
Aberystwyth University

A modernized version of a 1D soil vegetation atmosphere transfer model for
improving its future use in land surface interactions studies
Anagnostopoulos, Vasileios; Petropoulos, George; Ireland, Gareth; Carlson, Toby N.

Published in:
Environmental Modelling and Software

DOI:
10.1016/j.envsoft.2017.01.004

Publication date:
2017

Citation for published version (APA):
Anagnostopoulos, V., Petropoulos, G., Ireland, G., & Carlson, T. N. (2017). A modernized version of a 1D soil
vegetation atmosphere transfer model for improving its future use in land surface interactions studies.
Environmental Modelling and Software, 90, 147-156. https://doi.org/10.1016/j.envsoft.2017.01.004

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 30. Apr. 2024

https://doi.org/10.1016/j.envsoft.2017.01.004
https://doi.org/10.1016/j.envsoft.2017.01.004


Page | 1  
 

A Modernized Version of a 1D Soil Vegetation Atmosphere 1 

Transfer model for improving its future use in Land Surface 2 

Interactions Studies 3 

 4 

Vasileios Anagnostopoulos1,2, George Petropoulos3,*,                                                5 
Gareth Ireland3, Toby N. Carlson4              6 

1Distributed and Knowledge Management Systems Lab, National Technical University of Athens, Greece 7 
2InfoCosmos, Pindou 71, 13341, Athens, Greece 8 

3University of Aberystwyth, Department of Geography and Earth Sciences, SY23 2EJ, Wales, United Kingdom 9 
4Pennsylvania State University, Department of Meteorology, University Park, PA 16802, USA 10 

 11 
 12 
*Correspondence: george.petropoulos@aber.ac.uk, Tel: +44-0-1970-621861 13 

 14 

ABSTRACT 15 

SimSphere is a land biosphere model that provides a mathematical representation of vertical 16 
‘views’ of the physical mechanisms controlling Earth’s energy and mass transfers in the 17 
soil/vegetation/atmosphere continuum. Herein, we present recent advancements introduced to 18 
SimSphere code, aiming at making its use more integrated to the automation of processes within 19 
High Performance Computing (HPC) that allows using the model at large scale. In particular, a 20 
new interface to the model is presented, so-called “SimSphere-SOA” which forms a command line 21 
land biosphere tool, a Web Service interface and a parameters verification facade that offers a 22 
standardised environment for specification execution and result retrieval of a typical model 23 
simulation based on Service Oriented Architecture (SOA). SimSphere-SOA library can now 24 
execute various simulations in parallel. This allows exploitation of the tool in a simple and 25 
efficient way in comparison to the currently distributed approach. In SimSphere-SOA, an 26 
Application Programming Interface (API) is also provided to execute simulations that can be 27 
publicly consumed. Finally this API is exported as a Web Service for remotely executing 28 
simulations through web based tools. This way a simulation by the model can be executed 29 
efficiently and subsequently the model simulation outputs may be used in any kind of relevant 30 
analysis required.  31 

The use of these new functionalities offered by SimSphere-SOA is also demonstrated using a "real 32 
world" simulation configuration file. The inclusion of those new functions in SimSphere are of 33 
considerable importance in the light of the model's expanding use worldwide as an educational 34 
and research tool.  35 

 36 
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1. Introduction  40 

Land surface interactions govern the critical exchanges of energy and mass between the 41 
terrestrial biosphere and the atmosphere, and are major drivers of the Earth's system (Jung et al., 42 
2011; North et al., 2015). There is an urgent need today for a better understanding and a more 43 
accurate monitoring of Earth’s natural processes and interactions, evidently strengthened even 44 
more in the face of pressures from climate change and global food and water security (Coudert et 45 
al., 2008; Ireland et al., 2015; Mannschatz et al., 2016). The growing role of simulation in Earth 46 
systems science together with the increasing available computing power have resulted to an 47 
increase in the complexity of processes included in the design of  simulators (Coon et al., 2016).  48 

Land Surface Parameterisation schemes (LSPs, also known as Land Surface Models, LSMs) are one 49 
of the preferred scientific tools to quantify earth system interactions at different spatial and 50 
temporal resolutions. LSPs simulate a number of parameters characterising land surface 51 
interactions within the lower atmospheric boundary from a predefined set of surface 52 
characteristics (i.e. properties of soil, vegetation and water). One such group of LSPs includes Soil-53 
Vegetation-Atmosphere Transfer (SVAT) models. Those mathematical models provide 54 
representation of vertical ‘views’ of the physical mechanisms controlling energy and mass 55 
transfers in the soil-vegetation-atmosphere continuum. SVATs provide estimates of the time 56 
course of soil and vegetation state variables at time-steps compatible with the dynamics of 57 
atmospheric processes. Also are able to describe the multifarious transfer processes through 58 
varying degrees of complexity, over different temporal and spatial scales (Ridler et al., 2012).  59 

SimSphere is an example of a 1-D SVAT model, originally developed by Carlson and Boland 60 
(1978) and Lynn and Carlson (1990), and considerably modified to its current state with its 61 
latest version written in Java by Gillies et al., (1997) and Petropoulos et al., (2013a). Since its 62 
development it has been utilised in studies concerning the study of land surface interactions 63 
(North et al., 2015) and the examination of hypothetical scenarios studying feedback processes 64 
(Grantz et al., 1999). Furthermore, it has been used synergistically with Earth Observation (EO) 65 
data to derive spatiotemporal estimates of energy fluxes and/or soil moisture (Carlson, 2007). 66 
Variants of this technique are currently investigated by Space Agencies for developing related 67 
operational products (Chauhan et al., 2003; Piles et al., 2011; ESA STSE, 2012; Piles et al., 2016). 68 
An overview of the model use can be found in  Petropoulos et al., (2009a).  69 

Behind SimSphere’s Graphical User Interface (GUI) lies an engine that executes the computation of 70 
a number of output parameters after a set of input parameters are provided by the user from the 71 
User Interface (UI). The computation engine is a direct port from an existing Fortran 77 codebase 72 
to Java 1.3. This port was originally undertaken 15 years ago, and during that time the code base 73 
has been amended with various computation routines by various developers for a number of 74 
applicational purposes. Moreover the GUI code is entangled with the logic of the computation 75 
engine and provides a custom interface by providing a set of parameters as an input to the 76 
computation routines. The introduction of Service Oriented Architecture (SOA) practices in the 77 
remote sensing realm is relatively new (El-Sharkawi et al., 2013).  Modern execution 78 
environments, like cloud platforms or numerical computation Domain Specific Languages (DSLs), 79 
like Modelica, are not able to create value from the research work in the codebase mostly due to a 80 
monolithic, standards incompliant approach. One can attribute the problem to the lack of SOA 81 
design. This is also related to the porting of business logic from old programming languages, like 82 
Fortran 77, which contributes much syntactic noise. SOA allows the service specification and 83 
modularity in a multi-lingual environment. The SOA rules outlined in Bell (2008) and Schroth and 84 
Janner, (2007) could potentially serve to improve the separation of roles. According to these 85 
authors, the researcher is not a developer and vice versa. Both roles have their own domain 86 
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specific knowledge and skills and through SOA the developer can create a standardised interface 87 
that exposes the business logic engineered by the researcher. This can be done through protocols 88 
and standards, something that SOA reinforces. 89 

In the purview of the above, the aim of this work has been to apply modern trends in software 90 
development to an existing codebase in the field of EO and land surface modeling to outline an 91 
SOA migration path, display its benefits and improve the software quality. SimSphere is an ideal 92 
example to be chosen as a case study as it is widely adopted in research, its use is rapidly 93 
expanding worldwide, and, the software toolkit is minimal enough to have a proof-of-concept, 94 
while rich enough to display our approach. More specifically, the  existing GUI code is removed 95 
from the model and then SOA design patterns are applied in order to create a command line 96 
implementation suitable for cloud deployments or High Performance Computing (HPC) execution, 97 
which subsequently exposes the model functionality as a service.  98 

 99 

2. SimSphere Description  100 

SimSphere is a one-dimensional land biosphere model. It simulates a series of physical processes 101 
that take place as a function of time in a column that extends from the soil root zone up to a level 102 
higher than the surface vegetation canopy. Three main systems within the models’ architecture, 103 
include the physical, the vertical and the horizontal layers (Figure 1). The physical components 104 
ultimately determines the microclimate conditions in the model, grouped into three categories, 105 
radiative, atmospheric and hydrological. The vertical structure components, effectively correspond 106 
to the Planetary Boundary Layer (PBL) and are divided into three layers - a surface mixing layer, a 107 
surface of constant flux layer and a surface vegetation or bare soil layer, where the depths of the 108 
first layer is somewhat variable with time, growing throughout the day as sensible heat is added 109 
from below. The depth of the constant flux and vegetation layers are set in the model input, 110 
although the depth of a bare soil transition (between soil and air) layer is variable in time 111 
depending on the wind speed and the surface roughness. The substrate layer refers to the depth 112 
of the soil over which heat and water is conducted. The processes and interactions simulated by 113 
SimSphere develop over a 24-h diurnal cycle at a chosen time step, starting from a set of initial 114 
conditions given in the early morning (at 05.30 am local time) with a continuous evolving 115 
interaction between soil, plant and atmosphere layers. A number of input parameters are 116 
required to parameterise the model, categorised into 7 defined groups (Table 1). Model provides 117 
predictions as a function of time for a total of more than 30 variables (Table 2). A detailed 118 
description of SimSphere architecture can be found in Gillies (1993). The current version of the 119 
model is globally distributed from Aberystwyth University, UK (http://www. 120 
aber.ac.uk/simsphere). 121 

 122 

3. Existing Structure and Architecture of SimSphere  123 

The development of SimSphere-SOA has primarily been motivated by efforts to increase the 124 
usability of the original software model. In its currently distributed version of SimSphere, the GUI 125 
code was written as a presentation and configuration layer to an Extensible Markup Language  126 
file. This XML file provided the configuration layer of the data, whilst the persistency layer that 127 
transformed user data to the XML file and back was written by hand using custom data types. A 128 
component to a server based proprietary execution environment was also developed, but 129 
SimSphere software is typically used as a desktop application. The interface to the Fortran 77 130 
computational logic was done through a function which took all the arguments used for the 131 
computation as inputs. In Figure 2 is provided an overview of the current architecture. From it 132 
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and the usage of the software, it can be observed that there is room for further improvements in 133 
the original SimSphere software toolkit and in particular:  134 

 There is no way for exporting the model inversion data. 135 

 The configuration (that configures the internal data-structures with user input) and 136 
validation layer (that examines user input for errors)  is manually written which is 137 
error prone. 138 

 The UI couples tightly with the validation and persistency layer (that loads 139 
specification and save results) . No third party interface for other UIs is possible. 140 

 There are two parts in the validation layer. The first is manually written and the other 141 
is written on old technology (Document Type Definition, DTD). 142 

 The application is not available for headless installations because of the UI coupling. 143 

 The application cannot be used remotely through Web Services. 144 

 Uses legacy unsupported code. 145 

 The application cannot be run in HPC or in batch mode. 146 

There are also a number of other possible issues to address on the model distributed version not 147 
evident in Figure 2 that mainly pertain to maintainability. Typically current deprecated methods 148 
do not work as expected and make functionalities of the software unusable in current versions of 149 
Java. It is also obvious from the code base that an entangling of roles leads to major shortcomings 150 
in the development process. 151 

 152 

4. SimSphere-SOA Developments  153 

The newly developed code within SimSphere-SOA was structured to follow the SOA principles. 154 
For the computational logic layer an orchestrator was created, behind a mega-function interface, 155 
which uses the services of the persistency layer to read the XML and export the results of the 156 
computation to a Comma Separated Values (CSV) formatted file (Shafranovich, 2005).  The new 157 
model architecture is shown in Figure 3. As an SOA approach, SimSphere-SOA provides the 158 
service of simulation by consuming messages in XML format and producing messages in CSV 159 
format,  allowing them to be consumed by a third party application. Using the self-documenting 160 
configuration and validation layer, various applications can be designed around the Application 161 
Programming Interface (API) as illustrated in Figure 4.  162 

There are two endpoints per CSV. The first one takes the XML file as input and produces a CSV of a 163 
time based simulation for a whole day. The first column is the simulation time in 15-minute (or 164 
higher) steps, whereas the remaining columns contain the evolution of various geophysical 165 
quantities as samples at these time instances. The second type of simulation runs various 166 
scenarios for a specific time of a particular day encoded as Fractional Vegetation Cover (FVC) and 167 
Surface Moisture Availability pairs. These two quantities vary in the 0.1 floating point range. The 168 
user can specify steps to sweep the two ranges independently, and for each combination of values, 169 
quantities of interest to the remote sensing community are computed. The results are exported as 170 
a CSV in the desktop version; however the application can run also as a server where it exposes 171 
the two endpoints as shown in Table 3. The request headers should be Content Type: 172 
application/xml and   Accept: text/csv.  This last step can be used for fast model inversion. 173 

 174 

 175 
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 176 

Apart from the various Computer Science (CS) considerations, this new application is an enabler 177 
for sophisticated Sensitivity Analysis (SA) tooling in SimSphere. This is very important 178 
functionality in terms of future efforts related to performing an all-inclusive the verification of the 179 
model. Indeed, SA can help to understand the behavior of a model and in establishing the 180 
dependency of the model outputs on its input parameters in how different parts of the model 181 
interplay. By means of an SA, irrelevant parts of the model may be dropped or a simpler model 182 
can be built or extracted from a more complex one (so-called model lumping), reducing, in some 183 
cases significantly, the required computing power in running a model. SA also provides a valuable 184 
method to identify critical input parameters and rank them in order of importance. The latter can 185 
offer important guidance to the design of experimental programs as well as to more efficient 186 
model coding or calibration (e.g. Petropoulos et al. 2009b; 2013b). The new model architecture 187 
presented herein allows the creation of a generalised SA scheme which decouples the application 188 
from executing various runs manually in order to derive the results. As SimSphere is provided as 189 
a service, one needs to change the XML files, create CSV files and run the analysis algorithm via a 190 
scripting mechanism. SimSphere-SOA is completely stateless (two executions of SimSphere are 191 
independent) and is suitable for HPC environments, since it creates a stateless cluster (as 192 
illustrated in Figure 5). 193 

 194 

5. SimSphere-SOA Software Availability 195 

SimSphere-SOA product has been also developed as open source software, as its predecessor 196 
SimSphere, and is hence, released under the terms of the GNU General Public License. The 197 
software code of this new model version is also freely distributed from the main web site from 198 
where the model is distributed globally maintained by Aberystwyth University, UK 199 
(www.aber.ac.uk/simsphere).  200 

 201 

6. Implementation  202 

6.1. Validation layer 203 

A smaller software tool was created to amend and improve upon SimSphere original model 204 
architecture, whilst also ensuring that SOA guidelines and use standards were respected in order 205 
to facilitate and the work of the EO community. As a first step, the two validation layers that 206 
existed in the currently distributed model version were unified into a single layer in SimSphere-207 
SOA. The two validation layers were very different; one was contained within the application 208 
while the other one was external. In order to extract the internal validation layer, amendments to 209 
the original code had to be made. Following assessment of the code, the requirements for the 210 
unified validation layer which were not met by the existing approach were identified as the 211 
following: 212 

 The data types of the XML should be specified. 213 

 The validation layer should be self-documenting for a developer. 214 

 The validation layer should include comments for the non-developer end users. 215 

 The validation layer must lie externally to application in order to meet the previous 216 
requirements. 217 

http://www.aber.ac.uk/simsphere
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 The validation layer should be used by the software before using the data for 218 
computations. 219 

 The validation should be standardised. 220 

Having identified these requirements, the XML Schema Definition (XSD) version 1.1 was utilised 221 
for the application. Compared to the previous version 1.0, the updated version has the added 222 
value of the inclusion of validation, which was previously available as the separate Schematron 223 
standard.  Using this solution, the validation logic could be externalised as a self-documenting, 224 
easily comprehensible compact document. The other benefit is that the same document could be 225 
used to create a persistent layer. In the case of SimSphere-SOA, the XSD file contained 3 more 226 
validation rules because extra domain specific knowledge from the expert, which is not encoded 227 
in the code base, was included. The new validation/persistency approach could also find 228 
validation errors that were not possible in the previous approach and were identified as bugs 229 
leading to runtime crashes, or worse, incorrect results. Both the newly developed and the existing 230 
approach was largely based on data types and their constraints. Perhaps the strongest advantage 231 
over the existing SimSphere application is the Look Up Table (LUT) functionality with selection 232 
among discrete alternatives and uniqueness provided by XSD 1.0 specification and does not exist 233 
in DTD specification. The XSD 1.1 specification facilitated the assertions outlined in Table 4  234 
which was not available in the previous version. There were also gains in readability. The 235 
Longitude element is a typical example.  In our case, this is compactly represented as an XSD data 236 
type with upper and lower bounds (Table 5). In the old approach, this information was encoded 237 
in an XML file which resulted in the rule being copied between XML files with the risk of possible 238 
typographic mistakes. In the new approach, the XML corresponding element is simplified as one 239 
can see from Table 6, with evident gains in readability and robustness. The documentation of 240 
various XML parameters through the excellent xs3p package allowed for the web presentation to 241 
be easily highlighted and formatted. 242 

 243 

6.2. Serialisation  layer 244 

While the Java Architecture for XML Binding (JAXB) API does not support version 1.1 of the XSD 245 
(XML Schema) specification, the assertions present in 1.1 could be commented out to create the 246 
1.0 conforming document. In this respect, the serialisation layer was automatically generated as a 247 
Java package from the 1.0 document. Programmatically, given a conforming XML, the relevant 248 
classes specified through the 1.1 XSD version could be filled with the XML data. The corresponding 249 
classes in the old version were analysed by the cloc tool (CLOC). The results are shown in Table 7.  250 

It should be noted that in the XSD, despite the validation and serialisation specification being 251 
roughly four times bigger in terms of lines of code in comparison to the DTD approach, as opposed 252 
to the manually generated Java it is almost four times smaller in terms of lines of code, and does 253 
not require Java expertise. Moreover the validation logic is contained within a single file in 254 
contrast to the previous approach which amounted to 39 different files (including DTD). Even if 255 
the logic in the XSD were more modularised, spanning multiple files for readability, the overhead 256 
would be minimal. The new configuration and validation layer is self-documenting and the 257 
validation could be done with the third party library Apache Xerces (Apache Xerces). Notably, 258 
application specific validation was not relied upon. There were also significant improvements 259 
related to the XML files in comparison to the original approach. The sample XML which was 260 
provided with the application had been reduced by 3.5 times in terms of file size in comparison to 261 
the original (Table 7). 262 
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With regards to the presentation layer, due to deprecated features and bugs, the GUI code had to 263 
be re-written. Instead of using this costly approach in the short term, a standards compliance was 264 
adopted to tackle the problem. It was observed that the outputs were double valued, in column 265 
form. Given that the model could simulate the 24 hours of a day at 15 minutes resolution, a 266 
uniform column based tabulation was available. The most widely used form for such data is the 267 
CSV format, which is a standard format supported by dozens of software. Consequently a solution 268 
was engineered to convert the internal representation in CSV format for output. The export 269 
functionality was not present in the previous approach. Through CSV, the presentation was 270 
delegated to other well-established and maintained tools such as LibreOffice.  271 

6.3. Demonstration of new functions 272 

In order to demonstrate the new functions offered by SimSphere-SOA a   simulation 273 
configuration file was used for the case of running a simulation for Borgo Cioffi Italian 274 
experimental site (latitude 40.617 and longitude 14.933) specifically for the date 17 November 275 
2004. After the conversion it could be used the xsd to identify various mistakes (Figure 6) that 276 
went uncaught by the standard SimSphere distribution. After correcting these mistakes the next 277 
challenge was related to the sounding atmospheric profile data provision. In the standard 278 
SimSphere distribution, the user has to manually provide such sounding data. They are typically 279 
taken from the Department of Atmospheric Science of the University of Wyoming. These come in 280 
a standard format. Here in the soundings were acquired for the corresponding date from the 281 
nearby weather station, namely LIRE. The provided data were saved to a .csv file and using an 282 
accompanying utility in the SimSphere-SOA distribution, namely csv2soundingset.java, it 283 
automatically generated the <SoundingSet> element in the correct format and units suitable for 284 
SimSphere-SOA (Figure 7).  This was not possible in the standard version, as the user must 285 
employ a manual, error prone procedure. The tool respects the constraint posed by the core of 286 
Simsphere which is a limit of 51 Sounding elements. Also, notably the previous version had only 287 
11 manually converted measurements. After checking the .xml file again for correctness via the 288 
XSD file, it was used to perform simulations. A .csv file was effortlessly generated that encoded the 289 
results of the simulation. A standard spreadsheet program was used to create the figures, namely 290 
MS Excel. The .xml used to generate the simulation results, namely sample.xml, is available at the 291 
corresponding Github project in the folder simsphere_xsds. An example prediction of the time 292 
evolution of Sensible Heat Flux of this day is illustrated in Figure 8. 293 

7. Conclusions & Future Work 294 

Herein, the applicability of the SOA architecture to a SVAT modeling tool was demonstrated. The 295 
innovation of the approach described herein is the exporting of validation logic encoded in code 296 
to an XSD. XSD can capture these constraints while the previous DTD validation could not. With 297 
XSD more accurate sensitivity analysis and model outputs validation can be performed while the 298 
user can use the inline documentation in order to insert valid values. Even if the input is 299 
erroneous, by using standard validation interfaces of XML editors the user can accurately describe 300 
and comfortably validate the input before submitting it. The validation could be used as a 301 
portable interface generator between developers. In the previous SimSphere product edition, 302 
manually generated Java code had to be exchanged. In contrast, the new SimSphere-SOA allows 303 
the user to analyse the input from the .csv provided as output which are compatible with 304 
numerous applications. The executions can be run in headless environments (for example in HPC) 305 
in parallel or through shell scripts.  306 

SimSphere-SOA development has also resulted in the improvement in the maintainability of the 307 
application, code reduction and flexibility of the original model. The improvement in 308 
maintainability and code size is due to the automated validation and generation of a persistency 309 
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layer, whereas the flexibility owes its improvement to the SOA design. Moreover, the stateless 310 
nature of SimSphere-SOA allows it to scale in HPC environments. The stateless is expressed by the 311 
creation of two .csv files per XML which can be executed in parallel. While the first .csv allows the 312 
observation of time evolution, the second one is very important in running model inversion. 313 

Future work may focus on the GUI re-design using modern practices and technologies that have 314 
proved their values. For this purpose a number of options can be explored including Java FX 315 
technology (current on-going implementation) or the more standardised approach of 316 
HTML5/EcmaScript6 following the web centric trend. A perhaps more pressing issue with 317 
SimSphere is related to the maintainability of the scientific investment in computational logic. In 318 
order to successfully separate the role of developer and researcher, future work on the model will 319 
be required to transform the code base to a researcher friendly DSL like OpenModelica. This 320 
development will be of key value in demonstrating a workflow that brings together the developer 321 
and the researcher with minimum overlap of responsibilities to each other.  322 
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Fig 1: Basic structure of SimSphere, with the different model components summarised 
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Fig. 2. Original SimSphere architecture 

 

 

Fig. 3 The new friendly architecture of SimSphere-SOA  
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Fig. 4 Example of SimSphere-SOA applications 

 

 

Fig. 5 SimSphere-SOA in cluster mode 
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Fig. 6 Validation failure on converted xml values. 

 

 

Fig. 7 XML fragment generation from imported sounding data. 

 

 

Fig. 8 Sensible Heat Flux predicted by the Simsphere-SOA 
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Table 1: Summary of the main SimSphere inputs.  

 
NAME OF THE MODEL INPUT 

PROCESS IN WHICH 
PARAMETER IS INVOLVED 

MIN 
VALUE 

MAX 
VALUE 

Slope (degrees) TIME & LOCATION 0 45 
Aspect (degrees) TIME & LOCATION 0 360 
Station Height (meters) TIME & LOCATION 0 4.92 
Fractional Vegetation Cover (%) VEGETATION 0 100 
LAI ( m2m-2) VEGETATION 0 10 
Foliage emissivity (unitless) VEGETATION 0.951 0.990 
[Ca] (external [CO2] in the leaf) (ppmv)  VEGETATION 250 710 
[Ci] (internal [CO2 ] in the leaf) (ppmv) VEGETATION 110 400 
[03] (ozone concentration in the air) (ppmv) VEGETATION 0.0 0.25 
Vegetation height (meters)  VEGETATION 0.021 20.0 
Leaf width (meters)  VEGETATION 0.012 1.0 
Minimum Stomatal Resistance ( sm-1) PLANT 10 500 
Cuticle Resistance ( sm-1) PLANT 200 2000 
Critical leaf water potential ( bar) PLANT -30 -5 
Critical solar parameter  (Wm-2) PLANT 25 300 
Stem resistance ( sm-1) PLANT 0.011 0.150 
Surface Moisture Availability (vol/vol) HYDROLOGICAL 0 1 
Root Zone Moisture Availability ( vol/vol) HYDROLOGICAL 0 1 
Substrate Max. Volum. Water Content (vol/vol) HYDROLOGICAL 0.01 1 
Substrate climatol. mean temperature ( oC )  SURFACE 20 30 
Thermal inertia ( Wm-2K-1) SURFACE 3.5 30 
Ground emissivity (unitless) SURFACE 0.951 0.980 
Atmospheric Precipitable water (cm) METEOROLOGICAL 0.05 5 
Surface roughness (meters) METEOROLOGICAL 0.02 2.0 
Obstacle height (meters) METEOROLOGICAL 0.02 2.0 
Fractional Cloud Cover (%) METEOROLOGICAL 1 10 
RKS (satur. thermal conduct.(Cosby et al., 1984) SOIL 0 10 
Cosby B (see Cosby et al., 1984)  SOIL 2.0 12.0 
THM (satur.vol. water cont.) (Cosby et al., 1984) SOIL 0.3 0.5 
PSI (satur. water potential) (Cosby et al., 1984) SOIL 1 7 
Wind direction (degrees) WIND SOUNDING PROFILE 0 360 
Wind speed (knots) WIND SOUNDING PROFILE --- --- 
Altitude (1000’s feet)  WIND SOUNDING PROFILE --- --- 
Pressure (mBar) MOISTURE SOUNDING PROFILE --- --- 
Temperature (Celsius) MOISTURE SOUNDING PROFILE --- --- 
Temperature-Dewpoint Temperature (Celsius) MOISTURE SOUNDING PROFILE --- --- 
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Table 2: Summary of the main s outputs simulated by SimSphere.  
 

 

 
 

Table 3. Web service endpoints of SimSphere-SOA 

 
Endpoint Description Method 

http://localhost:8080/timebased Time based POST 

http://localhost:8080/convolution Convolution simulation POST 

 

 

 

 

 

 

SimSphere model Outputs 
Output Name Units   Output Name Units  

Air temperature at 1.3m oC  Radiometric Temperature oC 

Air temperature at 50m oC  Root Zone moisture Avail. n/a 

Air temperature at foliage oC  Sensibel heat flux Wm-2 

Bowen ratio n/a  Short-wave flux Wm-2 

[CO2] on canopy ppmv  Specific humidity at 1.3m gKg-1 

[CO2] flux micromolesm2s-1  Specific humidity at 50m gKg-1 

Epidermal water potential Bars  Specific humidity at foliage gKg-1 

Global O3 flux Ugm-2s-1  Stomatal resistance sm-1 

Ground flux Wm-2  Surface moisture availability n/a 

Ground water potential bars  Vapor pressure deficit Mbar 

Latent Heat flux Wm-2  Water Use Efficiency n/a 

Leaf water potential bars  Wind at 10m Kts 

Net Radiation Wm-2  Wind at 50m Kts 

[O3] canopy ppmv  Wind in foliage Kts 

[O3] flux plant Ugm-2s-1    
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Table 4: Two examples XSD 1.1 assertions used 

Description Assertion 

Altitude 
above 
station must 
start at 0 

<xsd:assert test="count(./simsphere:Sounding[@AltAboveStation eq 0]) gt 0"/> 

 

Minimum 
temperature 
must be 
below 
maximum 
temperature. 

<xsd:assert test="@MinTemperature le @MaxTemperature"/> 

 

 

 

Table 5:  The longitude definition as used by  SimSphere-SOA 

 
<xsd:element name="Longitude"> 

   <xsd:annotation> 

      <xsd:documentation> 

         The longitude in degrees. 

      </xsd:documentation> 

   </xsd:annotation> 

   <xsd:simpleType> 

      <xsd:restriction base="xsd:float"> 

         <xsd:minInclusive value="-180"/> 

         <xsd:maxInclusive value="180"/> 

      </xsd:restriction> 

   </xsd:simpleType> 

</xsd:element> 
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Table 6. Comparison of old and new approaches in providing the longitude 
parameter in XML input 

Approach Code 

OLD <ParamLabel Format="##0.##" Label="Longitude (deg)" ParmElem="Longitude"> 

</ParamLabel> 

 

<Longitude Value="96.55"> 

   <BoundedRange MaxType="closed" Maximum="180" MinType="closed"  

          Minimum="-180" RangeID="ID102"> 

   </BoundedRange> 

</Longitude> 

NEW <Longitude>96.55</Longitude> 

 

 
 

Table 7: Analysis using CLOC of  old and new serialization and validation 
codebases 

 
Approach Files Blanks Comments Lines of Code File Size 

OLD (Java only 
serialization) 

38 1152 2069 4393 
(manual) 

 

NEW (Java only) 0 N/A N/A 0 (manual)  

OLD (DTD only) 1 N?A N/A 311  

NEW (XSD only) 1 N/A N/A 1145  

OLD XML Input     106KB 

NEW XML Input     26KB 
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