
Aberystwyth University

Asymptotic modelling of the JKR adhesion contact for a thin elastic layer
Argatov, Ivan; Mishuris, Gennady; Popov, V.

Published in:
Quarterly Journal of Mechanics and Applied Mathematics

DOI:
10.1093/qjmam/hbw002

Publication date:
2016

Citation for published version (APA):
Argatov, I., Mishuris, G., & Popov, V. (2016). Asymptotic modelling of the JKR adhesion contact for a thin elastic
layer. Quarterly Journal of Mechanics and Applied Mathematics, 69(2), 161-179.
https://doi.org/10.1093/qjmam/hbw002

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 09. Apr. 2024

https://doi.org/10.1093/qjmam/hbw002
https://doi.org/10.1093/qjmam/hbw002


Asymptotic modeling of the JKR adhesion contact

for a thin elastic layer

I. I. ARGATOV, G. S. MISHURIS1 and V. L. POPOV

Institute of Mathematics and Physics, Aberystwyth University, SY23 3BZ, Wales, UK
Institut für Mechanik, Technische Universität Berlin, 10623 Berlin, Germany

Abstract: The Johnson–Kendall–Roberts model of frictionless adhesive
contact is extended to the case of a thin transversely isotropic elastic layer
bonded to a rigid base. The leading-order asymptotic models are obtained for
both compressible and incompressible elastic layers. The boundary conditions
for the contact pressure approximation on the contour of the contact area have
been derived from the boundary-layer solutions, which satisfy the condition
that the stress intensity factor of the contact pressure density should have the
same value all round the contact area boundary. In the incompressible case, a
perturbation solution is obtained for a slightly perturbed circular contact area.

1 Introduction

Mechanical aspects of adhesion in biological systems have been received much
attention in previous years [1, 2]. In particular, it was found that adhesion of
live cells to external surfaces plays an important role in many cellular processes
[3, 4]. Recently, the effect of contact surface shape as a factor to control focal
adhesion lifetime was studied [5], while modeling the cell and substrate as a
semi-infinite elastic media.

In the present paper, we consider the classical JKR (Johnson–Kendall–
Roberts) model [6], which was originally developed for a spherical rigid punch
in frictionless adhesive contact with an isotropic elastic half-space, and extend it
to the case of a thin transversely isotropic elastic layer. Previously, asymptotic
models for axisymmetric adhesive indentation of a thin isotropic elastic layer
were developed in the incompressible [7] and compressible [8, 9] cases. A nu-
merical analysis of the adhesive contact between a soft elastic layer and a rough
rigid substrate was developed in [10] by using a Green’s function approach.

The main results of the present paper are represented by the leading-order
asymptotic models of non-axisymmetric adhesive contact for a thin elastic layer
bonded to a rigid base. In the case of a thin compressible layer indented by a
rigid punch with the shape function ϕ(y), the contact pressure, p(y), which is
distributed over the contact area ω bounded by the contour Γ, is determined by
the equations

p(y) =
A33

h

(
δ0 − ϕ(y)

)
, y ∈ ω,
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p(y) = −
√

2A33∆γ

h
, y ∈ Γ. (1)

Here, δ0 is the punch displacement, A33 is the aggregate elastic modulus of the
elastic layer, h is the layer thickness, ∆γ is the surface energy.

In the case of a thin bonded incompressible layer, the following boundary-
value problem is obtained for the contact pressure approximation:

− h3

3G′
∆yp(y) = δ0 − ϕ(y), y ∈ ω,

p(y) = 0,
∂p

∂n
(y) = − 1

h3/2

√
6G′∆γ, y ∈ Γ, (2)

Here, G′ is the out-of-plane shear elastic modulus of the elastic layer, ∆y is the
Laplace differential operator, ∂/∂n is the inward normal derivative.

It is interesting that the boundary conditions (1) and (2) have been derived
from the boundary-layer solutions, which satisfy the condition [11] that the
stress intensity factor of the contact pressure density should have the same
value all round the contact area boundary.

The rest of the paper is organized as follows. In Section 2, we formulate the
unilateral contact problem of frictionless adhesive contact with a transversely
isotropic bonded to a rigid base. The case of a thin compressible layer is con-
sidered in Section 3, and the elliptic frictionless adhesive contact is solved in
detail. In Section 4, we study the case of a thin incompressible layer, and a
perturbation solution is obtained for a slightly perturbed circular contact area.
In dealing with the perturbed unilateral adhesive contact problem, we utilize
the developed previously asymptotic technique [12]. Finally, in Section 5, we
formulate our conclusions.

2 Adhesion contact problem formulation for an
elastic layer

We consider the frictionless adhesive contact between a transversely isotropic
elastic layer of a relatively small thickness, h, bonded to a rigid base and a rigid
punch described by the shape function

z = ϕ(y1, y2).

As a special case we consider the punch in the form of an elliptic paraboloid

ϕ(y) =
y2

1

2R1
+

y2
2

2R2
, (3)

where R1 and R2 are the radii of curvature of the principal normal cross-sections
of the punch’s surface at its vertex.

Let δ0 and p(y) denote the punch indentation depth and the contact pressure
density, respectively. By making use of the standard two-dimensional Fourier
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transform technique, the contact problem can be reduced to the following gov-
erning integral equation [13, 14]:

1

π2hθ

∫∫
ω

p(y′)K(y1 − y′1, y2 − y′2) dy′ = δ0 − ϕ(y). (4)

Here the kernel is given by the integral

K(y) =

+∞∫∫
0

L(λ)

λ
cos

λ1y1

h
cos

λ2y2

h
dλ1dλ2. (5)

Note that we follow the same notation as in the book [15], wherever possible.
In the case of a transversely isotropic elastic layer bonded to a flat rigid

base, the elastic constant θ and the kernel function L(λ) are given by the known
solution [16] (see also [17] and [15], Section 2.1.3).

Let Γ denote the unknown boundary of the contact area ω. Introducing a
natural parametrization of the contour Γ by formulas y1 = f1(s), y2 = f2(s),
where s is the arc length, we will assume that when traveling along Γ in the
direction of increasing s-coordinate, the region ω enclosed by Γ remains on the
left. Correspondingly, the unit vector of the inward (with respect to the domain
ω) normal to the contour Γ is given by

n(s) = −f ′2(s)e1 + f ′1(s)e2,

where the prime denotes differentiation with respect to s.
Then, the stress intensity factor (SIF),KI(s), at the point y(s) =

(
f1(s), f2(s)

)
on the contour Γ can be evaluated as

KI(s) = − lim
n→0

p
(
y(s) + nn(s)

)√
2πn, (6)

so that
(
f1(s) + nn1(s), y2(s) = f2(s) + nn2(s)

)
are the Cartesian coordinates

of the point of observation y(s)+nn(s), which tends to the contour Γ along the
normal at the point with the natural parameter s.

In the case of the JKR-type adhesive contact according to Griffith’s energy
balance (see, e.g., [19]), the boundary Γ of the contact area ω is determined by
the following condition [11, 18]:

KI(s) = 2
√
θ∆γ. (7)

Here, ∆γ denotes the work of adhesion (which is taken to be the surface energy).
We note that θ = E∗/2, where E∗ is the so-called effective elastic modulus of
the layer, which in the isotropic case is equal to E/(1− ν2) with E and ν being
Young’s modulus and Poisson’s ratio, respectively.

Finally, the contact force, F , is determined by the equilibrium equation∫∫
ω

p(y) dy = F. (8)
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Thus, Eqs. (4) and (7) constitute the JKR adhesive contact problem for an
elastic layer, which is based on the assumption [11] that the SIF of the contact
pressure should have the same value all round the boundary Γ.

3 Adhesive contact in the case of a thin com-
pressible layer

3.1 Leading-order asymptotic model for a thin compress-
ible elastic layer bonded to a rigid base

In what follows, we will make use of the expansion

L(λ)

θλ
=M0 +M1λ

2 +M2λ
4 + . . . (9)

with the first coefficients given by

M0 =
A
θ

=
1

A33
, M1 =

A13(A13 −A44)

3A2
33A44

. (10)

Note also that the dimensional asymptotic contact A = θM0 is given by

A =
A11A33 −A2

13

(γ1 + γ2)A11A33
, (11)

where γ1 and γ2 are the roots of the characteristic equation.
Using the distributional asymptotic analysis [20], the following formal asymp-

totic expansion for the integral operator on the left-hand side of Eq. (4) was
established [21]:

1

π2hθ

∫∫
ω

p(y′)K(y − y′) dy′ ' h
∞∑
n=0

(−1)nMnh
2n∆n

yp(y). (12)

Here, ∆y = ∂2/∂y2
1 + ∂2/∂y2

2 is the Laplace operator.
It is to emphasize that the asymptotic expansion (12) is valid in the inner

region of the contact area ω, that is relatively far from the boundary Γ.
Keeping in the series (12) only the first asymptotic term and substituting

the result into Eq. (4), we obtain

p(y) = k
(
δ0 − ϕ(y)

)
, y ∈ ω, (13)

where we have introduced the notation

k =
A33

h
.

It is clear that Eq. (13) should be supplemented with some boundary con-
dition to determine the contact area ω.
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3.2 Leading-order boundary-layer solution in the compress-
ible case

Assuming that the layer thickness h is relatively small with respect to the char-
acteristic length of the contact area ω, we introduce a small dimensionless pa-
rameter, ε, and set

h = εh∗, (14)

where h∗ is independent of ε.
Moreover, following [21], we will make use of the normalization

δ0 = εδ∗0 , R1 = ε−1R∗1, R2 = ε−1R∗2, (15)

where δ∗0 , R∗1, and R∗2 are comparable with h∗, all being independent of ε.
Further, we introduce dimensionless variables

η = (η1, η2), ηi = h−1
∗ yi, i = 1, 2. (16)

Therefore, in light of (14) and (16), Eq. (4) takes the form∫∫
ω∗

p∗(η
′)k
(
ε−1(η − η′)

)
dη′ = ε2π

2θ

h∗

(
δ∗0 − ϕ∗(η)

)
, (17)

where ω∗ is the contact area in the dimensionless coordinates (16), and in the
special case (3) we have ϕ∗(η) = h2

∗
(
(2R∗1)−1η2

1 + (2R∗2)−1η2
2

)
, while ϕ∗(η) =

ε−1ϕ(h∗η) in the general case.
The kernel k(ξ) in Eq. (17) is obtained from the kernel K(y) (see Eqs. (4),

(5)) in the form

k(ξ) =
1

4

+∞∫∫
−∞

L(s)

s
ei(s1ξ1+s2ξ2)ds1ds2.

Finally, we introduce the so-called “fast” normal coordinate

ν =
n

h
= ε−1 n

h∗
, (18)

keeping the scale of the dimensionless coordinate s∗ = s/h∗ along Γ∗ unchanged.
Following the asymptotic procedure developed in [15, 21, 22], we arrive at

the following boundary-layer integral equation:

+∞∫
0

q∗ε (s∗, ν
′)M(ν′ − ν) dν′ =

πθ

h∗

[
δ∗0 − ϕ∗

(
η(s∗)

)]
. (19)

Here, q∗ε (s∗, ν) is the leading-order asymptotic approximation for the contact
pressure density in the neighborhood of the boundary Γ∗, η(s∗) is a point of
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the contour Γ∗ with the dimensionless natural coordinate s∗, while the kernel
M(t) is given by

M(t) =

+∞∫
0

L(u)

u
cosut du.

Making use of Aleksandrov’s approximate factorization for the function w−1L(w)
suggested in [22] (see also [15], Section 2.3.3 ), we readily find

q̃∗ε (s∗, ν) =
πθh∗
h∗

[
δ∗0 − ϕ∗

(
η(s∗)

)]
ϕ0(ν). (20)

Here, ϕ0(ν) is an approximate solution to Eq. (19) with the right-hand side 1
such that

ϕ0(ν) =
1

A
erf
√
Bν +

e−Bν√
πAν

(21)

with erf(x) being the error function. The behavior of the boundary-layer func-
tion ϕ0(ν) is shown in Fig. 1.
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Figure 1: Boundary-layer solutions normalized at the infinity. In the compress-
ible case, the function (21) is plotted for a typical value AB = 0.5. In the
incompressible case, the normalized function (39), with the regularity condi-
tion (40) taken into account, for the isotropic material with A = 0.761310 and
B = 2.588024 according to Aleksandrov’s approximation [24].

From (14), (15), (20), and (21), it follows that

KI(s) ' −
√

2

hA
θ
[
δ0 − ϕ

(
y(s)

)]
, (22)
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where A is given by (11).
Now, in light of (7) and (13), Eq. (22) can be rewritten in the form of the

boundary condition for Eq. (13) as

p
(
y(s)

)
= −

√
2A∆γ

θh
A33,

or, taking into account formula (10)1, as follows:

p
(
y(s)

)
= −

√
2A33∆γ

h
. (23)

Thus, in the framework of the leading-order asymptotic model for a thin
compressible elastic layer, the JKR-type adhesive contact theory imposes the
requirement of a constant contact pressure round the periphery of the contact
area.

3.3 Elliptic frictionless adhesive contact for a thin com-
pressible layer

In this section, we consider the adhesive contact problem (13), (23) in the case
(3). By substituting (3) into Eq. (13), we readily obtain

p(y) =
A33

h

(
δ0 −

y2
1

2R1
− y2

2

2R2

)
, (24)

while Eq. (23) determines the contour Γ by the equation

δ0 −
y2

1

2R1
− y2

2

2R2
= −

√
2h∆γ

A33
. (25)

It is obvious from Eq. (25) that the contact area ω is elliptic. Let the major
semi-axis and the eccentricity of the contour Γ be denoted by a and e, so that
the minor semi-axis is given by b =

√
1− e2a. By simple calculations (assuming

that R1 ≥ R2) we find

e =

√
1− R2

R1
,

a2 = 2R1

(
δ0 +

√
2h∆γ

A33

)
. (26)

Now, by substituting the expansion (24) into the double integral on the left-
hand side of Eq. (8) and integrating over the domain ω bounded by the ellipse
(25), we evaluate the contact force

F =
πA33

2h
ab

(
δ0 +

√
2h∆γ

A33

)
. (27)
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Further, Eq. (26) yields the punch’s displacement

δ0 =
a2

2R1
−
√

2h∆γ

A33
, (28)

whereas Eq. (27), in light of (28), can be represented in the form

F =
πA33

2h

√
R2

R1
a2

(
a2

2R1
− 2

√
2h∆γ

A33

)
. (29)

In the axisymmetric case, when R2 = R1 = R and b = a, Eqs. (28) and (29)
reduce to

δ0 =
a2

2R
−
√

2h∆γ

A33
, F =

πA33

4Rh
a4 −

√
2πa2

√
A33∆γ

h
. (30)

Finally, in the isotropic case, we have

A33 =
E(1− ν)

(1 + ν)(1− 2ν)
,

and formulas (30) coincide with the known solution obtained by Yang [9].

4 Adhesive contact in the case of a thin incom-
pressible layer

4.1 Leading-order asymptotic model for a thin incompress-
ible elastic layer bonded to a rigid base

First of all observe that the coefficientM0 in the expansion (9) vanishes for an
incompressible material, and in the main asymptotic term formula (12) reduces
to

1

π2hθ

∫∫
ω

p(y′)K(y − y′) dy′ ' −M1h
3∆yp(y), (31)

where the coefficient M1 is given by (10)2.
Therefore, by replacing the left-hand side of Eq. (4) with the right-hand side

of (31), we arrive at the differential equation

−M1h
3∆yp(y) = δ0 − ϕ(y), y ∈ ω, (32)

where ω is the unknown contact area.
It is interesting to note that Eq. (32) requires two boundary conditions in

order to determine the domain ω. In the case of a fixed contact area (see [15,
23, 24]) even for a flat-ended punch (when the solution to the governing integral
equation (4) has a square-root singularity), the following boundary condition has
been imposed: p(y) = 0 for y ∈ Γ. In the case of non-adhesive unilateral contact
(see [15, 25, 26]), the zero-pressure gradient boundary condition is additionally
imposed.

In the case of adhesive contact, the boundary conditions can be formulated
based on the boundary-layer problem.
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4.2 Leading-order boundary-layer solution in the incom-
pressible case

Following [15], we rewrite Eq. (4) in the form

h

π2θ

∫∫
ω

p(y′)K∗(y − y′) dy′ =W0(y), (33)

where the kernel is given by

K∗(y) =

+∞∫∫
0

L(λ)

λ3
cos

λ1y1

h
cos

λ2y2

h
dλ1dλ2.

In the leading asymptotic order (see [15], Section 2.7.2), we have

W0(y) ' h3M1p(y). (34)

Following the asymptotic procedure developed in [15], we derive from Eq. (33)
the following boundary-layer equation:

+∞∫
0

q∗∗(s∗, ν
′)M∗(ν

′ − ν) dν′ =
πθ

h3
∗

(
C0(s∗) + εC∗1 (s∗)

)
. (35)

Here, q∗∗(s∗, ν) = ε2q∗ε (s∗, ν) is the leading-order approximation for the contact
pressure density in the neighborhood of the boundary Γ∗ of the contact area ω∗
in the dimensionless coordinates (16), ν is the fast normal coordinate (18), and
the kernel M∗(t) is given by

M∗(t) =

+∞∫
0

L(u)

u3
cosut du.

The right-hand side of Eq. (35) has been obtained from the expansion

W0(y) =W0

(
y(s)

)
+ εh∗ν

∂W0

∂n

(
y(s)

)
+
ε2

2
h2
∗ν

2 ∂
2W0

∂n2

(
y(s)

)
+ . . . , (36)

so that

C0(s∗) =W0

(
y(s)

)
, C∗1 (s∗) = h∗ν

∂W0

∂n

(
y(s)

)
. (37)

Based on Aleksandrov’s approximation [24] for the kernel function L(u) given
by the formula

L̃(u) =
π

(u2 +A2)
√
u2 +B2

,

where it is assumed that (see for details [15], Section 2.6.5)

1

A2B
= θM1. (38)
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Now, using the analytical solution obtained by Argatov and Mishuris [15],
we readily get

q∗∗(s∗, ν) =
πθ

h3
∗

[
C0(s∗)φ0(ν) + εC∗1 (s∗)φ1(ν)

]
, (39)

where

φ0(t) =
A2B

π
erf (
√
Bt) +

A
√
Be−Bt

2π3/2t3/2
(2At− 1),

φ1(t) =
A2Bt

π
erf (
√
Bt) +

e−Bt

4π3/2
√
Bt3/2

(4A2Bt2 − 2A2t+A+ 2B).

Observe that the functions φ0(t) and φ1(t) have singularities of the order
O(t−3/2) as t→ 0+. That is why, the square root singularity of the approxima-
tion (39) requires that

−C0(s∗)
A
√
B

2π3/2
+ εC∗1 (s∗)

(A+ 2B)

4π3/2
√
B

= 0,

from where it follows that

C0(s∗) = εC∗1 (s∗)
(A+ 2B)

2AB
. (40)

Correspondingly, the coefficient at the asymptotic term of the order O(t−1/2)
as t → 0+, which according to (6) is related to the SIF of the boundary-layer
contact pressure density (39), is given by

lim
ν→0+

ν1/2q∗∗(s∗, ν) = εC∗1 (s∗)
A
√
B

π3/2

πθ

h3
∗
. (41)

On the other hand, we have

q∗ε (s∗, ν) ∼ − KI(s)√
2πεh∗ν1/2

, ν → 0+. (42)

Therefore, from (41) and (42) it follows that

KI(s)√
2πεh∗

= −ε−1C∗1 (s∗)
A
√
B

π1/2

θ

h3
∗
. (43)

Now, taking into account the boundary condition (7) and the relations (38),
we evaluate C∗1 (s∗) from (43) as follows:

C∗1 (s∗) = −ε1/2h
5/2
∗
√

2M1∆γ. (44)

Hence, from (37) and (44), we obtain

∂W0

∂n

(
y(s)

)
= −ε1/2h

3/2
∗
√

2M1∆γ. (45)
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Note also that for a transversely isotropic incompressible elastic layer, we
have

M1 =
1

3G′
,

where G′ is the out-of-plane shear elastic modulus. Fig. 1 presents the behavior
of the normalized boundary-layer solution (39), with the condition (40) taken
into account, for the isotropic case according to Aleksandrov’s approximation
[24].

Thus, in light of the fact that C0(s∗) is an order of magnitude smaller than
C∗1 (s∗) as ε → 0+ (see Eq. (40)), based on Eqs. (32), (34), (45), and (36), we
derive the following leading-order asymptotic model for the adhesive frictionless
unilateral contact for a thin incompressible elastic layer:

− h3

3G′
∆yp(y) = δ0 − ϕ(y), y ∈ ω, (46)

p(y) = 0,
∂p

∂n
(y) = − 1

h3/2

√
6G′∆γ, y ∈ Γ, (47)

where ∂/∂n is the inward normal derivative.
Finally, we note that in the case of non-adhesive contact, when ∆γ = 0, the

asymptotic model (46), (47) coincides with the leading-order asymptotic model
of unilateral frictionless contact for a thin incompressible elastic layer developed
in [15, 27, 28, 29].

4.3 Axisymmetric frictionless adhesive contact in the in-
compressible case

In the axisymmetric case, the boundary-value problem (46), (47) reduces to

1

r

d

dr

(
r
dp(r)

dr

)
= m(Cr2 − δ0), r < a, (48)

p(a) = 0,
dp

dr
(a) =

√
2m∆γ, (49)

where we have introduced the auxiliary notation

m =
3G′

h3
, C =

1

2R
. (50)

Integrating Eq. (48) with the first boundary condition (49) taken into ac-
count, we get

p(r) =
m

16

[
C(r2 + a2)− 4δ0

]
(r2 − a2), (51)

while the second boundary condition (49) implies that

m

4
(Ca3 − 2δ0a) =

√
2m∆γ,

11



from where it follows that

δ0 =
Ca2

2
− 2

a

√
2∆γ

m
. (52)

Further, integrating the contact pressure density (51), we readily obtain the
contact force in the form

F =
πm

24
a4(3δ0 − Ca2),

or, in light of (52), we finally get

F =
πm

48
a4

(
Ca2 − 12

a

√
2∆γ

m

)
. (53)

Apart from the notation (see Eqs. (50)), formulas (52) and (53) coincide
with the relations between the punch displacement δ0, the contact force F , and
the contact radius a, previously derived by Yang [7] in the isotropic case for a
spherical punch.

4.4 Adhesive contact with a slightly perturbed circular
contact area

Let us assume that the punch shape function, ϕµ(r, θ), is prescribed in polar
coordinates (r, θ) as a sum

ϕµ(r, θ) = ϕ0(r) + µϕ1(r, θ), (54)

where ϕ0(r) is a monotonically increasing function of the radial coordinate r,
such that ϕ0(0) = 0, the function µϕ1(r, θ) describes a small deviation of the
punch surface from the axisymmetric shape, and µ is a small parameter.

In the polar coordinates, the asymptotic model (46), (47) takes the form

∂2pµ
∂r2

+
1

r

∂pµ
∂r

+
1

r2

∂2pµ
∂θ2

= m
(
ϕµ(r, θ)− δ0

)
, (r, θ) ∈ ωµ, (55)

pµ
∣∣
Γµ

= 0,
∂pµ
∂n

∣∣∣∣
Γµ

= −
√

2m∆γ, (56)

where the dimensional parameter m is given by (50)1.
In light of (54), we assume that the boundary Γµ of the contact area ωµ can

be described by the equation

r = a+ µh(θ), θ ∈ [0, 2π),

where µh(θ) is a small variation of the circular contact area ω0 with the bound-
ary Γ0 described by the equation r = a, θ ∈ [0, 2π).
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At the same time, the domain ω0 is determined from the limit problem

1

r

d

dr

(
r
dp0(r)

dr

)
= m

(
ϕ0(r)− δ0

)
, r < a, (57)

p0(a) = 0,
dp0

dr
(a) =

√
2m∆γ. (58)

Following [15] (see Section 8.3.2), the solution to the boundary-value problem
(57), (58) can be obtained in the form

1

m
p0(r) =

δ0
4

(a2 − r2)−Θ0(a, r),

where we have introduced the notation

Θ0(a, r) =

a∫
r

ϕ0(ρ)ρ ln
a

ρ
dρ−

r∫
0

ϕ0(ρ)ρ ln
r

ρ
dρ.

Moreover, the punch displacement and the limit value (µ = 0) of the contact
force, F0, are given by

δ0 =
2

a2

r∫
0

ϕ0(ρ)ρ dρ− 2

a

√
2∆γ

m
, (59)

1

m
F0 =

π

4

a∫
0

ϕ0(ρ)(2ρ2 − a2)ρ dρ− πa3

4

√
2∆γ

m
. (60)

Following [12] (see also [15], Section 9.1.6), we express the solution to the
perturbed adhesive contact problem (55), (56) as

pµ(r, θ) = p0(r) + µp1(r, θ) +O(µ2),

Fµ = F0 + µF1 +O(µ2), (61)

assuming that the punch displacement δ0 is specified, while the contact force
Fµ is unknown a priori .

Applying the perturbation technique, we arrive at the following problem:

∂2p1

∂r2
+

1

r

∂p1

∂r
+

1

r2

∂2p1

∂θ2
= mϕ1(r, θ), r < a, (62)

p1(a, θ) = −h(θ)
dp0

dr
(a), (63)

∂p1

∂r
(a, θ) = −h(θ)

d2p0

dr2
(a). (64)

Let us express the solution to the problem (62), (63) in the form

p1(r, θ) = Y1(r, θ) + Y0(r, θ), (65)
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where Y1(r, θ) is the solution to Eq. (62) with the boundary condition Y1(a, θ) =
0, while Y0(r, θ) is the solution to the Dirichlet problem with the boundary
condition (63).

In view of the boundary condition (58)2, the application of Poisson’s integral
yields

Y0(r, θ) = −
√

2m∆γ

2π

2π∫
0

(a2 − r2)h(θ′) dθ′

a2 − 2ra cos(θ − θ′) + r2
. (66)

Therefore, the substitution of (65) into Eq. (64) leads to the equation for
determining the variation of the contact area

∂Y1

∂r
(a, θ)−

√
2m∆γ

(
Sh
)
(θ) = −h(θ)

d2p0

dr2
(a), (67)

where S is the Steklov—Poincaré (Dirichlet-to-Neumann) operator.
Note also that, in light of Eqs. (57) and (58)2, we have

d2p0

dr2
(a) = m

(
ϕ0(a)− δ0

)
−
√

2m∆γ

a
. (68)

Now, let the function h(θ) be represented by its Fourier series

h(θ) =
a0

2
+

∞∑
n=1

an cosnθ + bn sinnθ, (69)

then according to (66), we get

(
Sh
)
(θ) =

1

a

∞∑
n=1

n
[
an cosnθ + bn sinnθ

]
. (70)

Thus, the substitution of (68)–(70) into Eq. (67) allows to uniquely determine
the Fourier coefficients an and bn in terms of the contact radius a, provided
Eq. (59) is taken into account.

Finally, in view of the boundary condition (56)1, it can be shown that the
contact force (61) is evaluated as

Fµ = F0 + µ

2π∫
0

dθ

a∫
0

p1(ρ, θ)ρ dρ+O(µ2),

where F0 and p1(r, θ) are given by (60) and (65), respectively.

5 Discussion and conclusion

First of all, observe that the normalization of the boundary-layer contact density
q∗∗(s∗, ν) with respect to the small parameter ε depends on the normalization
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of the geometric parameters of the problem (see, e.g., formulas (15)), which in
turn govern the relative size of the contact area with respect to the elastic layer
thickness. To simplify technical details of our analysis in the incompressible
case, we did not consider this question in detail (we refer the reader to the book
[15]).

In the case of an incompressible elastic layer, the contact area beneath a
punch shaped as an elliptic paraboloid is not elliptic, as it is the case for a
compressible layer (see Section 3.3). That is why, solution of the adhesive
contact problem (46), (47) in the case (3) is of obvious special interest for
further study.

Following [15], the constructed asymptotic models, which describe the adhe-
sive contact between a thin elastic layer and a rigid punch, can be generalized
to the case of contact between two thin elastic layers (compressible or incom-
pressible). The case of contact between a compressible thin elastic layer with
an incompressible one requires a special consideration.

The leading-order asymptotic models of non-axisymmetric adhesive contact
between a rigid punch and a thin elastic layer bonded to a rigid base constitute
the main results of the present paper.
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