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A Distance Measure Approach to Exploring
the Rough Set Boundary Region
for Attribute Reduction

Neil Mac Parthalain, Qiang Shen, and Richard Jensen

Abstract—Feature Selection (FS) or Attribute Reduction techniques are employed for dimensionality reduction and aim to select a
subset of the original features of a data set which are rich in the most useful information. The benefits of employing FS techniques
include improved data visualization and transparency, a reduction in training and utilization times and potentially, improved prediction
performance. Many approaches based on rough set theory up to now, have employed the dependency function, which is based on
lower approximations as an evaluation step in the FS process. However, by examining only that information which is considered to be
certain and ignoring the boundary region, or region of uncertainty, much useful information is lost. This paper examines a rough set FS
technique which uses the information gathered from both the lower approximation dependency value and a distance metric which
considers the number of objects in the boundary region and the distance of those objects from the lower approximation. The use of this
measure in rough set feature selection can result in smaller subset sizes than those obtained using the dependency function alone.
This demonstrates that there is much valuable information to be extracted from the boundary region. Experimental results are
presented for both crisp and real-valued data and compared with two other FS techniques in terms of subset size, runtimes, and

classification accuracy.

Index Terms—Rough sets, fuzzy sets, attribute reduction, boundary region, classification.

1 INTRODUCTION

IT is often desirable to present a large number of features for
a domain such that every possible aspect of that domain is
represented. However, this can often result in many
redundant or irrelevant features that may lead to poor results
when using data mining tools for knowledge discovery.
Feature selection is a process which chooses a subset of the
original features present in a given data set which provides
the most useful information. Following selection, the most
important information of the data set should still remain. In
fact, efficient FS techniques should be able to detect and
ignore noisy and misleading features. As a result, the data set
quality may even increase through feature selection.
Classification accuracy may be increased as a result of
feature selection through the removal of noisy, irrelevant, or
redundant features. Also in domains where features
correspond to measurements (the water treatment plant in
[28] demonstrates this well), fewer features offer advan-
tages such as minimizing the expense and time consumed
in recording such measurements. For data sets which are
smaller in size, the runtimes of learning algorithms can be
improved significantly. This is equally applicable to both
training and application (e.g., classification) phases. Where
there are fewer dimensions, identification of trends and
correlations within the data becomes easier [32]. This is
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evident where a small number of features have an influence
on data outcomes.

Methods which extract knowledge from data (e.g., rule
induction) may also benefit from the use of FS and show
improvement in the readability of the discovered knowl-
edge. When induction algorithms are applied to reduced
data, the resulting rules are more compact. A good feature
selection algorithm will remove unnecessary attributes
which may affect both rule comprehension and rule
prediction performance.

The work on rough set theory (RST) [24] offers a formal
methodology that can be employed to reduce the dimen-
sionality of data sets, as a preprocessing step to assist any
chosen modeling method for learning from data. It assists in
identifying and selecting the most information-rich features
in a data set. This is achieved without transforming the data,
while simultaneously attempting to minimize information
loss during the selection process. In terms of computational
effort, this approach is highly efficient, and is based on
simple set operations, which makes it suitable as a pre-
processor for techniques that are much more complex. In
contrast to statistical correlation-reduction approaches [7],
RST requires no human input or domain knowledge other
than the given data sets. Perhaps most importantly though, it
retains the underlying semantics of the data, which results in
data models that are more transparent to human scrutiny.

Most existing rough-set-based FS approaches [8], [9],
[13], [14], [18], [20], [33], [37] rely on the information
gathered from the lower approximation of a set to minimize
data. These approaches have been adopted as the certainty
that is embodied in the lower approximation is associated
with greater importance in scientific analysis. Although
successful, these lower approximation-based approaches

Published by the IEEE Computer Society
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ignore the information that is contained in the boundary
region, or region of uncertainty. While there are also some
existing RST approaches which consider the boundary
region information [4], [11], they adopt an approach which
examines the upper approximation as a whole rather than
examining the lower approximation and boundary region
as conceptually separate entities. This paper presents a
method which based on the initial work in [16], examines
both the information in the lower approximation and the
information contained in the boundary region for the
selection of feature subsets. This can result in the selection
of subsets which are smaller than those selected using the
information gathered from the lower approximation alone.

The remainder of this paper is structured as follows:
Section 2 summarizes the theoretical background and ideas
of RSAR—as this forms the basis for the new approach—
along with a look at the rough set QUICKREDUCT algorithm.
Section 3 demonstrates the main contribution of the new
approach with a description of the distance-metric-assisted
approach to RSAR (DMRSAR). The corresponding algo-
rithm is also presented, as well as an examination of the
computational complexity of the approach. Section 4
documents the results of applying the RSAR, fuzzy-rough
feature selection FRFS [12], Principal Component Analysis
(PCA) [7], tolerance rough set feature selection [29], and
DMRSAR approaches to a number of both crisp and real-
valued data sets. These results compare the new approach
with the other previously mentioned methods in terms of
classification accuracies (using three different classifiers),
and dimensionality reduction. Section 5 concludes the paper
along with some suggestions for further development, and a
discussion of future work.

2 BACKGROUND

2.1 Rough Set Attribute Reduction

The principal focus of this paper lies in distance-metric-
assisted rough set attribute reduction (DMRSAR); however,
an in-depth view of the current RSAR methodology is
necessary to appreciate the DMRSAR approach fully.

At the heart of the RSAR approach is the concept of
indiscernibility [24]. Let I = (U,S) be an information
system, where U is a nonempty set of finite objects (the
universe of discourse) and § is a nonempty finite set of
attributes so that a : U — V, for every a € §. V, is the set of
values that a can take. For any P C §, there exists an
associated equivalence relation /N D(P):

IND(P) = {(x,y) € U*|Va € P,a(z) = a(y)}. (1)
The partition generated by IND(P) is denoted
W/IND(P) and is calculated as follows:
U/IND(P) = @{U/IND({a}) : a € P}, (2)
where,
ST ={XNY :VXeSVWWeT,XnY £0}. (3)

If (z,y) € IND(P), then z and y are indiscernible by
attributes from P. The equivalence classes of the P-indis-
cernibility relation are denoted [z],. Let X C U. X can be
approximated using only the information contained in P by
constructing the P-lower and P-upper approximations of X:

QuIicKREDUCT(C,D).
C, the set of all conditional features;
D, the set of decision features.

() R<{}

2) do

3) T+—R

“4) Vz e (C—R)

(5) if Yru{2} (D) > 7 (D)
(6) T— RU{z}

7  Re—T

(8) until y5(D) == yc(D)
(9) return R

Fig. 1. The QUICKREDUCT algorithm.

PX = {e|la], € X}, 4)

PX = {alfa], N X # 0}. (5)

Let P and @ be equivalence relations over U, then the
concepts of the positive, negative, and boundary regions
can be defined:

POSp(Q) = PX, (6)
XeU/Q
XeU/Q
BNDp(Q) = PX - PX. (8)
XeU/qQ XeU/Q

By employing this definition of the positive region it is
possible to calculate the rough set degree of dependency of
a set of attributes Q on a set of attributes P. This can be
achieved as follows: For P,Q C S, it can be said that @Q
depends on P in a degree k (0 < k < 1), thus the higher the
value of k the more dependent () is upon P. This is denoted
(P =k Q) if:

[POSP(Q)

The reduction of attributes can be achieved through the
comparison of equivalence relations generated by sets of
attributes. Attributes are removed such that the reduced set
provides identical predictive capability of the decision
feature or features as that of the original or unreduced set
of features, assuming of course that the data set is
consistent. A reduct of set Nl is a minimal set of attributes
B C A such that INDy(B) = INDy(A). In other words, a
reduct is a minimal set of attributes from A that preserves
the partitioning of the universe and hence the ability to
perform classifications as the whole attribute set A does.

The QUICKREDUCT algorithm shown in Fig. 1 searches
for a minimal subset without exhaustively generating all
possible subsets. The search begins with an empty subset;
attributes which result in the greatest increase in the rough-
set dependency value are added iteratively. This process
continues until the search produces its maximum possible
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dependency value for that data set (v.(ID)). Note that this
type of search does not guarantee a minimal subset and
may only discover a local minimum.

2.2 Rough Set Extensions

There are a number of extensions to the rough set model.
However, two approaches of note are variable precision
rough sets (VPRS) [38] and the tolerance rough set model
(TRSM) [29]. These particular extensions are considered
important because they extend the rough set model and
utilize the data of the boundary region—albeit indirectly.

2.2.1 Variable Precision Rough Sets

VPRS [38] attempts to introduce an element of “fuzziness” to
the rough set model and hence (although indirectly) utilize
the boundary region information. The principal idea behind
VPRS is to allow objects to be classified with an error
smaller than a certain (manually) predefined level. How-
ever, the introduction of this threshold is contrary to the
rough set ideology of operating only on the information
contained within the data itself.

Let X,Y C U, the relative classification error is then
defined by

X NY]|
RO

cX,)Y)=1- (10)
It is important to note that ¢(X,Y) =0, if and only if
XCy.
The degree of inclusion is obtained by allowing a
predefined level of error, 3, in classification such that

XCyY <= c(X,Y)<B, 0<B<05. (11)

By employing Cs in place of C, the p-lower and
p-upper approximations of set X can now be redefined as

PXy=|J{lalp € U/P | [e]p S5 X3, (12)

PXy=|Jlzlp € U/P | e(la]p. X) < 1= B} (13)

Note also that Py X = PX for § =0, therefore, degen-
erating to the traditional rough sets case.

This also allows the positive, negative, and boundary
regions to be extended thus:

POSps(X) = PgX, (14)
NEGP@(X) :U7]_D@X, (15)
BNDps(X) = P3X — P X. (16)

It can now be seen that VPRS can be applied in the same
way as the traditional rough sets approach described
previously.

2.2.2 Tolerance Rough Set Model

A similar approach in some respects to VPRS is the
TRSM [29] and like VPRS it can be useful for application
to real-valued data. TRSM employs a similarity relation to
minimize data as opposed to the indiscernibility relation
used in classical rough sets. This allows a relaxation in

the way equivalence classes are considered, and the
resulting tolerance classes can be generated according to
the tolerance threshold which has been specified. Again,

like VPRS this threshold is human defined.
In this approach, suitable similarity relations must be

defined for each feature, although the same definition can
be used for all features if applicable. A standard measure
for this purpose, given in [29], is

la(@) = aly)|

|amux - anz’m‘

SIM,(z,y) =1 - ; (17)
where a is a considered feature, and a,,,, and a,,;, denote
the maximum and minimum values of a, respectively.
When considering the case where there is more than one
feature, the defined similarities must be combined to
provide an overall measure of similarity of objects. For a
subset of features, P, this can be achieved in many ways;
some common approaches are

(z,y) € SIMp, < H SIM,(x,y) > T, (18)
aceP
IM,(z,
(2,y) € SIMp, s 2eceSIM@Y) o )

1P|

where 7 is a global similarity threshold and determines the
required level of similarity for inclusion within tolerance
classes. This framework allows for the specific case of
traditional rough sets by defining a suitable similarity
measure (e.g., equality of feature values and (15)) and
threshold (7 = 1). Further similarity relations are summar-
ized in [21], but are not included here. From this, the so-
called tolerance classes that are generated by a given
similarity relation for an object x are defined as

SIMp,(z) = {y € Ul|(x,y) € SIMp,}. (20)

Lower and upper approximations can now be defined in
a similar way to that of traditional rough set theory:

P X = {z|SIMp.(z) C X}, (21)

P, X ={a|SIMp ()N X #0}. (22)

The tuple (P, X, P, X) is known as a tolerance rough set
[29]. Using this, the positive region and dependency
functions can be defined as follows:

POSp,(Q) = |J PX, (23)
XeU/Q
POSp.,

From these definitions, an attribute reduction method
can be formulated that uses the tolerance-based degree of
dependency, vp.(Q), to measure the significance of feature
subsets (in a similar way to the rough set QUICKREDUCT
algorithm described in the previous section).



2.2.3 Fuzzy-Rough Approaches

Other hybrid approaches such as rough-fuzzy [23] and
fuzzy-rough sets [12], [15], have been proposed in order to
improve the ability to deal with uncertainty and vagueness
present in data. A fuzzy-rough set [5], [36] is defined by two
fuzzy sets, fuzzy lower and upper approximations, obtained
by extending the corresponding crisp rough set notions. In
the crisp case, elements that belong to the lower approxima-
tion (i.e., have a membership of 1) are said to belong to the
approximated set with absolute certainty. In the fuzzy-
rough case, elements may have a membership in the range
[0, 1], allowing greater flexibility in handling uncertainty.

Let I = (U, A) be an information system, where U is a
nonempty set of finite objects (the universe) and A is a
nonempty finite set of attributes such that a : U — V, for
every a € A. V, is the set of values that attribute « may take.
For decision systems, A = € U ID where C is the set of input
or conditional features and ID is the set of decision features.

Fuzzy equivalence classes [5], [6] are central to the fuzzy-
rough set approach in the same way that crisp equivalence
classes are central to classical rough sets. For typical
applications, this means that the decision values and the
conditional values may all be fuzzy. The concept of crisp
equivalence classes can be extended by the inclusion of a
fuzzy similarity relation S on the universe, which deter-
mines the extent to which two elements are similar in S. The
usual properties of reflexivity (us(z,z)=1), symmetry
(ns(z,y) = ps(y,x)) and transitivity (us(z, z) > ps(z,y) A
115 (y; 2)) hold.

Using the fuzzy similarity relation, the fuzzy equivalence
class [z]4 for objects close to x can be defined:

a1, (Y) = ps(@,y)- (25)

The following axioms should hold for a fuzzy equivalence
class F:

o dr,up(z)=1,

o ur(@) Apus(z,y) < pr(y), and

o pr(@) Apr(y) < ps(,y).

The first axiom corresponds to the requirement that an
equivalence class is nonempty. The second axiom states
that elements in y’s neighborhood are in the equivalence
class of y. The final axiom states that any two elements in F'
are related via the fuzzy similarity relation S. Obviously,
this definition degenerates to the normal definition of
equivalence classes when S is nonfuzzy. The family of
normal fuzzy sets produced by a fuzzy partitioning of the
universe of discourse can play the role of fuzzy equivalence
classes [5].

The fuzzy lower and upper approximations are fuzzy
extensions of their crisp counterparts. Informally, in crisp
rough set theory, the lower approximation of a set contains
those objects that belong to it with certainty. The upper
approximation of a set contains the objects that possibly
belong. From the literature, the fuzzy P-lower and P-upper
approximations are defined as [5]

pex (Fy) = infmax{l — pr (), px ()}, Vi, (26)

iy (Fi) = sup min{ur, (), px ()}, Vi, (27)
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where U/P stands for the partition of the universe of
discourse, U, with respect to a given subset P of features,
and F; denotes a fuzzy equivalence class belonging to U/ P.
Note that although the universe of discourse in feature
reduction is finite, this is not the case in general, hence the
use of sup and inf above. These definitions diverge a little
from the crisp upper and lower approximations, as the
memberships of individual objects to the approximations
are not explicitly available (further discussion can be found
in [10]). As a result of this, the fuzzy lower and upper
approximations are redefined as [12]

pupx(z) = sup min(,up(w), inf max{1 — ,uF(y),uX(y)}),
FeU/P yel

(28)

ppx(z) = sup min (uF(l“% sup min{p(y), ux(y)})- (29)
Feu/P yelU
The tuple (PX, PX) is called a fuzzy-rough set.

For an individual feature, a, the partition of the universe
by {a} (denoted W/IND({a})) is considered to be the set of
those fuzzy equivalence classes for that feature. For
example, if two fuzzy sets N, and Z, are generated for
feature a during fuzzification, the partition U/IND({a}) =
{N,, Z,}. If the fuzzy-rough feature selection process is to
be useful, it must be able to deal with multiple features,
finding the dependency between various subsets of the
original feature set. For instance, it may be necessary to be
able to determine the degree of dependency of the decision
feature(s) with respect to feature set P = {a,b}. In the crisp
case, U/ P contains sets of objects grouped together that are
indiscernible according to both features a and b. In the fuzzy
case, objects may belong to many equivalence classes, so the
cartesian product of U/IND({a}) and W/IND({b}) must
be considered in determining U/P. In general,

U/P =®{ae P:U/IND({a})}. (30)

For example, if P ={a,b}, U/IND({a}) ={N,,Z,}, and
U/IND({b}) = {N, Zp}, then

U/P={N,NNy,N, N Zy, Z, N\ Ny, Z N\ Z}.

Clearly, each set in U/P denotes an equivalence class.
The extent to which an object belongs to such an
equivalence class is, therefore, calculated by using the
conjunction of constituent fuzzy equivalence classes, say F;,
1=1,2,...,m
(31)

prn.nF, (2) = min(pr (2), pr (), . . ., pE,(2)).

3 DisTANCE MEASURE ASSISTED ROUGH SET
ATTRIBUTE REDUCTION

As discussed previously, almost all techniques for rough set
attribute reduction adopt an approach to minimization that
examines only the information contained within the lower
approximation of a set. Currently, there are no mechanisms
in rough-set-based methods to deal with the uncertainty of
the boundary region. Any useful information that may be
contained in the boundary region is, therefore, lost when
only the lower approximation is employed for minimization.
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The approach described in this section uses both the
information contained in the lower approximation and the
information contained in the boundary region to search for
reducts. The DMRSAR [16] method uses a distance measure
to determine the proximity of objects in the boundary
region to those in the lower approximation and assigns a
significance value to these distances.

3.1 Distance Metric and Mean Positive Region

The distance metric attempts to qualify the objects in the
boundary region with regard to their proximity to the lower
approximation. From an intuitive point-of-view, the closer
the proximity of an object in the boundary region to objects
of the lower approximation, the greater the likelihood that it
actually belongs to the set of interest. For the method
detailed here, all of the distances of objects in the boundary
region are calculated. From this, the significance value for a
subset can be obtained.

Since calculating the margin of the lower approxima-
tion for an n-dimensional space would involve consider-
able computational effort, a more pragmatic solution is
employed—the mean of all object attribute values in the
positive region (POSp) or union of lower approximations
is calculated. This can be defined as follows:

ZOGBX a(o)

Using this definition of the mean of the P positive region,
the distance function for the proximity of objects in the
boundary region from the P positive region mean can be
defined by

POSPMEAN = (32)

op (POSR\IEAN ) y) )

Clearly this definition only holds true if either POSp,,,,, Or
BNDp(Q) is nonempty.

The exact distance function is not defined here as a
number of strategies may be employed for the calculation of
the distance of objects in the boundary. In Section 3.4, a
euclidean type distance metric is employed.

In order to measure the quality of the boundary region, a
significance value w for subset P is calculated by obtaining
the sum of all object distances and inverting it such that

y € BNDp(Q). (33)

-1

op (P OSPMEAN?y>
yeBNDp(Q)

wp(Q) = (34)

It is important to note that if POSp(Q) = 0 there are no
certain objects from which to generate a POSp,,,,,,, in which
case no distance function can be defined and hence the
significance degree wp(Q) is set to 0. Also, when
BNDp(Q) = there is no uncertainty about the concept
being approximated and so there are no uncertain objects to
measure using the distance function, in which case the
significance degree wp(Q) is set to its maximum value of 1.

This significance measure is used in conjunction with the
rough-set dependency value to gauge the utility of attribute
subsets in a similar way to that of the rough-set dependency
measure. As one measure only operates on the objects in the
lower approximation and the other only on the objects in

DMQUICKREDUCT(C,ID).
C, the set of all conditional features;
D, the set of decision features.

) T—{}LR—{}

) do

(3) Veze(C—R)

(4) if M(RU{z}) > M(T)
(5) T — RU{z}

6) R«T

(7)  until yr(D) == ~c(D)
(8) return R

Fig. 2. The rough-set distance-metric-based QUICKREDUCT algorithm.

the boundary, both entities are considered separately and
then combined to create a new evaluation measure M:

wr(@) +7r(Q)

Mp(Q) = )

(35)

Obviously, if vp(Q) = 1, then the concept being approxi-
mated has no uncertainty with respect to P and by (33)
wp(@) =1 also. A mean of both values is obtained as both
operate in the range [0, 1] and this allows the approach to be
data driven. Initial investigative work has shown that
manual manipulation of the participation can affect subset
selection and even improve results (see conclusion and
future work section). A new feature selection mechanism
can be constructed that uses both the significance value and
the rough dependency value to guide the search for the best
feature subset.

An alternative to the mean positive region and distance
metric is another approach which uses the Hausdorff metric
to calculate the distance between nonempty sets. It
measures the extent to which each point in a set is located
relative to those of another set. The Hausdorff metric has
been applied to facial recognition [26], image processing
[27], and FS [22] with much success. It can be defined as

h(A, B) = max { min{d(a, b)}},

acA

(36)

where a and bare points (objects) of sets A and B, respectively,
and d(a,b) is any metric between these points. A basic
implementation of this has been incorporated into the above
framework using euclidean distance as a metric. Experimen-
tation using this approach can be found in Section 5. The
primary disadvantage to this approach, however, is the
computational overhead involved in calculating the distance
of all objects in the boundary region from each other. For
n boundary region objects, this means that O(n?) distance
calculations must be made, unlike the mean positive region
which results in O(n) distance calculations.

3.2 Distance Measure-Based Selection Algorithm

Fig. 2 shows a rough-set-based DMQUICKREDUCT algo-
rithm based on the previously described rough-set-based
algorithm in Fig. 1.

DMQUICKREDUCT is similar to the RSAR algorithm but
uses a combined distance and rough-set dependency value
of a subset to guide the feature selection process. If the
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RSAR vs DMRSAR (50-350 attributes/500 objects)

25 04

mmm RSAR
= DMRSAR
—e—Variation

102

20 4

Runtime (S) -02  variation

/ 1 04

1 -06

1 2 3 4 5 6 | 7
mmRSAR | 1047 | 2 | 2951 3.906 | 4829 [20.208| 7.079
== DMRSAR | 1376 | 2015 | 2.953 | 3.922 | 4675 |19.547| 6.719
. Vanation | 0,326 | 0015 | 0002 | 0.016 | 0046 | -0656| -036
Dataset

-0.8

Fig. 3. RSAR and DMRSAR runtimes for 50-350 attributes.

combined value M of the current reduct candidate is greater
than that of the previous, then this subset is retained and
used in the next iteration of the loop. It is important to point
out that the subset is evaluated by examining the value of
M, termination only occurs when the addition of any
remaining features results in the dependency function value
(vr) reaching that of the unreduced data set. The value of M
is, therefore, not used as a termination criterion.

The algorithm begins with an empty subset R. The do-
until loop works by examining the combined dependency
and significance value of a subset and incrementally adding
a single conditional feature at a time. For each iteration, a
conditional feature that has not already been evaluated will
be temporarily added to the subset R. The combined
measure of the subset currently being examined (line 6) is
then evaluated and compared with that of 7" (the previous
subset). If the combined measure of the current subset is
greater, then the attribute added in (line 5) is retained as
part of the new subset T (line 6).

The loop continues to evaluate in the above manner by
adding conditional features, until the dependency value of
the current reduct candidate (yz(ID)) equals the consistency
of the data set (1 if the data set is consistent).

3.3 Computational Complexity

As the DMRSAR algorithm is based on a greedy hill-climbing
type of search. The computational complexity will be similar
to that of other approaches which use this method. However,
in addition to the factors which govern the computational
complexity of the rough set QUICKREDUCT algorithm, other
factors must also be taken into account. In the DMRSAR
approach objects in the boundary region are also considered
and this inevitably adds to the computational overhead.
Furthermore, all of those objects in the lower approximation
are also considered when calculating a positive region object
for each concept—where the objects of the positive region are
“collapsed” to form a single representative object. At this
lower level, the additional factors that must be considered
(also those that are not employed in the rough set case)
include the calculation of the collapsed lower approximation
mean, the calculation of the upper approximation, and the

RSAR vs DMRSAR (20 attributes/500-8000 objects)

mm RSAR
04 = DMRSAR
50 4 —e— Variation
033

40 1 0.3

025

Runtime(S) 30 { Variation

02

0.1

003

1 2 3 4 5 6 7
EmRSAR | 0531 | 0953 | 1.235 | 266 | 3.675 |13.797| 51,953
== DMRSAR | 0593 | 0953 | 1594 | 2906 | 3937 | 13836 5236

e Variation | 0.062 | 0 | 0.359 | 0.046 | 0.062 | 0.039 | 0.407

Dataset

Fig. 4. RSAR and DMRSAR runtimes for 500-8,000 objects.

calculation of the distances of objects in the boundary from
the collapsed lower approximation mean.

From a high level point-of-view the DMQUICKREDUCT
has an intuitive complexity of (n? + n)/2 for a dimension-
ality of n. This is the number of evaluations of the
dependency function and distance measure performed in
the “worst case.” For instance, if the feature set consists of
{a1, a2}, then the DMQUICKREDUCT algorithm will make
three evaluations, one each for {a;} and {ay}, and finally
one for {aj,as} in the worst case.

In an attempt to compare the complexity of both the
RSAR and DMRSAR approaches from an application
viewpoint, a number of artificial data sets were generated.
There are 14 data sets in total ranging from 20 to
350 attributes, and 500 to 8,000 objects. Both FS approaches
were applied to these data sets and the time taken to find a
reduct was recorded in each case. The results show that
there is only a marginal increase in runtime for the
DMRSAR approach. There is even a decrease in some
cases, but this relates to the fact that DMRSAR found
smaller subsets than RSAR in these particular cases.
However, Figs. 3 and 4 demonstrate that for increased
dimensionality and numbers of objects there is little overall
difference in runtime between the approaches.

3.4 A Worked Example

To illustrate the operation of the new distance measure-
based algorithm, a small example data set is considered,
containing discrete-valued conditional and decision attri-
butes. The data used in the experimentation section are real-
valued; however, crisp data are used in this example to aid
explanation of the approach. Note also for brevity, that only
the selection of two subsets is shown here.

Table 1 contains seven objects. It has four crisp-valued
conditional attributes and a single crisp-valued decision
attribute.

If attribute d is considered for selection, for example, the
lower and upper approximations must first be calculated:

{4} = {{0}, {2}, {0}}.
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TABLE 1
Example Data Set: Crisp Attributes
Object | a | b | c|d| e
0 11012210
1 0|10 ]|0¢| 2
2 110(0 1|1
3 11002} 2
4 1({2]010]1
5 1(2(0]2]0
6 0111201

Similarly, for the upper approximation:

{d} = {{0,3,5},{1,2,4,6},{0,1,3,4,6}}.

Having calculated the upper and lower approximations
for {d}, the positive and boundary regions can be shown to be

=0, {2}} = {2},
=J{{0,3,5}.{2}

{1,4,6},{1,4,6}} — {2}
=1{0,1,3,4,5,6}.

The rough-set dependency, the positive region mean, and
object distances can now all be calculated. As mentioned in
the previous section, there are many distance metrics which
can be applied to measure the distance of the objects in the
boundary from the lower approximation mean. For simpli-
city, a variation of euclidean distance is used in the
approach documented here, and this is defined as

POS{d}
BNDg({e

(37)

acP

(5 (POSPVE“,Z./ \/Zfa POSP\[E4'\7y)

where

Ja (POSPMEAN" 'U) =1l a(POSPME/L\") # a(y)
= 0 otherwise.

From this, the distances of all of the objects in the
boundary region in relation to the lower approximation
mean can now be calculated.

As there is only a single object in the lower approxima-
tion, the mean of the lower approximation does not need to
be calculated in this case. The individual distances of objects
in the boundary of {d} can be shown to be

obj 6 \/ fd(POSP\1p4v76)2 =

Where there is more than one object in the potential
reduct lower approximation, calculating the POSp,,,,

object can be achieved in the manner described in the
previous section. Examine all of those attribute values for
each of the objects that appear in the lower approximation
of the considered subset. For example, considering the
subset {a,d}, the lower approximation and boundary
regions are

POS{,q({e})
BNDy,a({e})

= ({0, {2}, {4}},
= J{{0.3,5}.{0,3,5}{1,6},{1,6}}
={0,1,3,5,6}.

The attribute values for {a,d} for objects {2,4} can be
obtained by referring to Table 1:

for {a} : object 2 ="1',

object 4 ="1',
for {d} : object 2 ="1',
object 4 ="0/.

This results in POSp,,,,, = {1,0.5} for {a,d}.

These real-valued numbers, however, are not meaningful
when dealing with crisp-valued data (1 is considered as
different from 1.1 as it is from 100). The strategy employed
to address this problem was to examine all of the attribute
values for the attribute in question and assign it a value
which appears in that range of values to which it is closest
in terms of magnitude. So, as the POSp,,,, value for the
attribute a is an existing value, this does not need to be
considered; the POSp,,,,, value assigned to d, however, is
not in the range of values taken by the attribute d. Values of
0.5 or less are considered to be closer to 0, thus
approximated to '0’, and becomes POSp,,,,, = {1,0}.

Again by utilization of euclidean distance and the new
POSp,,,,~, the distances of objects in the boundary region
can be calculated:

ob 0 \/ (fo(POSp41,0)" + Fa4(POSp,.,,0)7) =1,
0b 1\ (fa(POSpyre 1) + fa(POSpy 1)) = 1,
0b 3/ (Fu(POSPyp1.3)" + J1(POSEyp.3)7) = 1,
ob 51/ (fo(POSpy, 1 15) + f4(POSE 1 5)7) = 1,

0b 6 \/ (fu(POSpyp1r,6)° + fa(POSpyp00,6)2) = 1.

It is perhaps worth noting at this point, that although a
form of euclidean distance is used to calculate the distance of
the objects from the POSp,,,,,, in calculating that distance,
the difference between two values is always considered in
Boolean terms for crisp data. The reason for this is that the
values are states rather than real-valued. This means that if
the value for a particular attribute in the POSp,,,,, happened
to be 1 and that of the corresponding attribute value of an
object in the boundary region was 1,563, the difference
between these two states would be (1 — 1,563) = 1. For real-
valued data, however, this would not be the case as the
values of attributes are real numerical values.

Although the individual distances may be useful in
identifying objects that are similar to those in the lower
approximation, they are not individually indicative of the
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subset goodness. A method of achieving this measure is to
calculate the sum of all of the distances and invert it thus
giving a significance value to each subset considered for
selection. The significance value is real-valued and has
membership in the range [0, 1] for the purpose of dealing
with crisp data.

Thus, for {a,d}:

wea({e)) =1+1+1+1+1)"" =02

Although the significance measure alone can be used to
search for subsets, the results from some initial investiga-
tion indicated that these were not of equal quality as those
returned by RSAR. So, the significance value was combined
with the rough-set dependency value. This results in a
combined metric in which both dependency and signifi-
cance have equal participation.

By calculating the change in combined significance and
dependency value (M) when an attribute is removed from
the set of considered conditional attributes, a measure of the
goodness of that attribute can be obtained. The greater the
change in M the greater the measure of goodness that
attribute has attached to it.

Using the previous examples of the DMRSAR method,
the values for the combined metric can be calculated for all
considered subsets of € using DMRSAR:

Mgy ({e}) =0.0 My q({e}) = 0.3910,

My ({e}) =0.0 M4 ({e}) = 0.3026,

Mg ({e}) = 0.342  M,yqy({e}) = 0.3026,
Maay({e}) = 02425 My, q({e}) = 1.0.

It is obvious from the above example that the search
finds a subset in the manner {d} — {b,d} — {b,c,d}. As
{a,d} and {c¢,d} and also {a,b,d} do not result in the same
increase in combined metric these subsets are ignored.

4 EXPERIMENTATION

This section presents the results of experimental studies
using both crisp-valued and real-valued data sets. The
DMRSAR method is initially compared with a rough-set-
based feature selection method (RSAR) [2], and PCA [7].
Additionally, DMRSAR is also compared with fuzzy-rough-
set-based FS (FRFS) [12] and a tolerance rough-set-based
feature selection method [29] for real-valued data. It is
important to note that DMRSAR operates on discretized
versions of the real-valued data sets listed. All of the data
sets presented are of the same format as that used in the
example of the previous section. All data have been
obtained from [1] and [19]. A comparison of the RSAR,
FRFS, and distance-based dimensionality reduction techni-
ques is made based on subset size, classification accuracy,
and time taken to discover subsets.

4.1 Classifiers
Three classifier learners were employed for the classifica-
tion of the data, JRip, J48, and PART [34].

J48 [25] creates decision trees by choosing the most
informative features and recursively partitioning the data
into subtables based on their values. Each node in the tree

represents a feature with branches from a node represent-
ing the alternative values this feature can take according to
the current subtable. Partitioning stops when all data items
in the subtable have the same classification. A leaf node is
then created, and this classification assigned.

JRip [3] learns propositional rules by repeatedly growing
rules and pruning them. During the growth phase,
antecedents are added greedily until a termination condi-
tion is satisfied. Antecedents are then pruned in the next
phase subject to a pruning metric. Once the rule set is
generated, a further optimization is performed where rules
are evaluated and deleted based on their performance on
randomized data.

PART [35] generates rules by means of repeatedly
creating partial decision trees from data. The algorithm
adopts a divide-and-conquer strategy such that it removes
instances covered by the current rule set during processing.
Essentially, a rule is created by building a pruned tree for
the current set of instances; the leaf with the highest
coverage is promoted to a rule.

4.2 Comparison of DMRSAR and RSAR

In this section, DMRSAR is compared with RSAR [2].
Results are presented both in terms of subset size and
classification accuracy. The data sets employed range in size
from 47 to 2,000 objects and between 7 and 57 attributes.
Conditional attributes and decision attributes are crisp and
discrete-valued.

4.2.1 Classification Accuracy

The data presented in Table 2 show the average classification
accuracy as a percentage using each of the previously
described classifiers. The classification was initially per-
formed on the unreduced data set, followed by the reduced
data sets which were obtained by using the RSAR and
DMRSAR dimensionality reduction techniques, respectively.

Noting the classification results, the DMRSAR approach
performs very well and shows increases in classification
accuracies for at least one classifier where there has been a
corresponding decrease in dimensionality (e.g., credit,
exactly, etc.) Notably for the exactly data set DMRSAR
shows an increase of up to 30 percent while simultaneously
demonstrating a reduction in dimensionality. Even where
there has been a decrease in the case of some classifiers and
data sets which are of similar size to those of RSAR, this
decrease is insignificant. Indeed, DMRSAR may sometimes
discover subsets of similar size (but contain different
features) to RSAR yet demonstrate an increase in classifica-
tion accuracy (e.g., derm, ionosphere, heart).

4.2.2 Subset Size and Runtimes

Table 3 shows a comparison of subset size, and runtimes for
both the RSAR and DMRSAR approaches. Although it still
at least equals RSAR in terms of performance. However,
despite this, it does show that there are gains to be made
with crisp-valued data (credit, exactly, exactly2, wq), demon-
strating that there is much information contained in the
boundary region.

There is little relative increase in runtimes when
comparing RSAR with DMRSAR, indeed DMRSAR some-
times demonstrates a reduction in dimensionality along
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TABLE 2
Average Classification Accuracy—Crisp Data
J48 JRip PART
Dataset || Unreduced RSAR DMRSAR | Unreduiced RSAR DMRSAR | Unreduced RSAR DMRSAR
credit 72.60 70.10 69.59 71.90 72.0 70.30 68.9 68.3 69.4
derm 95.90 80.32 82.51 92.07 77.32 76.77 95.62 78.76 81.96
derm2 95.25 94.41 94.41 93.85 92.73 93.85 92.73 93.85 93.85
ionosphere 85.21 88.26 87.39 86.60 84.34 86.93 86.08 87.39 89.56
exactly 85.5 69.4 98.1 69.30 68.00 91.30 92.10 67.32 99.20
exactly 2 74.9 74.9 73.1 75.0 75.0 74.8 74.2 74.20 78.20
heart 77.89 80.95 81.29 79.59 76.10 77.55 77.21 78.57 81.63
led 100 100 100 100 100 100 100 100 100
lung 84.38 84.38 78.12 68.75 84.38 68.75 71.88 84.38 78.12
m-of-n 100 100 100 97.3 98.60 98.60 100 100 100
monk3 100 100 100 99.76 99.07 99.07 100 100 100
soybean 91.35 89.84 87.59 88.72 88.72 80.89 92.10 87.96 84.21
tic-tac-toe 92.38 88.10 87.89 98.32 91.10 91.44 95.30 87.68 87.68
vote 93.67 93.67 93.67 95.00 93.67 93.67 91.67 93.67 93.67
wq 71.07 64.87 67.37 70.44 68.71 67.51 67.17 65.25 66.02
TABLE 3
Comparison of Reduct Size and Runtimes—Crisp Data
Original number Reduct size Time taken to locate reduct
Dataset of features RSAR DMRSAR | RSAR DMRSAR
credit 21 9 8 0.937 1.656
derm 35 7 7 0.625 0.625
derm2 35 10 10 0.578 0.640
ionosphere 35 8 8 0.313 0.313
exactly 14 9 8 0.203 0.172
exactly2 14 13 10 0.328 0.235
heart 14 7 7 0.188 0.188
led 25 12 12 2.168 2.375
lung 57 4 4 0.125 0.132
m-of-n 14 8 7 0.171 0.142
monk3 7 3 3 0.063 0.063
soybean 36 12 12 0.797 0.828
tic-tac-toe 10 8 8 0.188 0.203
vote 17 9 9 0.157 0.172
wq 39 15 14 3.250 2.766

with a reduction in runtime. Considering also that no
runtime optimization has been performed for DMRSAR,
these results are very encouraging, but also show that there
is some improvement required in terms of the mean
positive region calculation which would result in more
accurate measurement of distances.

4.3 Comparison of DMRSAR and PCA

PCA [7] is a versatile transformation-based DR technique
which projects the data onto a new coordinate system of
reduced dimensions. This process of linear transformation,
however, also transforms the underlying semantics or
meaning of the data. This results in data that are difficult
for humans to interpret, but which may still provide useful
automatic classification of new data. In order to ensure that
the comparison of DMRSAR and PCA is balanced, the same
subset sizes discovered for each data set are also employed
in the analysis of PCA. Each of the best number of
transformed features are also utilized for PCA.

The results in Table 4 show that of the 15 data sets
only credit, derm, and tic-tac-toe demonstrate a small
decrease in classification accuracy performance when

compared with DMRSAR. These decreases are small in
magnitude and DMRSAR outperforms PCA in all other
cases, sometimes significantly.

TABLE 4
Subset Size and Classification Accuracy Results for PCA
Dataset || (predefined) subset size J48 JRIP PART
credit 8 71.10 71.00 72.00
derm 7 90.40 94.08 93.98
derm?2 10 9329 91.34 9352
ionosphere 8 81.30 76.95 79.12
exactly 8 67.80 66.70  68.60
exactly2 10 7590 7430 75.80
heart 7 77.89 79.58 7721
led 12 99.38 98.55 99.38
lung 4 71.85 68.75 65.62
m-of-n 7 762  73.30 75.30
monk3 3 7777 76.62 7731
soybean 12 77.81 7218 75.18
tic-tac-toe 8 96.18 9457 9592
vote 9 89.00 89.00 87.67
wq 14 67.32 67.37 6641
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TABLE 5
Classification Accuracy of Unreduced, DMRSAR Reduced, and FRFS Reduced, Data Using JRIP, PART, and J48 Classifiers

Unreduced data DMRSAR reduced data FRES reduced data

Dataset || JRIP PART J48 JRIP  PART J48 JRIP  PART J48
water 2 || 83.84 83.33 85.64 | 8589 84.36 86.67 | 8436 82.56 80.26
water 3 || 81.28 7743 7948 | 81.79 8333 79.74 | 82.05 7897 79.74
cleveland || 52.18 51.85 50.16 | 53.53 51.51 5420 | 55.55 52.18 53.87
glass || 67.75 67.28 67.75 | 69.62 72.89 69.15 | 69.62 69.62 68.22
heart || 77.40 76.66 73.30 | 82.22 81.82 77.78 | 80.00 78.51 75.55
ionosphere || 86.52 87.82 86.26 | 84.78 86.10 86.10 | 87.82 91.30 91.30
olitos || 70.83 67.50 57.50 | 67.33 6750 6833 | 70.83 67.50 62.50
wine || 92.69 9433 9382 | 9586 9494 9325 | 88.76 92.13 93.82

It should be emphasized, however, that while PCA
might marginally outperform DMRSAR in three instances
in terms of classification accuracy, the semantics of the data
is irreversibly transformed following dimensionality reduc-
tion. This can have consequences where human interpret-
ability of the data is important, which is one of the key
reasons for performing feature selection tasks to begin with.
As DMRSAR s a feature selection approach as opposed to a
feature ranking method, a predefined threshold is not
required; selection is complete as soon as the termination
criterion (rough-set dependency) is fulfilled. The rough-set
dependency value is integral to the selection process and as
such, in contrast to PCA does not need to be predefined.

Finally, it is worth noting that PCA is selected for
comparison here due to recognition of the fact that it is an
established approach for dimensionality reduction.

4.4 Comparison of DMRSAR and FRFS

The real-valued data used in this section comprise of data
sets which are small-to-medium in size, with between 120
and 390 objects per data set and feature sets ranging from
5 to 39. The unreduced data classification is illustrated in
Table 5. The data have been discretized for use with
DMRSAR as it is unable to handle real-valued data. The
DMRSAR selected subsets are, however, employed when
reducing and classifying the original real-valued data.

4.4.1 Classification Accuracy

It is interesting to note that where a decrease in classifica-
tion accuracy is recorded for FRFS, with respect to the
unreduced data the same is also true for DMRSAR. This
decrease in classification accuracy is small when comparing
both FRFS and DMRSAR approaches to the unreduced
data. Also, when comparing classification results, where the

DMRSAR approach shows a fall in classification accuracy,
the corresponding reduction in dimensionality (shown in
Table 5) is significantly better than that of FRFS.

4.4.2 Subset Size and Runtimes

It is clear also from the runtime figures that DMRSAR runs
considerably faster than FRFS. This primarily, can be
attributed to the computational complexity of FRFS which
is related to the time taken in calculating fuzzy equivalence
classes. Clearly, DMRSAR has a considerable advantage in
this respect as the figures in Table 4 demonstrate.

The advantages of the DMRSAR method in terms of
subset size are more pronounced when compared with FRFS
than those for RSAR as demonstrated in Table 6. This is a
strong indicator that the approach is perhaps more efficient
when applied to domains where the data are real-valued;
this is borne out by the marked contrast between the subset-
size results obtained for both approaches. There are,
however, two data sets where DMRSAR fails to outperform
FRFS in terms of subset size—water 2 and water 3 (see
conclusion and future work for further discussion of this).
However, it should be noted that FRFS is considerably more
mature and refined in terms of both research effort and
development.

4.5 Comparison of TRSM and DMRSAR

In this section, an extension of the rough set model—the
TRSM [29] is compared with DMRSAR. TRSM employs a
similarity relation to minimize data as opposed to the
indiscernibility relation used in classical rough sets. This
allows a relaxation in the way equivalence classes are
considered. This flexibility allows a blurring of the
boundaries of the former rough or crisp equivalence classes
and objects may now belong to more than one tolerance

TABLE 6
Comparison of Subset Size, Dependency Value, and Runtimes—FRFS

Original number of Subset size Time taken to locate subset

Dataset || features  objects | FRFS DMRSAR | FRFS DMRSAR
water 2 39 390 11 12 96.58 0.860
water 3 39 390 12 18 158.73 1.266
cleveland 14 297 11 9 24.11 0.219
glass 10 214 9 6 1.61 0.156
heart 14 270 11 10 11.84 0.158
ionosphere 35 230 5 4 0.488 0.512
olitos 26 120 10 8 11.20 0.156
wine 14 178 10 8 1.42 0.125
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TABLE 7
Comparison of Subset Size for Each Tolerance Threshold Value
Original TRSM
number
Dataset || of features | 7 =0.90 7=0.95
water 2 39 8 12
water 3 39 9 12
cleveland 14 11 8
glass 10 3 8
heart 14 12 8
ionosphere 34 6 8
olitos 25 9 6
wine 13 5 5

class, thus allowing the consideration of real-valued data.
Thus, as for FRFS real-valued data are also employed for the
evaluation of this approach.

The ideal tolerance threshold value can be obtained by
repeated experimentation for a given data set. This is where
the TRSM diverges from the approaches to which DMRSAR
has been compared up until now, which have all been data
driven. Further work which examines a non-data-driven
feature selection approach and which utilizes the boundary
region of the TRSM can be found in [17]. For the
comparison of DMRSAR and TRSM, results are presented
in the following sections for two different values of
tolerance threshold (7)—0.90, and 0.95.

4.5.1 Subset Size

The subset sizes for both values of tolerance threshold are
outlined in Table 7. The results demonstrate that the TRSM
method can sometimes outperform both FRFS and
DMRSAR in terms of subset size. However, it should be
borne in mind that the TRSM is not completely data driven
and much experimentation may be required before optimal
results are achieved for each individual data set. Addition-
ally, the results also demonstrate that the TRSM method
does not perform consistently and in some cases returns a
larger subset while simultaneously displaying a decrease in
classification accuracy.

4.5.2 Classification Accuracy

The results presented in Tables 8 and Tables 9 show that
DMRSAR when compared with TRSM performs favorably.

TABLE 8
Classification Accuracy Using JRIP, PART,
and J48 Classifiers (7 = 0.90)

TRSM

Dataset || JRIP  PART  J48
water 2 || 85.38 8230 8743
water 3 || 80.00 81.53  76.67
cleveland || 54.20 53.87 52.52
glass || 65.88 69.15 68.69
heart || 79.25 75.19 78.88
ionosphere || 85.65 86.52 85.21
olitos | 70.00 65.83  61.66
wine || 96.06 9494 96.62

TABLE 9
Classification Accuracy Using JRIP, PART,
and J48 Classifiers (7 = 0.95)

TRSM

Dataset JRIP  PART J48
water 2 || 82.82 83.07 82.05
water 3 || 81.02 80.77 81.02
cleveland || 50.54 50.84 54.54
glass || 69.62 6822 69.62
heart || 80.38 78.57 81.48
ionosphere || 86.08 87.39 87.39
olitos || 64.16 66.67 64.16
wine || 93.25 9550 96.02

The results obtained for both tolerance values, show that for
four of the eight data sets for 7 = 0.9, the TRSM performs
poorly and for the remaining four data sets the results are
comparable. When 7 = 0.95, DMRSAR outperforms TRSM
in six cases. The TRSM, however, defeats DMRSAR
marginally for the ionosphere data set but the corresponding
subset is twice the size. The remaining data set, wine, shows
a classification result that is comparable to DMRSAR.

4.6 Hausdorff Metric Implementation

The Hausdorff metric approach to distance measurement
has been described previously as an alternative to the mean
positive region and euclidean distance-based method which
was used to generate the empirical results shown above.

The DMRSAR approach was augmented with the
Hausdorff metric to measure the distance between the
lower approximation and the boundary region was im-
plemented in order to investigate the performance of this
method in terms of subset size and runtimes. The results of
this investigation are included here in Table 10.

It is apparent that this particular implementation of the
Hausdorff metric fails to capture the useful information of
the boundary region in the same way that the mean
positive region method does. Examining the results for
subset size, it can be seen that the existing DMRSAR
approach returns superior results in all cases. Perhaps

TABLE 10
DMRSAR-Hausdorff Metric Implementation Subset Size
and Runtimes

DMRSAR Hausdorft Metric
Dataset || Subset Size | Subset Size  Runtime
credit 8 10 41.64
derm 7 32 19.343
derm?2 10 32 18.437
ionosphere 8 28 7.000
exactly 8 13 17.422
exactly2 10 13 19.250
Heart 7 10 1.734
LED 12 13 566.05
lung 4 5 0.484
m-of-n 7 9 22.03
monk3 3 6 0.422
soybean 12 19 23.518
tic-tac-toe 8 8 5.859
vote 9 9 3.205
wq 14 27 57.031
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even more apparent is the results for the runtimes with the
LED data set taking 566 s to run. This was to be expected
as there are a large number of distance calculations
performed even for small data sets (exponential O(n?)
for n upper approximation objects).

5 ConcLusioN AND FUTURE WORK

Comparison of DMRSAR with FREFS has shown that the
DMRSAR method is a good starting point for further work
based on the distance metric for exploring the boundary
region of rough sets. The subset size results show that there
is still some additional optimization required in order to
equal FRFS. Classification accuracy results have been
shown to be very similar to those of FRFS, and in some
cases the DMRSAR method has even shown an increase
while simultaneously demonstrating a reduction in dimen-
sionality. Where a decrease has been observed in relation to
FRFS, it has been small and, as discussed previously, the
actual decrease is not significant. It is perhaps worth noting
that FRFS is a state-of-the-art approach when considering
real-valued data and much research effort has been
invested in refining its performance.

Additional comparison with a TRSM-based feature
selection method has demonstrated that while this method
may sometimes marginally outperform DMRSAR, it re-
quires an additional thresholding value. In order to
determine the optimal value, however, repeated experi-
mentation is required for each data set. DMRSAR requires
no such thresholding value and relies only on the
information in the data.

The experimental evaluation emphasizes how much
useful information is contained in the boundary region of
a rough set. However, it is clear from the results obtained in
the previous section that an increase in the efficiency of the
DMRSAR algorithm is highly desirable and will lead to
further increases in performance. The experimental work
detailed in this paper did not take advantage of any
optimizations that are expected to reflect this.

Future work would include a reevaluation of how the
mean positive region is calculated. Implementation of a
more accurate calculation of the lower approximation
boundary would mean that distances of objects in the
boundary region could be more accurately measured. Other
aspects of the DMRSAR approach which require investiga-
tion include the current distance metric. For the worked
example described in this paper, a euclidean distance
metric is employed. Metrics such as Mahalanobis distance,
ellipsoid distance, and others could also be considered.

It is also expected that a more thorough investigation of
the Hausdorff metric and methods of implementation would
improve both performance and runtimes. Indeed a fuzzy-
Hausdorff version of the distance metric may be useful in
dealing with real-valued data as this would reflect the
continuous nature of the data.

The significance measure which is employed for
DMRSAR is quite basic, and considers the boundary region
as a single significance value which is expressed as
membership value of a unary fuzzy set. By redefining this
as a number of fuzzy sets, the boundary region could be
quantified more accurately by expressing membership in
terms of weights of objects in the boundary in relation to
distance from the mean positive region. Apart from the use

of extra fuzzy sets, the way in which objects in the
boundary are correlated is another area which is worthy
of investigation. By examining the correlation of objects and
their individual distances, it may be possible to qualify the
individual objects and their information value.

In the DMRSAR approach described in Section 3.4, both
the dependency measure and the significance value (dis-
tance measure) are allowed equal weighting as part of the
combined evaluation metric. However, by assigning differ-
ent weights to each of these metrics, more or less
significance can be placed on either measure. Some initial
work has been undertaken in this area which indicates that
further improvements in performance in terms of subset
size and classification accuracy can be obtained through the
adoption of such a strategy. A more thorough investigation
would explore the level of participation of each evaluation
metric and ascertain the effect this has on performance.

Given that the extension of RSAR for the consideration of
objects in the boundary region has shown to be successful,
additional work in the form of an investigation of the
boundary region of tolerance rough sets [17] has also been
carried out.

Other areas of application which are currently being
investigated include classification and the use of the
boundary region of fuzzy-rough sets.

ACKNOWLEDGMENTS

The authors wish to thank both the referees and the editor
for their invaluable advice in revising this paper.

REFERENCES

[1] C. Armanino, R. Leardi, S. Lanteri, and G. Modi, “Chemometric
Analysis of Tuscan Olive Oils,” Chemometrics and Intelligent
Laboratory Systems, vol. 5, no. 4, pp. 343-354, Apr. 1989.

[2] A. Chouchoulas and Q. Shen, “Rough Set-Aided Keyword
Reduction for Text Categorisation,” Applied Artificial Intelligence,
vol. 15, no. 9, pp. 843-873, 2001.

[3] W.W. Cohen, “Fast Effective Rule Induction,” Proc. 12th Int’l Conf.
Machine Learning, pp. 115-123, 1995.

[4] J.S. Deogun, V.V. Raghavan, and H. Sever, “Exploiting Upper
Approximation in the Rough Set Methodology,” Proc. First Int’l
Conf. Knowledge Discovery and Data Mining, pp. 1-10, 1995.

[5] D. Dubois and H. Prade, “Putting Rough Sets and Fuzzy Sets
Together,” Intelligent Decision Support, Kluwer Academic Publish-
ers, pp. 203-232, 1992.

[6] Rough-Fuzzy Hybridization: A New Trend in Decision Making, S.K.
Pal and A. Skowron, eds. Springer Verlag, 1999.

[7]1 P.Devijver and J. Kittler, Pattern Recognition: A Statistical Approach.
Prentice Hall, 1982.

[8] A. Hassanien, “Rough Set Approach for Attribute Reduction and
Rule Generation: A Case of Patients with Suspected Breast
Cancer,” J. Am. Soc. Information Science and Technology, vol. 55,
no. 11, pp. 954-962, 2004.

[9] A.Hedar, J. Wang, and M. Fukushima, “Tabu Search for Attribute
Reduction in Rough Set Theory,” Technical Report 2006-008, Dept.
of Applied Mathematics and Physics, Kyoto Univ., 2006.

[10] M. Inuiguchi and T. Tanino, New Fuzzy-Rough Sets Based on
Certainty Qualification, Rough-Neural Computing: Techniques for
Computing with Words, SK. Pal, L. Polkowski, and A. Skowron,
eds. Springer-Verlag, 2003.

[11] M. Inuiguchi and M. Tsurumi, “Measures Based on Upper
Approximations of Rough Sets for Analysis of Attribute Impor-
tance and Interaction,” Int’l |. Innovative Computing, Information
and Control, vol. 2, no. 1, pp. 1-12, 2006.

[12] R. Jensen and Q. Shen, “Semantics-Preserving Dimensionality
Reduction: Rough and Fuzzy-Rough-Based Approaches,” IEEE
Trans. Knowledge and Data Eng., vol. 16, no. 12, pp. 1457-1471, Dec.
2004.



MAC PARTHALAIN ET AL.: A DISTANCE MEASURE APPROACH TO EXPLORING THE ROUGH SET BOUNDARY REGION FOR ATTRIBUTE... 13

(13]

[14]

[15]

[10]

(17]

(18]

[19]

(20]

[21]

(22]

[23]

(24]
(23]
[20]
(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]
(35]
[36]

(371

(38]

H.R. Li and W.X. Zhang, “Applying Indiscernibility Attribute Sets
to Knowledge Reduction,” Lecture Notes in Artificial Intelligence,
pp- 816-821, Springer, 2005.

K. Li, Y. Liu, “Rough Set Based Attribute Reduction Approach in
Data Mining,” Proc. 2002 Int’l Conf. Machine Learning and
Cybernetics, vol. 1, pp. 60-63, 2002.

N. Mac Parthaldin, R. Jensen, and Q. Shen, “Fuzzy Entropy-
Assisted Fuzzy-Rough Feature Selection,” Proc. 15th Int’l Conf.
Fuzzy Systems (FUZZ-IEEE "06) 2006.

N. Mac Parthalain, R. Jensen, and Q. Shen, “Distance Measure
Assisted Rough Set Feature Selection,” Proc. 16th Int’l Conf. Fuzzy
Systems (FUZZ-IEEE "07), pp. 1084-1089, 2007.

N. Mac Parthaldin and Q. Shen, “Exploring the Boundary Region
of Tolerance Rough Sets for Feature Selection,” Pattern Recogni-
tion, vol. 42, pp. 655-667, http://www.sciencedirect.com/
science/article/B6V14-4TDC09M-1/2/9735ab90392246{032a2632
eda77ae0e, May 2009.

M. Modrzejewski, “Feature Selection Using Rough Sets Theory,”
Proc. European Conf. Machine Learning, P.B. Brazdil, ed., pp. 213-
226, 1993.

D.J. Newman, S. Hettich, C.L. Blake, and C.J. Merz, “UCI
Repository of Machine Learning Databases,” Dept. of Information
and Computer Science, Univ. of California, http://www.ics.
uci.edu/mlearn/MLRepository.html, 1998.

R. Nie and ]. Yue, “An Attribute Reduction Method Based on
Rough Set and SVM and with Application in Oil-Gas Prediction,”
Proc. Sixth IEEE/ACIS Int’l Conf. Computer and Information Science
(ICIS ’07), pp. 502-506, 2007.

S.H. Nguyen and A. Skowron, “Searching for Relational Patterns
in Data,” Proc. First European Symp. Principles of Data Mining and
Knowledge Discovery, pp. 265-276, 1997.

S. Piramuthu, “The Hausdorff Distance Measure for Feature
Selection in Learning Applications,” Proc. 32nd Ann. Hawaii Int’l
Conf. System Sciences, vol. 6, 1999.

S.K. Pal and P. Mitra, “Case Generation Using Rough Sets with
Fuzzy Representation,” IEEE Trans. Knowledge and Data Eng.,
vol. 16, no. 3, pp. 292-300, Mar. 2004.

Z. Pawlak, “Rough Sets,” Int’l ]. Computer and Information Science,
vol. 11, pp. 341-356, 1982.

J.R. Quinlan, C4.5: Programs for Machine Learning. Morgan
Kaufmann Publishers, 1993.

W. Rucklidge, Efficient Visual Recognition Using the Hausdorff
Distance. Springer, 1996.

B. Sendov, “Hausdorff Distance and Image Processing,” Russian
Math Surveys, vol. 59, no. 2, pp. 319-328, 2004.

Q. Shen and R. Jensen, “Selecting Informative Features with
Fuzzy-Rough Sets and Its Application for Complex Systems
Monitoring,” Pattern Recognition, vol. 37, no. 7, pp. 1351-1363,
2004.

A. Skowron and J. Stepaniuk, “Tolerance Approximation Spaces,”
Fundamenta Informaticae, vol. 27, pp. 245-253, 1996.

D. Slezak, “Various Approaches to Reasoning with Frequency
Based Decision Reducts: A Survey,” Rough Set Methods and
Applications, L. Polkowski, S. Tsumoto, T.Y. Lin, eds., pp 235-
285, Physica-Verlag, 2000.

Intelligent Decision Support, R. Slowinski, ed. Kluwer Academic
Publishers, 1992.

E.P.M. de Sousa, C. Traina, A.J.M. Traina, L. Wu, and C. Faloutsos,
“A Fast and Effective Method to Find Correlations among
Attributes in Databases,” Data Mining and Knowledge Discovery,
vol. 14, pp. 367-407, 2007.

R.W. Swiniarski and A. Skowron, “Rough Set Methods in Feature
Selection and Recognition,” Pattern Recognition Letters, vol. 24,
no. 6, pp. 833-849, 2003.

LH. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools with Java Implementations. Morgan Kaufmann, 2000.

LH. Witten and E. Frank, “Generating Accurate Rule Sets without
Global Optimization,” Proc. 15th Int’l Conf. Machine Learning, 1998.
Y. Yao, “A Comparative Study of Fuzzy Sets and Rough Sets,”
Information Sciences, vol. 109, pp. 21-47, 1998.

N. Zhong, J. Dong, and S. Ohsuga, “Using Rough Sets with
Heuristics for Feature Selection,” |. Intelligent Information Systems,
vol. 16, no. 3, pp. 199-214, 2001.

W. Ziarko, “Variable Precision Rough Set Model,” J. Computer and
System Sciences, vol. 46, no. 1, pp. 39-59, 1993.

A

Neil Mac Parthalain is a research associate with
the Vision Graphics and Visualisation Group in
the Department of Computer Science, Aberyst-
wyth University, Wales, UK. His research inter-
ests include rough set theory, fuzzy set theory,
feature selection, and rule induction. He has
published around 10 peer-refereed conference
papers and academic journal articles in these
areas.

Qiang Shen is a professor with the Department
of Computer Science at Aberystwyth University,
Wales, UK, and an honorary fellow at the
University of Edinburgh, UK. His research
interests include fuzzy and imprecise modeling,
model-based inference, pattern recognition, and
knowledge refinement and reuse. He is an
associate editor of the IEEE Transactions on
Fuzzy Systems and of the IEEE Transactions on
Systems, Man, and Cybernetics (Part B), and an

editorial board member of the Fuzzy Sets and Systems Journal among
others. He has published more than 240 peer-refereed papers in
academic journals and conferences on topics within artificial intelligence
and related areas, including one winning the IEEE Outstanding Paper
Award in the Transactions on Fuzzy Systems.

Richard Jensen is a lecturer in the Department
of Computer Science at Aberystwyth University,
Wales, UK. His research interests include rough
and fuzzy set theory, pattern recognition, in-
formation retrieval, feature selection, and swarm
intelligence. He has published more than
40 peer-refereed conference papers and aca-
demic journal articles in these areas.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.



