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Abstract
A two-dimensional frictionless adhesive contact problem for a parabolic indenter pressed against
an orthotropic elastic layer resting on a smooth rigid substrate is studied in the framework of
the Johnson–Kendall–Roberts (JKR) theory. In the case of a relatively small contact zone with
respect to the layer thickness, the fourth-order asymptotic solution (up to terms of order O(ε8))
is obtained, and the pull-off force is expanded in terms of the non-dimensional measure of the
work of adhesion. In particular, a pinch/compression method for soft tissue is considered, and
the testing methodology is suggested based on a least squares best fit of the first-order asymp-
totic model to the depth-sensing indentation data for recovering two of the three independent
elastic moduli which characterize an incompressible transversely isotropic material. The case of
a weakly compressible material, which is important for biological tissues, is also discussed. The
developed asymptotic model can be effectively used for small values of a certain dimensionless
parameter, which is proportional to the work of adhesion and the indenter radius squared, on
the one side, and inversely proportional to the effective elastic modulus and the elastic layer
thickness cubed, on the other.

KEYWORDS
Analytical models; non-destructive testing; adhesion/non-stick; indentation testing;
transversely isotropic; incompressible

1. Introduction

Indentation testing both in vivo and in vitro becomes more and more popular in application
to biological tissues [1], since the tissue stiffness is often sensitive to pathological structural
alterations [2,3]. Therefore, there is a need for the development of reliable analytical models
for the interpretation of the continuous stiffness measurements [4], and in particular for depth-
sensing indentation measurements of the mechanical properties of in vivo human skin including
its anisotropic characteristics [5].

It is well known that many biological tissues are characterized by anisotropy [6] and adhe-
sion [7], and the case of transverse isotropy plays an important role for describing their elastic
properties [8]. In particular, the skin adhesive behaviour is important in the dermatological and
cosmetic fields and can be effectively assessed by indentation testing [9].

In recent years, a variety of indentation techniques have been introduced, which can be clas-
sified by the indenter type (e.g., flat-ended cylindrical, spherical, pyramidal, etc.). Specifically
with application to in vivo measurement of properties of human tissue, Harrison et al. [10] de-
veloped a localised indentation method based on the concept of pinching a section of tissue using
two pinch rigid cylinders of finite length. In a first approximation, such a pinch test is modeled
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Figure 1. Schematic of the pinch/compression test: (a) An elastic layer of half thickness h compressed by two rigid
cylinders of the same radius R; (b) An elastic layer of thickness h deposited onto a frictionless rigid substrate and indented

by a rigid cylinder of radius R.

as a symmetric compression of an elastic layer (see Fig. 1b), which in turn is equivalent to the
contact problem for an elastic layer with the frictionless bilateral boundary conditions u2 = 0
and σ12 = σ32 = 0 at the interface x2 = −h.

Recently, the so-called cylindrical lateral indentation test, which utilizes lateral contact of a
cylindrical indenter (see Fig. 1b), was developed under the assumption that both Poisson’s ratios
of the tested transversely isotropic elastic material are known. Such a test can be approximately
modeled [11] in the framework of the two-dimensional contact model for an orthotropic elastic
strip, which was was studied previously by Aleksandrov et al. [12,13]. We note that in our
asymptotic model it is assumed that the film thickness h and the indenter radius, R, should be
small compared to the cylinder indenter length, l, as well as the contact zone size, a, should be
small compared to the elastic film thickness h.

However, although it is usual to assume in the indentation testing of an isotropic material that
its Poisson’s ratio is known in advance [14], this assumption in the case of material anisotropy
requires a careful consideration, especially for almost incompressible materials. On the other
hand, in the case of incompressible transversely isotropic material, the previously developed
model [11] needs to be further refined. In the present paper, the two-dimensional frictionless
adhesive contact problem for a parabolic indenter pressed against an orthotropic elastic layer
resting on a smooth rigid substrate is studied in the framework of the Johnson–Kendall–Roberts
(JKR) theory [15]. The recent results related to extension of the JKR theory, and their relations
to nanoindentation have been discussed in an extensive review by Borodich [16]. In particular,
the JKR-type adhesive contact problems for transversely isotropic elastic solids were studied in
a number of papers [17–19].

The rest of the paper is organized as follows. In Section 2, the JKR adhesive contact problem
is formulated for a transversely isotropic elastic layer deposited onto a rigid substrate. The
fourth-order asymptotic solution is written out in explicit form in Section 3. The corresponding
asymptotic approximation for the pull-off force is presented in Section 4. In Section 5, the
developed analytical solution is compared with the numerical solution obtained recently by
Dalmeya et al. [20] in the isotropic case. The case of non-adhesive contact for an incompressible
material is considered in Section 6, where the material identification procedure for the cylindrical
lateral indentation test is outlined. Finally, in Sections 7 and Section 8, we present a discussion
of the results obtained and formulate our conclusions, respectively.

2. Cylindrical lateral indentation of an adhesive elastic layer

In what follows, we assume that the tissue thickness, h, is small compared to the cylinder
indenter length, l, so that the stress-strain state in the pinch zone can be modeled in the
framework of plane elasticity (see Fig. 1b). Therefore, the indentation test under consideration
can be reformulated in terms of the two-dimensional contact problem for an orthotropic elastic
layer deposited on a rigid substrate, which, in turn, can be reduced to the following integral
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equation [12]:

2

πE∗

a∫
−a

q(x′)

∞∫
0

L(u)

u
cos
(
u
x′ − x
h

)
dudx′ = w − x2

2R
, |x| ≤ a. (1)

Here, q(x) is the contact pressure, w is the indenter displacement, a is the half-width of the
contact area, which is a priori unknown, R is the radius of the cylindrical indenter, E∗ is the
effective elastic modulus, L(u) is the kernel function, which depends both on the orientation of
the anisotropy planes and on the boundary conditions at the layer/substrate interface.

Integrating the contact pressure across the contact zone, we introduce the contact force per
unit length

P =

a∫
−a

q(x) dx,

while an additional integration along the contact zone yields the contact force

P = Pl, (2)

where l is the cylinder indenter length.
In view of applications to soft tissues, we employ the JKR (Johnson–Kendall–Roberts) theory

[15] of adhesive contact, which take into account only the surface forces inside the contact zone.
The JKR theory was originally developed for a circular contact area and afterwards general-
ized by Maugis [21], who using the Griffith energy balance approach, introduced the following
condition:

K2
I

2E∗
= ∆γ. (3)

Here, ∆γ denotes the work of adhesion, KI is the stress intensity factor (SIF), which at the
point x = ±a is defined by the limit formula

K±I = − lim
x→±a

√
2π(a∓ x)q(x). (4)

We note that Johnson et al. [15] derived the adhesive contact model using energy balance
solution, and later it was generalized by Maugis [21] in the framework of LEFM (Linear Elastic
Fracture Mechanics), where Eq. (3) plays a fundamental role.

Thus, Eqs. (1), (2), and (3) constitute the JKR adhesive contact problem for an elastic layer.
Note that in the non-adhesive unilateral contact problem, the contact size parameter a should
be determined from the condition that the contact pressure q(x) vanishes at the end points
x = ±a being positive inside the contact zone for x ∈ (−a, a), so that K±I = 0.
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3. Contact pressure in the pinch zone and the force-displacement relation

Under the assumption that the width of the contact zone is small compared to the tissue thick-
ness, the following asymptotic solution was obtained [11]:

q(x) ' 1

πa
√

1− ξ2

{
P +

πE∗a2

4R

[
1− 2ξ2 + ε4

3d2
2

(1− 2ξ2) + ε6
15d3

8
(3− 8ξ4)

]
− P

(
ε2d1(1− 2ξ2) + ε4

d2
2

(7− 8ξ2 − 8ξ4)

+ ε6
[3d1d2

2
(1− 2ξ2) +

3d3
4

(13 + 6ξ2 − 36ξ4 − 8ξ6)
])}

. (5)

Here ξ = x/a is a dimensionless coordinate, P = P/l is the contact force per unit length, while
the relative contact half-width is denoted by ε, i.e.,

ε =
a

h
. (6)

Note that the condition ε � 1 means that the layer thickness is assumed to be relatively large
compared to the characteristic size of the contact area.

Provided the contact force P is known, formula (5) contains only one unknown contact param-
eter and that is the contact half-width a. The indenter displacement, which is another unknown,
can be determined from the following equation [11]:

P
{

ln
2

ε
− d0 − ε2d1 −

ε4

4
(d21 + 9d2)−

ε6

4
(8d1d2 + 25d3)

}
'

' πE∗w

2
− πE∗a2

8R

(
1 + ε2

d1
2

+ 2ε4d2 +
3ε6

32
(8d1d2 + 75d3)

)
. (7)

At the same time, the extend of the contact zone depends on the boundary conditions for the
contact pressure q(x) at the end points x = ±a. Namely, in the case of non-adhesive contact the
contact pressure must vanish at the contact boundary, and therefore, the parameter a should
satisfy the condition q(x) = 0.

In the case of JKR adhesive contact, the contact pressure (5) becomes singular at the contact
boundary. Thus, evaluating the SIF of the contact pressure (5), which is an even function of x,
we get

−KI '
1√
πa

{
P
(

1 + ε2d1 + ε4
9d2
2

+
3ε6

4
(2d1d2 + 25d3)

)
− πE∗a2

4R

(
1 + ε4

3d2
2

+ ε6
75d3

8

)}
. (8)

The condition that the SIF (8) should satisfy Griffith’s energy balance equation (3) implies
the following equation:

P =
πE∗a2

4R

Π1(ε)

Π2(ε)
−
√

2πaE∗∆γ

Π2(ε)
. (9)

4



Here, for the sake of brevity, we have introduced the notation

Π1(ε) ' 1 + ε4
3d2
2

+ ε6
75d3

8
,

Π2(ε) ' 1 + ε2d1 + ε4
9d2
2

+
3ε6

4
(2d1d2 + 25d3).

(10)

On the other hand, Eq. (7) can be rewritten in the form

w =
a2

4R
Θ1(ε) +

2P
πE∗

Θ2(ε), (11)

where, in turn, we have introduced the notation

Θ1(ε) ' 1 + ε2
d1
2

+ 2ε4d2 +
3ε6

32
(8d1d2 + 75d3),

Θ2(ε) ' ln
2

ε
− d0 − ε2d1 −

ε4

4
(d21 + 9d2)−

ε6

4
(8d1d2 + 25d3).

(12)

Formulas (5), (9), and (11) provide an asymptotic solution (up to terms of order O(ε8)) and
constitute the fourth-order asymptotic model. At the same time, Eqs. (9), and (11) represent
the force-displacement relation in a parametric form.

Observe that the asymptotic relations (5), (9), and (11) include the first four asymptotic
coefficients d0, d1, d2, and d3, which are related to the kernel function by the formulas

d0 =

∞∫
0

1− L(u)− e−u

u
du, (13)

dn =
(−1)n

(2n)!

∞∫
0

[1− L(u)]u2n−1du (n = 1, 2, . . .). (14)

It is important to note that the asymptotic coefficients dn (n = 1, 2, . . .) bear information about
the tissue anisotropy, the degree of incompressibility, and the type of boundary conditions at
the tissue/substrate interface.

In the simplest case, when the cylinder indenter is oriented longitudinally (i.e., orthogonally
to the material plane of isotropy) and the frictionless contact is assumed between the tissue and
the rigid substrate, we have d0 = 0.3517, d1 = −0.521, d2 = 0.1349, and d3 = −0.0346.

4. Asymptotic approximation for the pull-off force

Differentiating Eq. (9) with respect to a and taking into account (6), we get

∂P
∂a

' πE∗a

2R

(
Π1(ε)

Π2(ε)
+

ε

2Π2(ε)2
[
Π′1(ε)Π2(ε)−Π′2(ε)Π1(ε)

])
−
√
πE∗∆γ

2a

[
Π2(ε)− 2εΠ′2(ε)

]
Π2(ε)2

. (15)
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Looking for an extremum of the function P(a) and equating the right-hand of Eq. (15) to zero,
we arrive at the equation

ε
(

Π1(ε) + ε(2Π2(ε))
−1[Π′1(ε)Π2(ε)−Π′2(ε)Π1(ε)

])2/3
(
1− 2εΠ2(ε)

−1Π′2(ε)
)2/3 = β (16)

with respect to the critical value, εc, of the ratio ε = a/h.
Observe that the left-hand side of Eq. 16 is dimensionless, and therefore, its right-hand side

should be the same, so that the parameter

β =

(
2R2∆γ

πE∗h3

)1/3

, (17)

which appeared in Eq. 16, is dimensionless too.
The following formula provides an asymptotic solution to Eq. (16) with a relative accuracy

of 2 percent for β ≤ 0.15:

εc ' β
(

1− 2d1β
2 + 7β4(d21 − 3d2)−

11β6

6
(16d31 − 120d1d2 + 75d3)

)
. (18)

The substitution of (18) into Eq. (9) yields the critical value of the line contact force

Pc ' −
3πE∗h2

4R
β2
{

1− d1β2 + β4(3d21 − 5d2)− β6
(35

3
d31 − 50d1d2 + 175d3

)}
. (19)

In view of (2), (17), and (19), we note that in the leading order approximation for the pull-off
force and the critical half-width of the contact zone are

Pc ∼ −l
(27π

16
E∗(∆γ)2R

)1/3
, ac ∼

(2R2∆γ

πE∗

)1/3
, (20)

where l is the cylinder length.
We note that the pull-off force (20) coincides with the prediction of the 2D model for line

adhesive contact [22].
Finally, taking into account the relations (20), we introduce dimensionless variables

ā =
( πE∗

2R2∆γ

)1/3
a, P̄ =

(27π

16
E∗(∆γ)2R

)−1/3
P, w̄ =

( 4πE∗

∆γ
√
R

)2/3
w (21)

and express Eqs. (9), (11) in the non-dimensional form as

P̄ =
ā2

3

Π1(ε)

Π2(ε)
− 4ā1/2

3Π2(ε)
, (22)

w̄ = ā2
(

Θ1(ε) + 2Θ2(ε)
Π1(ε)

Π2(ε)

)
− 8Θ2(ε)

Π2(ε)
ā1/2, (23)

where ε = βā in light of (6) and (17).
In the cylindrical lateral depth-sensing indentation tests for thin adhesive elastic samples,

formulas (22) and (23) can be used for the development of the BG method [23,24], which is
based on iterative linearized optimization technique for a nonlinear ill-posed material parameter
identification problem.
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Figure 2. Variation of the contact region’s non-dimensionalized size, ã, with the indenter’s displacement, w̃, for two values

of the relative layer thickness H = h/R. Numerical solution was obtained in [20].

5. Comparison with numerical solution

Recently, Dalmeya et al. [20] investigated the 2D contact of a cylindrical punch with an isotropic
adhesive elastic layer bonded to a rigid substrate in the framework of the Dugdale—Barenblatt
adhesive zone model and extended their general solution to the JKR model as well. In this
case the kernel function L(u), which enters the governing integral equation (1), is given by the
following expression [25]:

L(u) =
2κ sh(2u)− 4u

2κ ch(2u) + 1 + κ2 + 4u2
.

Here, κ = 3− 4ν is Kolosov’s elastic constant, while the effective elastic modulus E∗ is related
to Young’s modulus, E, and Poisson’s ratio, ν, by the well known formula E∗ = E/(1− ν2).

According to Dalmeya et al. [20], we make use of the following normalization [26]:

ã =
( 4E∗

3πR2∆γ

)1/3
a, P̃ =

P
π∆γ

, w̃ =
( 16E∗2

9π2(∆γ)2R

)1/3
w. (24)

So, in view of (24), Eqs. (9) and (11) can be now rewritten in the form

P̃ =
3πã2

16m

Π1(ε)

Π2(ε)
−
√

3

2

m1/6ã1/2

Π2(ε)
, (25)

w̃ =
ã2

4
Θ1(ε) +

8m

3π
P̃Θ2(ε), (26)
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where m is a dimensionless adhesion parameter given by

m =
(3π∆γ

4E∗R

)1/3
. (27)

At the same time, the relative half-width of the contact zone is evaluated as

ε =
mã

H
, H =

h

R
. (28)

Fig. 2, shows a good correlation of the analytical solution (25), (26) with the results of
numerical simulations [20] for a specific value of the adhesion parameter m = 0.0168 (which,
e.g., corresponds to an adhesive elastic layer with ∆γ = 0.02 J, E = 0.083 MPa, and ν = 0.4,
and a cylinder indenter with R = 10 cm). It is readily seen that the accuracy of the analytical
predictions diminishes as the relative layer thickness H (see Eq. (28)2) decreases.

6. Incompressibility assumption in the non-adhesive cylindrical lateral
indentation

The case of incompressible material is very important for biomedical and biomechanical ap-
plications. However, since the development of the cylindrical lateral depth-sensing indentation
technique with the effect of adhesion requires a special analysis, here we contribute to the under-
standing of the effect of incompressibility. If the tissue material is assumed to be incompressible,
then the following condition must be satisfied: ε11 + ε22 + ε33 = 0. It is known that this incom-
pressibility condition imposes two additional constrains on the components of the compliance
tensor. Thus, for an incompressible transversely isotropic material only 3 material constants
remain independent and the following relations hold [27,28]:

ν‖ =
1

2
, ν = 1− E

2E‖
. (29)

At the same time, the condition of positive definiteness of the compliance tensor reduces to

E < 4E‖. (30)

Since Poisson’s ratio ν‖ is known in advance (see the first formula (29)), while Poisson’s ratio
ν is expressed in terms of Young’s moduli E and 2E‖ (see the second formula (29)), the problem
of material parameters identification reduces to the evaluation of the following elastic constants:
E, E‖, and G‖. However, instead of these three dimensional parameters, it is convenient to make
use of the transverse Young’s modulus E and two dimensionless ratios

n =
E‖

E
, k =

G‖

E
. (31)

Observe that in the compressible case [11], instead of k, it was suggested to employ the shear
moduli ratio m = G‖/G = 2(1 + ν)G‖/E, which in view of (29) now depends on the parameter
n.

Thus after evaluating the primary fitting elastic parameters E, n, and k, the elastic moduli
and Poisson’s ratios can be easily determined by formulas

E‖ = nE, G‖ = kE, ν‖ = 0.5, ν = 1− 1

2n
, (32)

where, in light of (30), we should have n > 1/4.
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During the depth-sensing frictionless indentation, the indenter displacement w (indentation
depth) is related to the indentation load P (contact force) by a certain nonlinear relation, which
is approximated by the following first-order asymptotic formula [11]:

w ' w0
P

P0

(
ln

4P0

P
+ 1− 2d0 −

3d1
2

P

P0

)
. (33)

Here, w0 is a characteristic length parameter, P0 is a characteristic force parameter.
The characteristic length parameter w0 is determined solely by the geometry of both the

elastic sample and the rigid indenter as follows:

w0 =
h2

4R
. (34)

Here, h is the film sample thickness, R is the radius of the indenter.
The characteristic force parameter P0 is defined by the formula

P0 =
πE∗lh2

4R
, (35)

where l is the length of the indenter. Note that P0 depends on an elastic constant E∗, which will
be defined later, since in the case of indentation testing, it is not known a priori.

In the transverse case (indenter is oriented parallel to the x1-axis and perpendicular to the
x3-axis), the asymptotic constants d⊥0 and d⊥1 are evaluated according to equations (13) and
(14), where the expression for the kernel function L(u) depends on the values of the elastic
constants [11].

In the case of an incompressible material, the asymptotic constants d⊥0 and d⊥1 are determined
via dimensionless parameters A⊥, B⊥, and γ⊥, which are given by

A⊥ =
2n2 − (4n− 1)k

k(4n− 1)
, B⊥ = 1, γ⊥ =

4n2E

4n− 1
. (36)

In the transverse case (when the anisotropy declares itself at its utmost), the tissue material
identification procedure can be outlined as follows. First, for some assumed value of k by fitting
the set of experimental depth-load data with the analytical approximation (33) in view of (14),
one can determine the elastic constants n and

E∗⊥ =
4R

πlh2
P⊥0 , (37)

where P⊥0 is the corresponding best-fit value for P0 in (33).
Further, having known E∗⊥, n, and k, we can evaluate the dimensionless constant A⊥ by the

first formula (36), which afterwards allows the evaluation of the in-plane Young’s modulus by
the formula

E =
E∗⊥
γ⊥



A⊥ + 1 +
√
A2
⊥ − 1

2

√
A⊥ +

√
A2
⊥ − 1

(A2
⊥ > 1),

1 (A2
⊥ = 1),

2−1/2
√

1 +A⊥ (A2
⊥ < 1),

(38)

where γ⊥ is given by (36)2.
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Finally, the longitudinal Young’s modulus and the longitudinal shear modulus are evaluated
as follows:

E‖ = nE, G‖ = kE. (39)

Formulas (37), (38), and (39) solve the formulated above material properties identification
problem. In the case of transverse indenter orientation, it is of interest to consider the situation
of strong anisotropy (see, e.g., [29]), because the efficiency of the identification method decreases
as n increases.

In the longitudinal case (indenter is oriented along the x3-axis), we have A|| = 1 and B|| = 1.
Still, formula (38) holds, provided γ⊥ is replaced with γ|| = 4nE/(4n− 1), while the parameter

P
||
0 is determined by fitting formula (33) with fixed asymptotic constants d

||
0 and d

||
1 , because they

are now independent of the tissue properties. It is to emphasize that fitting the experimental
data for the force-displacement relationship allows to determine only one elastic constant E∗||,

so that formulas (39) do not work any more as the ratios n and k are unknown.

7. Discussion

In the present paper, we develop an asymptotic model, which represents an approximate ana-
lytical solution to the adhesive contact problem under consideration. In Section 5, the derived
asymptotic solution was compared with the numerical solution under the same assumptions, and
it is shown that (without calculation errors) the results almost coincide when ε � 1. However,
in each instance the application of the developed theory for the explanation of experimentally
observed phenomena should be demonstrated.

For weakly compressible materials, one can expect that the material identification procedure is
sensitive to the choice of the Poisson’s ratio values (for instance, their typical values are ν‖ = 0.49
and ν = 0.95 as assumed in [30] for a soft highly anisotropic tissue with E‖/E = 20.3). At the
same time, the value of G‖/E is needed for a robust estimation of the material parameters,
while for the obtained value of the elastic moduli ratio n = E‖/E the following thermodynamic
limitation imposed on the Poisson’s ratio ν [31] should be preserved:

−1 < ν < 1−
2ν2‖

n
. (40)

Therefore, in the case of slight incompressibility, it is suggested first to solve the material pa-
rameters identification problem using the algorithm proposed in this paper under the assumption
of the complete incompressibility, thus obtaining an upper bound for the Poisson’s ratio ν. After
that, utilizing the algorithm [11], one can adjust step-by-step the values of Poisson’s ratios in
such a way that the right-hand side inequality in (40) is preserved, while the approximation
error is kept to a minimum.

It is also worth emphasizing that in the case of thin layers, when the size of the contact zone
is much larger than the layer thickness, the concept of a weakly incompressible layer can be
introduced [32], which takes into account the interplay between the material and geometrical
parameters. The same approach can be utilized in the indentation problem under consideration.
However, in the case of anisotropic material, one should take care of two small parameters,
which define how the two bulk moduli describe the material behaviour when its incompressibility
increases.

In the case of a relatively small contact zone with respect to the layer thickness, the fourth-
order asymptotic solution (up to terms of order O(ε8)) is obtained, and the pull-off force is
expanded in terms of the non-dimensional measure of the work of adhesion. It should be noted
that by developing the asymptotic expansion beyond all orders exploited for the analysis it is
not possible to extend greatly the interval of applicability of the asymptotic model (see [11]).
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On the other hand, by reducing the number of the terms retained in the asymptotic expansions,
we reduce the accuracy of the analytical approximation. Therefore, it makes sense to utilize the
first-order asymptotic model, provided its interval of applicability is kept as small as possible to
minimize the approximation error.

8. Conclusion

Summarizing, in the present paper, the first-order asymptotic model for the frictionless unilat-
eral contact between a rigid cylindrical indenter and a layer of elastic tissue is applied for the
development of cylindrical lateral non-adhesive indentation tests for transversely isotropic sam-
ples under the assumption of tissue incompressibility. The obtained asymptotic solution of the
corresponding JKR adhesive contact problem can be applied for estimating the effect of adhe-
sion in the lateral indentation. The asymptotic model can be effectively used for small values of
the dimensionless parameter β3, which is proportional to the work of adhesion and the indenter
radius squared, on the one side, and inversely proportional to the effective elastic modulus and
the elastic layer thickness cubed, on the other.
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