the training data. This would help to avoid the need for prefixing just one

common quantity space which the real and imaginary parts of FCNs may

take values from. Finally, as the proposed notion of FCNs is mathematically
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generic, it would be very interesting to investigate how it might be applied

to other application domains, such as fuzzy compositional modelling [56, 57]

and student academic performance evaluation [22].
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Appendix

Algebraic properties of FCNs

Given the aforementioned arithmetic operators of FCNs, the algebraic

properties of the proposed FCNs can be established. This appendix addresses

these properties.

Definition 6. An n − ary function/operation f from Rn to R is said in-

creasing if and only if

(x1 > y1) ∧ (x2 > y2) ∧ · · · ∧ (xn > yn)→
f(x1, x2, . . . , xn) > f(y1, y2, . . . , yn).

(.1)

An n−ary function/operation f from Rn to R is said decreasing if and only

if

(x1 > y1) ∧ (x2 > y2) ∧ · · · ∧ (xn > yn)→
f(x1, x2, . . . , xn) < f(y1, y2, . . . , yn).

(.2)
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Theorem 1. ([58]) Let ã1, ã2, . . . , ãn be continuous fuzzy numbers with mem-

bership functions mapping from R to [0, 1]. Let f be a continuous and mono-

tonic function (increasing or decreasing), then f(ã1, ã2, . . . , ãn) is a continu-

ous fuzzy number.

Theorem 2. If z̃1 = ã + ib̃ and z̃2 = c̃ + id̃ are FCNs, then so are z̃1 + z̃2,

z̃1 − z̃2, z̃1z̃2.

Proof: (a) According to Eq. (3), Re(z̃1 + z̃2) = f(ã, c̃) = ã + c̃ and

Im(z̃1 + z̃2) = f(b̃, d̃) = b̃ + d̃. Because the addition function is always

increasing, Theorem 1 can always be applied to it. Hence, the addition of

fuzzy numbers gives a fuzzy number and both the real and imagery parts of

z̃1 + z̃2 are fuzzy numbers. Therefore, z̃1 + z̃2 is an FCN.

(b) It has been proven in [58] that the subtraction between fuzzy numbers

also gives a fuzzy number. According to Eq. (6), z̃1 − z̃2 is an FCN.
(c) It has been proven in [58] that the multiplication of fuzzy numbers

gives a fuzzy number. In addition, a fuzzy number adding or subtracting

another always yields a new fuzzy number. In Eq. (7), Re(z̃1z̃2) and Im(z̃1z̃2)

are both fuzzy numbers. Hence, z̃1z̃2 is an FCN. �

Theorem 3. If z̃ = ã+ ib̃ is an FCN, then |z̃| is a fuzzy number.

Proof: In Eq. (12), let f(ã, b̃) =
√
ã2 + b̃2: when ã > 0 and b̃ > 0, f

is increasing and continuous, when ã < 0 and b̃ < 0, f is decreasing and

continuous, then Theorem 1 can be directly applied to both cases. When

ã > 0 and b̃ < 0, f can be rewritten as f(ã, b̃) =
√
ã2 + (−b̃)(−b̃), Theorem 1

also applies in this case. Similarly, when ã < 0 and b̃ > 0, the same conclusion

can be derived. Therefore, |z̃| is a newly derived fuzzy number. �
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To investigate the basic arithmetic properties of the proposed FCNs, let

z̃1 = ã+ ib̃, z̃2 = c̃+ id̃ and z̃3 = ẽ+ if̃ be three FCNs, where ã, b̃, c̃, d̃, ẽ and

f̃ are fuzzy numbers with membership functions μã(x), μb̃(x), μc̃(x), μd̃(x),

μẽ(x) and μf̃(x), respectively. From this, the following properties hold:

• Associativity

Theorem 4. Associativity, z̃1 ∗ (z̃2 ∗ z̃3) = (z̃1 ∗ z̃2) ∗ z̃3, holds if ∗ = +.

Proof: For ∗ = +, since

z̃1 + (z̃2 + z̃3) = (ã+ ib̃) + ((c̃+ ẽ) + i(d̃+ f̃)) = (ã+ c̃+ ẽ) + i(b̃+ d̃+ f̃),

(z̃1 + z̃2) + z̃3 = ((ã+ c̃) + i(b̃+ d̃)) + (ẽ+ if̃) = (ã+ c̃+ ẽ) + i(b̃+ d̃+ f̃).

Hence, Re(z̃1+(z̃2+ z̃3)) = Re((z̃1+ z̃2)+ z̃3) and Im(z̃1+(z̃2+ z̃3)) =

Im((z̃1 + z̃2) + z̃3). Thus, if ∗ = +, FCNs is associative. �

However, for ∗ = ×,

z̃1 × (z̃2 × z̃3) = (ã+ ib̃)× ((c̃ẽ− d̃f̃) + i(d̃ẽ+ c̃f̃))
= (ã(c̃ẽ− d̃f̃)− b̃(d̃ẽ+ c̃f̃)) + i(b̃(c̃ẽ− d̃f̃) + ã(d̃ẽ+ c̃f̃)),

(z̃1 × z̃2)× z̃3 = ((ãc̃− b̃d̃) + i(b̃c̃+ ãd̃))× (ẽ+ if̃)

= ((ãc̃− b̃d̃)ẽ− (b̃c̃+ ãd̃)f̃) + i((b̃c̃ + ãd̃)ẽ+ (ãc̃− b̃d̃)f̃).

Unfortunately, the distributivity of× over + for fuzzy numbers does not

always hold (see later): Take b̃(d̃ẽ+ c̃f̃) for example, the distributivity

is only valid if b̃ is either a positive or negative fuzzy number, and if d̃ẽ

and c̃f̃ are both either a positive or negative fuzzy number [58].
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• Commutativity

Theorem 5. Commutativity, z̃1 ∗ z̃2 = z̃2 ∗ z̃1, holds for ∗ ∈ {+,×}.

Proof: For ∗ = +, given

z̃1 + z̃2 = (ã + c̃) + i(b̃+ d̃),

z̃2 + z̃1 = (c̃ + ã) + i(d̃+ b̃).

Since addition on fuzzy numbers is commutative, i.e. ã+ c̃ = c̃+ ã and

b̃+ d̃ = d̃+ b̃, Re(z̃1+ z̃2) = Re(z̃2+ z̃1) and Im(z̃1+ z̃2) = Im(z̃2+ z̃1).

Thus, for ∗ = +, FCNs is commutative.

For ∗ = ×, given

z̃1 × z̃2 = (ãc̃− b̃d̃) + i(b̃c̃+ ãd̃),
z̃2 × z̃1 = (c̃ã− d̃b̃) + i(c̃b̃+ d̃ã).

Since multiplication on fuzzy numbers is commutative, i.e. ãc̃ = c̃ã,

b̃d̃ = d̃b̃, b̃c̃ = c̃b̃ and ãd̃ = d̃ã. Thus, Re(z̃1 × z̃2) = Re(z̃2 × z̃1) and
Im(z̃1 × z̃2) = Im(z̃2 × z̃1). Therefore, ∗ = × is commutative. �

• Distributivity

Theorem 6. Given ã > 0 or ã < 0 and b̃ > 0 or b̃ < 0, when c̃

and ẽ have the same sign (they are both either a positive or negative

fuzzy number), also d̃ and f̃ have the same sign, then z̃1 × (z̃2 + z̃3) =

z̃1 × z̃2 + z̃1 × z̃3.
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Proof:

z̃1 × (z̃2 + z̃3) = (ã+ ib̃)× ((c̃+ ẽ) + i(d̃+ f̃))

= (ã(c̃+ ẽ)− b̃(d̃+ f̃)) + i(b̃(c̃+ ẽ) + ã(d̃+ f̃)),
z̃1 × z̃2 + z̃1 × z̃3 = ((ãc̃− b̃d̃) + i(b̃c̃+ ãd̃)) + ((ãẽ− b̃f̃) + i(b̃ẽ+ ãf̃))

= (ãc̃− b̃d̃+ ãẽ− b̃f̃) + i(b̃c̃+ b̃ẽ+ ãd̃+ ãf̃).

Given ã > 0 or ã < 0 and b̃ > 0 or b̃ < 0, when c̃ and ẽ have the same

sign, also d̃ and f̃ have the same sign, the distributivity of × over +

for fuzzy numbers can be applied:

z̃1 × (z̃2 + z̃3) = (ãc̃+ ãẽ− (b̃d̃+ b̃f̃)) + i(b̃c̃+ b̃ẽ+ ãd̃+ ãf̃).

Note that owning to −b̃(d̃ + f̃) = −b̃d̃ − b̃f̃ , it can be derived that
Re(z̃1 × (z̃2 + z̃3)) = Re(z̃1 × z̃2 + z̃1 × z̃3) and Im(z̃1 × (z̃2 + z̃3)) =

Im(z̃1 × z̃2 + z̃1 × z̃3). Hence, z̃1 × (z̃2 + z̃3) = z̃1 × z̃2 + z̃1 × z̃3. �
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[49] N. Mac Parthaláin, R. Jensen, Q. Shen, R. Zwiggelaar, Fuzzy-rough

approaches for mammographic risk analysis, Intelligent Data Analysis

14 (2) (2010) 225–244.

[50] M. Sarkar, Fuzzy-rough nearest neighbor algorithms in classification,

Fuzzy Sets Syst. 158 (19) (2007) 2134–2152.

[51] R. Jensen, C. Cornelis, A new approach to fuzzy-rough nearest neigh-

bour classification, in: Proceedings of the 6th International Conference

on Rough Sets and Current Trends in Computing, 2008, pp. 310–319.

50



[52] C. Cornelis, M. D. Cock, A. M. Radzikowska, Vaguely quantified rough

sets, Lecture Notes in Computer Science 4482 (2007) 87–94.

[53] J. Pearl, Heuristics: intelligent search strategies for computer problem

solving, Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA, 1984.

[54] T. Boongoen, Q. Shen, Nearest-neighbor guided evaluation of data re-

liability and its applications, IEEE Transactions on Systems, Man and

Cybernetics, Part B.

[55] R. R. Yager, D. P. Filev, Induced ordered weighted averaging operators,

IEEE Transaction on Systems, Man and Cybernetics 29 (1999) 141–150.

[56] X. Fu, T. Boongoen, Q. Shen, Evidence directed generation of plausible

crime scenarios with identity resolution, Applied Artificial Intelligence

24 (4) (2010) 253–276.

[57] X. Fu, Q. Shen, Fuzzy compositional modelling, IEEE Transactions on

Fuzzy Systems 18 (4) (2010) 823–840.

[58] D. Dubois, H. Prade, Fuzzy real algebra: Some results, Fuzzy Sets Syst.

2 (1979) 327–348.

51


